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Additive noise has been known for a long time to not change a systems stability.

The discovery of stochastic and coherence resonance in nature and their analytical

description has started to change this view in the last decades. The detailed studies of

stochastic bifurcations in the last decades have also contributed to change the original

view on the role of additive noise. The present work attempts to put these pieces of

work in a broader context by proposing the research direction ANISE as a perspective in

the research field. ANISE may embrace all studies that demonstrates how additive noise

tunes a systems evolution beyond just scaling its magnitude. The article provides two

perspective directions of research. The first perspective is the generalization of previous

studies on the stationary state stability of a stochastic random network model subjected

to additive noise. Here the noise induces novel stationary states. A second perspective

is the application of subgrid-scale modeling in stochastic random network model. It is

illustrated how numerical parameter estimation complements and extends subgrid-scale

modeling and render it more powerful.

Keywords: random network, subgrid-scale modeling, mean-field analysis, particle swarm optimization, Erdös and

Rényi

INTRODUCTION

Noise is a major ingredient in most living and artificial thermodynamically open systems.
Essentially it is defined as the contrast to signal, that is assumed to be understood or at least known
in some detail. Hence the notion of noise is used whenever there is a lack of knowledge on a process,
i.e., when it is necessary to describe something unknown or uncontrollable. The relation to chaos
and fractals [1] is interesting, which appear to be very complex features of systems if their dynamics
are not known. Consequently, noise effects are considered in models if it is mandatory to describe
irregular unknown processes. Such processes may be highly irregular and deterministic or random.
The following paragraphs do not distinguish these two cases, but mathematical models assume
noise to be random.

Since noise represents an unknown process, typically it is identified as a disturbing element
that should be removed or compensated. Observed data are supposed to represent a superposition
of signals that carry important information on the system under study and noise whose origin
is unrelated to the signal source. Moreover, noise may disturb the control of systems, e.g., in
aviation engineering, it may induce difficulties in communication systems or acoustic noise may
even represent a serious health hazard in industrial work.

However, noise may also be beneficial to the systems dynamics and thus represents
an inevitable ingredient. In engineering, for instance, cochlear implants can improve
their signal transmission rate by adding noise and thus save electrical power [2].
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Biomedical wearables can improve their sensitivity by additive
noise [3]. In these applications, noise improves signal
transmission by stochastic resonance (SR) [4]. It is well-known
that natural systems employ SR to amplify weak signals and thus
ensure information transmission [5]. We mention on the side
Chaotic Resonance [6], which improves signal transmission by
additional chaotic signals and hence demonstrates the similarity
between noise and chaos again. Mathematically, systems that
exhibit SR have to be driven by a periodic force and additive
noise and should exhibit a double-well potential.

Noise is of strong irregular nature and intuition says that
additive noise induces irregularity into the stimulated system.
Conversely, noise may optimize the systems coherence and
thus induce regular behavior. Such an effect is called coherence
resonance (CR) [7, 8] and has been demonstrated in a large
number of excitable systems, such as chemical systems [9],
neural systems [10], nanotubes [11], semi-conductors [12], social
networks [13], and the financial market [14]. To describe CR
mathematically, the system performs a noise-induced transition
between a quiescent non-oscillatory state and an oscillatory state.

Both SR and CR are prominent examples of mechanisms
that show a beneficial noise impact. These mechanisms are
mathematically specific and request certain dynamical topologies
and combination of stimuli, e.g., the presence of two attractors
between which the system is moved by additive noise. Other
previous mathematical studies have focussed on more generic
additive noise-induced transitions, e.g., at bifurcation points.
There is much literature on stochastic bifurcations in low-
dimensional systems [15–18], spatially-extended systems [19–
23], and delayed systems [24–27].

Beyond SR, CR and stochastic bifurcations, additive noise
does not only induce stability transitions between states but may
tune the system in the stable regime and hence represents an
important system parameter. Such an impact is omnipresent
in natural systems while it is less prominent and more
difficult to observe. Nevertheless, this stochastic facilitation [28]
results indirectly to fluctuating, probably random, observations.
Examples for such observations are a large variability between
repeated measurements [29–31] and strong intrinsic fluctuations
in observations [32–34]. To describe such observed random
properties, various different fluctuation mechanisms have
been proposed, such as deterministic chaotic dynamics [35],
heterogeneity [29] or linear high-dimensional dynamics driven
by additive noise [36].

To motivate the focus on additive noise in the present work,
let us consider the linear stochastic model

dx

dt
= −γ x(t)+ αx(t)ξ (t)+ βη(t)

with γ , α, β > 0 and spectral white Gaussian distributed noise
ξ (t), η(t) both with zero mean and varianceD. For multiplicative
noise only (α > 0, β = 0), the system ensemble average 〈x〉
obeys [37, 38]

d〈x(t)〉

dt
=

(

−γ +
α2D

2

)

〈x(t)〉 .

This shows that the systems origin is a stationary state, whose
stability depends on the multiplicative noise variance D. Hence
multiplicative noise affects the stability of the system. This
is a well-known result [39, 40]. However, multiplicative noise
implies that the noise contribution to the system depends on the
system activity. This assumption is strong and can not always be
validated. Especially in the lack of knowledge how noise couples
to the system under study, this assumption appears to be too
strong. Hence it is interesting to take a look at additive noise
(α = 0, β > 0) whose noise contribution is independent of the
system activity. Then

d〈x(t)〉

dt
= −γ 〈x(t)〉

demonstrating that zero-mean additive noise does not affect
the stability of the systems stationary state in the origin.
This is also well-established for linear systems. However, some
previous stochastic bifurcation studies on the additive noise
effect in nonlinear systems have revealed an induced change
of stability of the systems stationary state as mentioned above.
Moreover, recent diverse studies of additive noise in oscillatory
neural systems have revealed that additive noise may tune the
systems principal oscillation frequency [41–47]. The present
work focusses on a certain class of dynamical differential
equation models that exhibit Additive Noise-Induced System
Evolution (ANISE) and where the additive noise represents a
determinant element. Recently, Powanwe and Longtin [48] have
described experimentally observed neural burst activity as an
additive noise-controlled process and Powanwe and Longtin
[49] have provided conditions under which two additive noise-
driven biological systems share optimally their information.
Moreover, previous theoretical neural population studies have
demonstrated that additive noise can explain intermittent
frequency transitions observed in experimental resting state
electroencephalographic data [50], dynamical switches between
two frequency bands induced by opening and closing eyes in
humans [51], and the enhancement of spectral power in the
γ -frequency under the anesthetic ketamine [52].

For completeness, it is important to mention quasi-cycle
activity [52–55]. Mathematically, this is the linear response of a
deterministically stable system to additive noise below a Hopf
bifurcation.Without noise, the systemwould decay exponentially
to the systems stable fixed point as a stable focus, whereas the
additive noise kicks away the system from the fixed point and
thus the system never reaches the fixed point. For long times, the
stationary power spectrum of the systems activity is proportional
to the noise variance D. This linear relation between spectral
power and noise variance has been employed extensively in a
large number of previous model studies of experimental spectral
power distributions, e.g., in the brain [56, 57]. It is important to
point out that the additive noise just scales the global magnitude
of the linear systems spectral power distribution, but does not
affect selected time scales or frequency bands, e.g., move spectral
peaks as observed in the brain [58]. The subsequent sections
illustrate how additive noise may affect nonlinear systems in
such a way that the systems intrinsic time scales depend on the
noise variance.
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The following two sections propose extensions of existing
studies in ANISE. The first generalizes previous studies of
stochastic dynamics in specific nonlinear random networks
indicating a perspective to generalize the analysis of such systems.
This brief analysis is followed by the novel proposal to extend the
stochastic analysis in ANISE by numerical estimates of subgrid-
scale models.

DYNAMIC RANDOM NETWORK MODELS

To illustrate a possible perspective in ANISE, let us consider
a random network of number of nodes N, whose nodes
activity obeys

dVi(t)

dt
= g[Vi(t)]+

N
∑

j=1

KijS[Vj(t)]+ ξi(t) ,

for i = 1, . . . ,N. The additive noise {ξi(t)} is uncorrelated
between network nodes and Gaussian distributed with zero mean
∑N

i=1 ξi(t)/N = 0 and variance D =
∑N

i=1 ξ 2i (t)/N at every
time instance t. The connectivity matrix K is random with non-
vanishing mean

∑

i,j Kij/N 6= 0. To gain some insights, at first

g[V] = −V , S[V] = γ1V + γ2V
2 + γ3V

3 and the network
is of Erdös-Rényi-type (ER) [59], i.e., Kij = 0 with probability
1 − c and Kij = K̄ 6= 0 with connection probability c. In
addition, the network is bidirectional with Kij = Kji and we
choose K̄ = 1/Nc for convenience. This choice yields a real-
valued matrix spectrum and its maximum eigenvalue is λ1 = 1.
As has been shown previously [60], a Galerkin ansatz assists
to understand the dynamics of such a network. We define a
bi-orthogonal eigenbasis of K with the basis sets {9(k)}, {8(k)}

for which

9(k),†8(l) = δkl , k, l = 1, . . . ,N

with the Kronecker symbol δkl, where † denotes the complex
conjugate transposition. The eigenspectrum {λk} obeys

K8(l) = λl8
(l) , 9(l),†K = λl9

(l),† .

It is well-known that the eigenspectrum of symmetric random
matrices has an edge distribution and a bulk distribution of
eigenvalues [61]. For large ER networks with N → ∞, both
distributions are well-separated. The edge distribution consists

of the maximum eigenvalue λ1 with 9
(1)
j = 1/N, 8

(1)
j = 1

and the bulk distribution obeys the circular law and thus shrinks
with λk>1 → 0 for N → ∞. Assuming the composition Vi(t) =
∑N

k=1 8
(k)
i xk(t) with time-dependent mode amplitudes xk(t) and

projecting the network activity {Vi} onto the basis {9(k)}, the
mode amplitudes {xk(t)} obey

dx1

dt
= −x1 +

1

N

N
∑

j=1

(γ1Vj + γ2V
2
j + γ3V

3
j )

+
1

N

N
∑

i=1

ξi (1)

dxk

dt
≈ −xk +

N
∑

i=1

9
(k)
i ξi , k = 2, . . . ,N (2)

Then Vi(t) = x1(t) + ηi(t) with the Ornstein-Uhlenbeck

noise process ηi =
∑N

k=2 8
(k)
i xk that is Gaussian distributed

with N (0,D) [60]. Consequently, x1 describes the mean-field
dynamics of the network. Hence, at each node i, Vi exhibits a
superposition of mode x1 and zero-mean fluctuations ηi. For
N → ∞ the mode amplitude x1 obeys

dx1

dt
= −x1 +

∫ ∞

−∞

[γ1(x1 + w)+ γ2(x1 + w)2

+γ3(x1 + w)3]pou(w)dw (3)

= γ2D+ (γ1 + 3γ3D− 1)x1 + γ2x
2
1

+γ3x
3
1 (4)

with the Gaussian probability distribution of the Ornstein-
Uhlenbeck process pou = N (0,D). The mode x1 is deterministic
and the additive noise ξi, that drives the network at each node,
affects the mean-field network activity tuning the stability of
the stationary state x1 = 0 of the network. Moreover, the
systems time scale, which is determined by the linear factor in
Equation (4), now depends on the noise variance D.

Figure 1A illustrates the assumptions made. For small
networks, the eigenvalue spectrum of the randommatrix exhibits
a clear gap between the edge spectrum (λ1 = 1) and the bulk
spectrum with λk>1 ≈ 0. This spectral gap increases with
increasing N. In addition, for small networks the conversion of
the sum in (1) to the integral in (3) is a bad approximation, the
sum in (1) exhibits strong stochastic fluctuations and hence the
network mean fluctuates as well. The larger N, the better is the
approximation of the sum by the integral in (3) and the more
the dynamics resemble the deterministic mean-field dynamics.
Figure 1B presents the systems corresponding potential

φ(x1) = γ2Dx1 +
1

2
(γ1 + 3γ3D− 1)x21

+
1

3
γ2x

3
1 +

1

4
γ3x

4
1

with dx1/dt = −dφ(x1)/dx1. For increasing noise variance D,
the additive noise merges the stable fixed point (local minimum
of φ at V 6= 0) and the unstable fixed point (local maximum of
φ at V = 0) yielding finally a single stable fixed point (global
minimum of φ).

Although this example illustrates how additive noise induces
a stability transition, the underlying network model is too simple
to correspond to natural networks. It assumes a large ER-
type network that implies a clear separation between edge and
bulk spectrum which in turn reflects a sharp unimodal degree
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FIGURE 1 | Mean-field description of ANISE. (A) The spectral distribution of

random matrix K for different number of network nodes N (left column) and

corresponding network mean (solid line, from Equation 1) and mean-field

(dashed line, from Equation 4) for comparison (right column). Parameters are

K0 = 1.0,D = 0.1, γ1 = 2.0, γ2 = 0.0, γ3 = −1.0,α = β = 0.0, c = 0.9 and

numerical integration time step 1t = 0.03 utilizing the Euler-Maruyama

integration method and identical initial values Vi = 1.1 at t = 0 for all

parameters. The panels show results for a single network realization, while the

variance of results for multiple network realizations is found to be negligible for

N ≥ 1, 000 (data not shown). (B) Potential φ(V ) for different noise variances D.

distribution. If this spectral gap is not present, then the mean-
field activity x1 impacts on the noise process xk>1 which renders
the analysis much more complex (closure problem). Such a case
occurs in most natural networks [62], such as scale-free [63] or
small-world networks [64]. Moreover, realistic networks exhibit
nonlinear local dynamics g(·) which renders a Galerkin approach
as shown above much more complex since it leads to a closure
problem as well. As a perspective, new methods have to be
developed to treat such cases and to reveal whether ANISE
represents the underlying mechanism. In this context, subgrid-
scale modeling may be a promising approach as outlined in the
subsequent section.

SUBGRID-SCALE MODELING (SGS)

Most natural systems evolve on multiple spatial and/or temporal
scales. Examples are biological systems [65], such as the brain
or body tissue, or the earth atmosphere. The latter may
exhibit turbulent dynamics whose dynamical details are typically
described by the Navier-Stokes equation [66]. The closure
problem tells that large scales determine the dynamics of small

scales and vice versa. In general, there is rarely a detailed
model description of the dynamics on all system scales and the
corresponding numerical simulation of all scales is costly. To
this end, subgrid-scale modeling [67] chooses a certain model
description level and provides a model that captures the effective
contribution of smaller scales to the dynamics on the chosen
level. The present work proposes, as a perspective, to apply SGS
in randomnetworkmodels (cf. previous section) and estimate the
subgrid-scale dynamics numerically from full-scale simulations.

For illustration, let us re-consider the example in the previous
section. It shows how noise ξi on the microscopic scale, i.e., at
each node, impacts the evolution of the mesoscopic scale, i.e.,
spatial mean or mean field. The Galerkin ansatz is successful
in the given case for a large family of nonlinear coupling
functions S[·] and linear local functions. However, typically
complex network systems exhibit local nonlinear dynamics. For
illustration reasons, in the following it is g[V] = −V + βV3 and
projections onto the eigenbasis of the random matrix yield

dx1

dt
= −x1 +

β

N

N
∑

i=1

V3
i +

1

N

N
∑

j=1

(γ1Vj

+γ2V
2
j + γ3V

3
j )+

1

N

N
∑

i=1

ξi (5)

dxk

dt
= −xk + β

N
∑

i=1

9
(k)
i V3

i +

N
∑

i=1

9
(k)
i ξi (6)

for k = 2, . . . ,N. It is still Vi = x1 + ηi with ηi =
∑N

k=2 8
(k)
i xk

as in the previous section, but now the noise term ηi is no
Ornstein-Uhlenbeck process anymore due to the nonlinearity in
Equation (6). Since the basis {9(k)} is not known analytically, it
is very difficult to gain the stationary probability density function
p(·) of ηi.

To address this problem, taking a close look atVi = x1+ηi, x1
may appear as the mesoscopic activity of the network and ηi may
be interpreted as microscopic activity. This new interpretation
is motivated by the previous section and stipulates

∑n
i=1 ηi =

0. Hence, the additional nonlinear local interaction affects the
mesoscopic scale dynamics by modulating the microscopic scale
dynamics. Now a new subgrid-scale model ansatz assumes that
the additional nonlinear local interaction affects the variance
of the microscopic scale but retains the microscopic Gaussian
distribution shape, i.e., η ∼ N (0, bD). Here the additional factor
b > 0 captures the impact of the additional nonlinear term
βV3

i in g[V]. It represents the subgrid-scale model parameter
for the impact of the nonlinear term. For clarification, b = 1
corresponds to β = 0. Inserting this ansatz and Vi = x1 + ηi
into Equation (5) and taking the limit N → ∞

dx1

dt
= F(x1, b)

= γ2D+ (γ1 + 3γ3D− 1+ 3βbD)x1

+γ2x
2
1 + (γ3 + β)x31 (7)

with a still unknown SGS-factor b. Now let us fit this unknown
factor numerically. To this end, numerical simulations of the
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FIGURE 2 | Subgrid-scale modeling. (A) Network mean (solid line) computed from simulations of Equation (1) and mean-field dynamics (7) for different values of β

(numbers given) and corresponding optimally estimated factors b. Parameters are Vi (0) = x1(0) = 1.1, δt = 0.03,K0 = 1.0,D = 0.33, γ1 = 2.0, γ2 = 0.0,

γ3 = −1.0,α = 0.0,N = 1000, c = 0.9 and initial condition Vi (0) = 1.1 ∀i = 1, . . . ,N. The results have been gained for a single network realization, while the variance

of results for multiple network realizations is found to be negligible for N ≥ 1000 (data not shown). The optimal factor b has been estimated by employing the Python

library pyswarms utilizing the routine single.GlobalBestPSO with optional parameters c1 = 0.5, c2 = 0.5, w = 0.3, 60 particles, 50 iterations and taking the best fit

over 20 trials. (B) The estimated factor b for different values of β (dots) and the fit polynomial function (dashed line; see Equation 8). (C) The resulting potential φ(V )

with dφ/dV = −F [V,b(β)], F is taken from Equation (7), where b is computed from β (numbers given) by Equation (8). The dashed line is plotted for comparison

illustrating the impact of the SGS.

random network (1) permits to compute the time-dependent
network mean V(tn) with discrete time tn = n1t and time
step 1t and its temporal derivative 1Vn = (V(tn+1) −

V(tn))/1t. Thenminimizing the cost functionC =
∑T

j=1(1Vn−

F[V(tn, b)])
2 with respect to b yields an optimum SGS-factor

b. The corresponding parameter search is done by a Particle
Swarm Optimization (PSO) [68, 69]. Figure 2A shows the
simulated mesoscopic network mean and the well fit mesoscopic
model dynamics (7) for the optimal factor b at different
corresponding nonlinearity factors β (numbers given). For each
factor β there is an optimal SGS-factor b (cf. Figure 2B),
and we can fit numerically a nonlinear dependency of b
subjected to β

b(β) = 0.45+ 0.55e6.78β . (8)

This expression is the major result of the SGS modeling
since it permits to describe the random network dynamics
with nonlinear local interactions by mesoscopic variables
with the assistance of a numerical optimization. It is
noted that Equation (8) is still valid if other initial
conditions for the network simulation are chosen
(not shown).

The impact of the nonlinear local interaction on the mean-
field is illustrated in Figure 2C, where the potential φ(V =

x1) is shown for different factors β implying optimum SGS-
factor (different colors in Figure 2C). For comparison, neglecting
the SGS model correction (for β = −1.0, dashed line in

Figure 2C) yields a potential and dynamical evolution that
is different to the true SGS-optimized potential (red line in
Figure 2C).

DISCUSSION

A growing number of studies indicate that additive noise
represents an important ingredient to systems dynamics. Since
such an effect has not been well-studied yet and should be
explored in the coming years, it is tempting to name it and
pass it the new acronym ANISE. Not only to propose to
embrace and name diverse research areas, the present work
sketches two future directions of research. Section Dynamic
Random Network Models shows in a generalized random
network model study that additive noise may change the
bifurcation point of the systems stationary state in accordance
to previous work on stochastic bifurcations [15, 17, 19, 20].
The example reveals that this effect results from nonlinear
and not from linear interactions. In simple words, the additive
noise tunes the system by multiplicative noise through the
backdoor. Identifying certain system modes, the system exhibits
an additive noise effect if some modes are coupled nonlinearly
and some of these modes are stochastic. Such modes may be
Fourier modes [19], eigenmodes of a coupling matrix [60] (as
seen in Section Dynamic Random Network Models) or of a
delayed linear operator [70]. Since diverse nonlinear interaction
types render a systems analysis complex, Section Subgrid-scale
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modeling (SGS) proposes a perspective combination of SGS
and optimal parameter estimation [71] in the context of
ANISE. This combination permits to estimate numerically
unknown contributions of subgrid-scale dynamics to larger
scales. This may be very useful in studies of high-dimensional
nonlinear models, whose dynamics sometimes appears to be
untractable analytically.
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