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In this paper, we develop and extend the work of Jia and Qin on sexually transmitted

disease models with a novel class of non-linear incidence. Awareness plays a central

role both in the susceptible and the infectious classes. The Existence, uniqueness,

boundedness, and positivity of solutions are systematically established. Concavity

arguments and the occurrence of a vertical asymptote are essential in the proof of the

existence of a unique endemic equilibrium. Conditions for the stability of all steady states

are investigated. In particular, numerical simulations are performed in order to capture

the asymptotic behavior of solutions.
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1. INTRODUCTION

Disease incidence plays a crucial role in mathematical epidemiology and it is essential in the
computation of the basic reproduction number. Non-linear incidences are known to induce
complex or chaotic behavior as oppose to standard incidences frequently used in classical infectious
diseasemodels [1–6]. A class of non-linear incidences particularly useful in themodeling of sexually
transmitted diseases was introduced in [7] by the authors in the modeling of HIV/AIDS epidemic.
The model considered however was not properly conceptualized as the density of individuals with
full-blownAIDS not receiving ARV treatment did not bear any influence on the infection rate of the
disease. In addition a number of inaccuracies are displayed in this paper like the unknown variable
T missing in the third equation of system (2.1) and also a mistake occurred in the computation of
the sign of a3 in the proof of the stability of the endemic equilibrium. The purpose of this paper
is to develop and extend the work on [7] by deriving a realistic model for sexually transmitted
diseases with a proper non-linear incidence rate with a valid biological significance and perform
a full analysis of the resulting model. In Section 2, the model is derived and presented. Well-
posedness analysis, positivity and boundedness are considered in Section 3 followed by stability
analysis of the critical points of the system in Section 4, numerical simulations in Section 5 and the
conclusion.

2. THE MODEL

In this paper, a model with five compartments is formulated with non-linear incidence Sg(t, I)
incorporated into it. The incidence is presumed to be a time dependent non-linear response to the
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size of the infectious population.
The compartments are denoted by S(t), I(t),T(t),A(t) and

R(t) which represent the number of susceptible individuals, the
number of infected individuals with the potential of transmitting
the disease as they are not under treatment and do not take
any form of protection while engaging in sexual activities, the
number of individuals under treatment, the number of infectious
individuals engaging in safe sex, and heathy individuals that
engage in safe sex, respectively, at time t. The model represented
in Figure 1 is governed by the system of nonlinear ordinary
differential equations























































































dS

dt
= Ŵ − Sg(t, I)− (ω1 + d)S,

dI

dt
= Sg(t, I)+ ν1T − (d + τ1 + τ2)I,

dT

dt
= τ2I − ν2T − (d + ν1)T,

dA

dt
= τ1I − dA+ ν2T,

dR

dt
= ω1S− dR,

(1)

endowed with initial conditions
S(0) ≡ S0 > 0, I(0) ≡ I0 > 0, T(0) ≡ T0 ≥ 0, A(0) ≡ A0 ≥

0, R(0) ≡ R0 ≥ 0.
The parameters in the evolution system (1) are described in
Table 1:
The total populationN(t) is given by S(t) + I(t) + T(t) + A(t) +
R(t). By adding all the equations of the system (1), we obtain the
rate of change of N(t), which is given by

dN

dt
= Ŵ − dN (2)

and N(t) varies over time and is nearing a stable fixed point
Ŵ

d
as

t → ∞. Therefore, the biologically feasible region for the system
(1) is given by

9=

{

(S, I,T,A,R) ∈ R
5
+ | 0 < S(t)+I(t)+T(t)+A(t)+R(t)≤

Ŵ

d

}

.

It is easy to see that the set 9 is positively invariant. Next we
present a systematic analysis of our evolution equation.

3. MATHEMATICAL ANALYSIS

We start by investigating the well-posedness of
the model (1). Given the fact that the variables
represent biologically densities, it is important to
show that all the variables remain positive at all
time.

Lemma 1. For any non-negative initial conditions
(S0, I0,T0,A0,R0), system (1) has a local solution which is
unique.

Proof : Let x = (S, I, T, A, R), system (1) can be rewritten
as x′(t) = f (t, x(t)), where f :R6 → R

5 is aC1 vector field. By the
classical differential equation theory, we can confirm that system
(1) has a unique local solution defined in a maximum interval
[0, tm). �

Lemma 2. For any non-negative initial conditions
(S0, I0,T0,A0,R0), the solution of (1) is non-negative and
bounded for all t ∈ [0, tm).

Proof : We start by showing positivity of the local solution
for any non-negative initial conditions. It is easy to see that S(t) ≥
0 for all t ∈ [0, tm). Indeed, assume the contrary and let t1 > 0
be the first time such that S(t1) = 0 and S′(t1) < 0. From the
first equation of the system (1), we have S′(t1) = Ŵ > 0, which
presents a contradiction. Therefore S(t) ≥ 0 for all t ∈ [0, tm).
Using the same argument, positivity I(t), T(t), A(t) and R(t) in
the interval [0, tm) are established. Furthermore from (2), we have
that

N(t) =
Ŵ

d
+ N(0)e−dt ≤

Ŵ

d
+ N(0). (3)

Therefore the solution N(t) is bounded in the interval [0, tm). �

Theorem 1 For any non-negative initial conditions
(S0, I0,T0,A0,R0), system (1) has a unique global solution.
Moreover, this solution is non-negative and bounded for all t ≥ 0.

Proof : The solution does not blow up in a finite time
as it is bounded, it is therefore defined at all time t ≥ 0.
Other properties of the solution follow from lemma (1) and
lemma (2). �

Setting m = d + τ1 + τ2 and n = d + ν1 + ν2, system (1)
transforms into a reduced system























































































dS

dt
= Ŵ − Sg(t, I)− (ω1 + d)S,

dI

dt
= Sg(t, I)+ ν1T −mI,

dT

dt
= τ2I − nT,

dA

dt
= τ1I − dA+ ν2T,

dR

dt
= ω1S− dR.

(4)

4. MODELS WITH TIME INDEPENDENT
NON-LINEAR RESPONSE

In this section, we assume that the non-linear response function
is not time dependent, ie g(t, I) ≡ g(I). Following [7], it is further
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FIGURE 1 | Flow diagram.

TABLE 1 | Biological meaning of parameters.

Parameter Biological meaning

Ŵ Recruitment rate

d Natural death rate

τ1 The rate at which infected individuals adhere to safe sex practices

τ2 The rate at which infected individuals receive antiviral drugs

ω1 The rate at which susceptible individuals adhere to safe sex practices

ν1 The rate of defaulting from treatment

ν2 The rate at which treated individuals adhere to safe sex practices .

assumed that

(H1) : g(0) = 0, g′(0) > 0, g′′(I) ≤ 0 for I ≥ 0,

(H2) : lim
I→0+

g(I)

I
= k, 0 < k < ∞.

4.1. The Basic Reproduction Number
In this section, we use the next generation method [8] to
obtain the basic reproduction number. Let z be the transpose of
(I,A,T, S,R). We rewrite the system (4) in the matrix form

dz

dt
= F(z)− V(z),

where

F(z) =













Sg(I)
0
0
0
0













and

V(z) =













mI − ν1T
dA− τ1I − ν2T

nT − τ2I
Sg(I)+ (ω1 + d)S− Ŵ

dR− ω1S













.

The disease free equilibrium of system (4) takes the form

E0 = (I0,A0,T0, S0,R0) =

(

0, 0, 0,
Ŵ

ω1 + d
,

ω1Ŵ

d(ω1 + d)

)

.

Following [8], we compute the basic reproduction number
using the formula below

R0 = ρ(FV−1),

where

F =









∂F1
∂E

∂F1
∂I

∂F1
∂T

0 0 0
0 0 0









∣

∣

∣

∣

(E0 ,I0 ,T0 ,S0 ,R0)

=







αŴ

ω1 + d
0 0

0 0 0
0 0 0







and

V =













∂V1
∂E

∂V1
∂I

∂V1
∂T

∂V2
∂E

∂V2
∂I

∂V2
∂T

∂V3
∂E

∂V3
∂I

∂V3
∂T













∣

∣

∣

∣

(E0 ,I0 ,T0 ,S0 ,R0)

=





m 0 −ν1
−τ1 d −ν2
−τ2 0 n
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and ρ is the spectral radius of the matrix FV−1. Given the fact
that

V−1 =
1

d(mn− ν1τ2)

















nd 0 −ν1d

τ1n− ν2τ2 mn− ν1τ2 ν2m− ν1τ1

τ2d 0 md

















,

it follows that

R0 =
αnŴ

(ω1 + d)(mn− ν1τ2)
. (5)

4.1.1. Stability of the Disease-Free Equilibrium
The stability of the disease-free equilibrium will be investigated
in this subsection.

Theorem 2 The disease free equilibrium E0 is globally
asymptotically stable if 0 < R0 < 1, and unstable ifR0 > 1.

Proof : The Jacobian matrix (JE0 ), evaluated at E0, is given
by

JE0 =







































−(ω1 + d)
−αŴ

ω1 + d
0 0 0

0
αŴ

ω1 + d
−m ν1 0 0

0 τ2 −n 0 0

0 τ1 ν2 −d 0

ω1 0 0 0 −d







































. (6)

The characteristic equation that results from the Jacobian matrix
(JE0 ) is given by det(JE0 − λI) = 0. Thus, we get

(d+λ)2[(ω1+d)+λ]

[(

m−
αŴ

ω1 + d
+ λ

)

(n+ λ)− ν1τ2

]

= 0.

(7)
The characteristic equation (7) has three negative real roots,
which are

λ1 = −d,

λ2 = λ3 = −(ω1 + d),

and the other 2 roots, λ4 and λ5, are roots of the equation

f (λ) =

[(

m−
αŴ

ω1 + d

)

+ λ

]

(n+λ)−ν1τ2 ≡ λ2+a1λ+a2 = 0,

(8)
where

a1 = m+ n−
αŴ

ω1 + d
,

a2 = mn− ν1τ2 −
αnŴ

ω1 + d
.

We now need to consider the signs of λ4 and λ5. Note that

mn− ν1τ2 > 0.

Assuming

R0 =
αnŴ

(ω1 + d)(mn− ν1τ2)
< 1,

we have that

mn− ν1τ2 −
αnŴ

ω1 + d
= a2 > 0.

Moreover

αnŴ

ω1 + d
< mn− ν1τ2 < mn.

It implies that

m−
αŴ

ω1 + d
> 0.

It follows that a1 > 0. As a result the roots λ4 and λ5 are
strictly negative. We can conclude that all roots of (7) have
negative real parts, therefore, the disease free equilibrium is
locally asymptotically stable [8–10]. Furthermore assuming that

R0 =
αnŴ

(ω1 + d)(mn− ν1τ2)
> 1,

we have that a2 < 0, it follows that the characteristic equation
f (λ) = 0 has a least a strictly positive root. Therefore, the disease
free equilibrium E0 is unstable.

4.2. Existence of an Endemic Equilibrium
In this subsection, we investigate the existence of an endemic
equilibrium for the system (4).

Proposition 1. The system of differential equations (4) admits a
unique endemic equilibrium if and only ifR0 > 1.

Proof : Let E∗ = (S∗, I∗,T∗,A∗,R∗) be an equilibrium
point. Then the components of E∗ satisfy the following set of
equations























































Ŵ − S∗g(I∗)− (ω1 + d)S∗ = 0,

S∗g(I∗)+ ν1T
∗ −mI∗ = 0,

τ2I
∗ − nT∗ = 0,

τ1I
∗ − dA∗ + ν2T

∗ = 0,

ω1S
∗ − dR∗ = 0.

(9)

From the last three equations of the system (9), we have that

T∗ =
τ2I

∗

n
,

A∗ =

τ1 +
ν2τ2

n
d

I∗,

R∗ =
ω1S

∗

d
.
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Substituting T∗,A∗ and R∗ into the first two equations, we obtain

Ŵ − S∗g(I∗)− (ω1 + d)S∗ = 0,

S∗g(I∗)−
(ν1τ2

n
−m

)

I∗ = 0.

It follows that

S∗ =

(

m−
ν1τ2

n

)

I∗

g(I∗)
(10)

and

Ŵ −

(

m−
ν1τ2

n

)

I∗ − (ω1 + d)

(

m−
ν1τ2

n

)

I∗

g(I∗)
= 0. (11)

Next we set

h(I) : =
(ω1 + d)

(

m−
ν1τ2

n

)

I

Ŵ −

(

m−
ν1τ2

n

)

I
. (12)

It is enough to show that there exists a point I∗ ∈ R
+ such that

h(I∗) = g(I∗). In other words, we will show that the curves of the
functions h and g intersect at a point I∗.

Note that

I =
nŴ

mn− ν1τ2

is a vertical asymptote of the function h(I). For all

0 < I <
nŴ

mn− ν1τ2
,

we have that

h′(I)=

(ω1+d)
(

m−
ν1τ2
n

) [

Ŵ−
(

m−
ν1τ2
n

)

I
]

+(ω1+d)
(

m−
ν1τ2
n

)2
I

[

Ŵ−
(

m−
ν1τ2
n

)

I
]2

=
Ŵ(ω1+d)

(

m−
ν1τ2
n

)

[

Ŵ−
(

m−
ν1τ2
n

)

I
]2

> 0

and

h′′(I) =
2
[

Ŵ −

(

m−
ν1τ2

n

)

I
]

(

m−
ν1τ2
n

)2
Ŵ(ω1 + d)

[

Ŵ −
(

m−
ν1τ2
n

)

I
]4

=

2Ŵ(ω1 + d)
(

m−
ν1τ2

n

)2

[

Ŵ −

(

m−
ν1τ2

n

)

I
]3

> 0.

It follows that the function h is increasing and concave upward in
the interval

[

0,
nŴ

mn− ν1τ2

)

with a vertical asymptote at the right end of the interval. Note that
the function g is increasing and concave downward in the closed
interval

[

0,
nŴ

mn− ν1τ2

]

.

As a result if

g′(0) > h′(0) =
(ω1 + d)

(

m−
ν1τ2

n

)

Ŵ
,

which is equivalent to the condition R0 > 1, then Equation (12)
has a unique root I∗ in the interval

(

0,
nŴ

mn− ν1τ2

)

.

Furthermore if

I >
nŴ

mn− ν1τ2
,

then h(I) < 0. There is no intersection point with g(I) since g
is a positive function. Therefore there exists a unique endemic
equilibrium point E∗ = (S∗, I∗,T∗,A∗,R∗) provided thatR0 > 1.
In addition if

g′(0) ≥ h′(0) =
(ω1 + d)

(

m−
ν1τ2

n

)

Ŵ
,

equivalent to the condition R0 ≤ 1, there is no endemic
equilibrium for the system (4).

4.2.1. Stability of the Endemic Equilibrium
Lemma 3. Let g(I) be a positive smooth function defined on the
interval [0,∞). Suppose that assumptions H1 and H2 hold, then
the following inequality is satisfied

1−
Ig′(I)

g(I)
≥ 0 for any I > 0. (13)

Proof :

We have that

d[g(I)− Ig′(I)]

dI
= −Ig′′(I) ≥ 0

as g′′(I) ≤ 0. This implies that the function g(I) − Ig′(I) is
increasing on the interval [0,∞). Given the fact that g(0) −
0g′(0) = 0, it follows that g(I)− Ig′(I) ≥ 0. �

Theorem 3 If R0 > 1, then the endemic equilibrium E∗ is
locally asymptotically stable.
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Proof : The Jacobian matrix of the endemic equilibrium is
given by

JE∗ =

































−g(I∗)− (ω1 + d) S∗g′(I∗) 0 0 0

g(I∗) S∗g′(I∗)−m ν1 0 0

0 τ2 −n 0 0

0 τ1 ν2 −d 0

ω1 0 0 0 −d

































. (14)

The characteristic equation that results from the Jacobian matrix
(JE∗ ) is given by det(JE∗ − λI) = 0. Thus, we get

(d + λ)2(λ3 + b1λ
2 + b2λ + b3) = 0, (15)

where

b1 = g(I∗)+ ω1 + d +m+ n− S∗g′(I∗),

b2 = (m+ n)[g(I∗)+ω1+d]−S∗g′(I∗)(ω1+d+n)+mn−ν1τ2,

b3 = (mn− ν1τ2)[g(I
∗)+ ω1 + d]− n(ω1 + d)S∗g′(I∗).

The characteristic Equation (15) has a negative real double root

λ1 = λ2 = −d,

and three other roots, λ3, λ4 and λ5, which are the roots of the
equation

λ3 + b1λ
2 + b2λ + b3 = 0. (16)

From Lemma (3), we have that

1−
I∗

g(I∗)
g′(I∗) ≥ 0. (17)

It follows that

m− S∗g′(I∗) = m−

(

m−
ν1τ2

n

)

I∗

g(I∗)
g′(I∗)

> m

[

1−
I∗

g(I∗)
g′(I∗)

]

≥ 0. (18)

Hence,

b1 = g(I∗)+ ω1 + d +m+ n− S∗g′(I∗) > 0 using 18,

b2 = (m+n)[g(I∗)+ω1+d]− S∗g′(I∗)(ω1+d+n)+mn−ν1τ2

= (m+n)g(I∗)+(ω1+d)
[

m+n−S∗g′(I∗)
]

−nS∗g′(I∗)+

mn− ν1τ2

= (m+ n)g(I∗)+ (ω1 + d)
[

m+ n− S∗g′(I∗)
]

+

n

[

m−

(

m−
ν1τ2
n

)

I∗

g(I∗)
g′(I∗)

]

− ν1τ2

= (m+ n)g(I∗)+ (ω1 + d)
[

m+ n− S∗g′(I∗)
]

+

(mn− ν1τ2)

[

1−
I∗

g(I∗)
g′(I∗)

]

> 0 using 17,

and

b3 = (mn− ν1τ2)[g(I
∗)+ ω1 + d]− n(ω1 + d)S∗g′(I∗)

= (mn− ν1τ2)
[

g(I∗)+ ω1 + d
]

− (ω1 + d)

[

(mn− ν1τ2)I
∗

g(I∗)
g′(I∗)

]

= (mn− ν1τ2)

[

g(I∗)+ ω1 + d − (ω1 + d)
I∗

g(I∗)
g′(I∗)

]

= (mn− ν1τ2)

{

g(I∗)+ (ω1 + d)

[

1−
I∗

g(I∗)
g′(I∗)

]

}

> 0

using 17.

Moreover we have that

b1b2 − b3

= b1

{

(m+ n)g(I∗)+ (ω1 + d)
[

m+ n− S∗g′(I∗)
]

}

− (mn− ν1τ2)g(I
∗)

+ b1

{

(mn− ν1τ2)

(

1−
I∗

g(I∗)
g′(I∗)

)

}

−

{

(mn− ν1τ2)

[

(ω1 + d)

(

1−
I∗

g(I∗)
g′(I∗)

)]

}

.

It follows that

b1b2−b3

> n

{

(m+n)g(I∗)+(ω1+d)
[

m+n−S∗g′(I∗)
]

}

−mn g(I∗)+

{

(mn−ν1τ2)

[

(ω1+d)

(

1−
I∗

g(I∗)
g′(I∗)

)]

[

g(I∗)+m−S∗g′(I∗)
]

}

> 0.

As a result, by the Routh−Hurwitz stability criterion [11],
all the roots of the characteristic polynomial (15) have strictly
negative real parts. Therefore the endemic equilibrium is locally
asymptotically stable.

5. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations for the
evolution system of ordinary differential equations (1) to support
the theoretical findings. Without loss of generality we set

g(I) =
α(t)I

1+ β(t)I
.

Note that conditions of assumptions (H1) and (H2) are satisfied.
Furthermore we let

Ŵ = 150,ω1 = 1, d = 2, ν1 = 1,

ν2 = 1, τ1 = 2, τ2 = 3.
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FIGURE 2 | Static simulation for disease-free equilibrium.

FIGURE 3 | Static simulation for endemic equilibrium.

Next we explore two scenarios involving static simulations and
time-dependent simulations respectively.

5.1. Static Simulations
Picking α = 1

12 and β = 1 and substituting in the expression

of the basic reproduction number, we get that R0 = 2
3 < 1.

According to Theorem 2 the disease-free equilibrium, E0 =

(50, 0, 0, 0, 25), is globally asymptotically stable. In Figure 2, it
clearly shows that the disease eventually dies out.

Picking α = 1
5 and β = 0.1 and substituting in the

expression of the basic reproduction number, we get that R0 =

1.6 > 1. According to Theorem 3 the endemic equilibrium,
E∗ = (42.5, 3.6, 2.7, 4.9, 21.2), is locally asymptotically stable. In
Figure 3, all the graphs converge to the endemic equilibrium.

FIGURE 4 | Simulation with time dependence for disease-free equilibrium.

FIGURE 5 | Simulation with time dependence for endemic equilibrium.

5.2. Time-Dependent Simulations
Picking α(t) = 1

5+2t , it can be observed in Figure 4 that graphs
converge to the disease free equilibrium as time increases. It
therefore suggests the global asymptotical stability of the disease
free equilibrium and the extension of the disease in time.

Picking α(t) = t2 + 5
4 , Figure 5 clearly shows that the

susceptible population vanishes in a short span of time and the
disease essentially affects all people in the population.

6. CONCLUDING REMARKS

In this paper, we formulated and investigated a mathematical
model describing the dynamics on sexually transmitted disease
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models with a novel class of non-linear incidence. We
showed that the derived non-autonomous system of differential
equations governing the evolution of the process was well-posed
and the solution happened to be positive and bounded. The
role of awareness in the susceptible and infectious classes was
explored and investigated. A vertical asymptote and concavity
arguments were critical in the proof of existence of an endemic
equilibrium for the system and its asymptotical stability. In
particular, numerical simulations were performed in order to
predict the asymptotic behavior of solutions and support the
theoretical findings.
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