
METHODS
published: 20 June 2022

doi: 10.3389/fams.2022.855862

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 June 2022 | Volume 8 | Article 855862

Edited by:

Dumitru Trucu,

University of Dundee, United Kingdom

Reviewed by:

Abdulnasir Isah,

Tishk International University (TIU), Iraq

Alain Miranville,

University of Poitiers, France

*Correspondence:

Jacques Demongeot

jacques.demongeot@

univ-grenoble-alpes.fr

Specialty section:

This article was submitted to

Mathematical Biology,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 16 January 2022

Accepted: 02 May 2022

Published: 20 June 2022

Citation:

Glaría A, Salas R, Chabert S,

Roncagliolo P, Arriola A, Tapia G,

Salinas M, Zepeda H, Taramasco C,

Oshinubi K and Demongeot J (2022)

A Step Forward to Formalize Tailored

to Problem Specificity Mathematical

Transforms.

Front. Appl. Math. Stat. 8:855862.

doi: 10.3389/fams.2022.855862

A Step Forward to Formalize Tailored
to Problem Specificity Mathematical
Transforms
Antonio Glaría 1, Rodrigo Salas 1, Stéren Chabert 1, Pablo Roncagliolo 1, Alexis Arriola 1,

Gonzalo Tapia 1, Matías Salinas 1, Herman Zepeda 1, Carla Taramasco 2, Kayode Oshinubi 3

and Jacques Demongeot 2,3*

1 Escuela de Ingeniería Civil Biomédica, U. de Valparaíso, Valparaíso, Chile, 2 Facultad de Ingeniería, Universidad Andrés

Bello, Valparaíso, Chile, 3 Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs

Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), La Tronche, France

Linear functional analysis historically founded by Fourier and Legendre played a

significant role to provide a unified vision of mathematical transformations between vector

spaces. The possibility of extending this approach is explored when basis of vector

spaces is built Tailored to the Problem Specificity (TPS) and not from the convenience or

effectiveness of mathematical calculations. Standardized mathematical transformations,

such as Fourier or polynomial transforms, could be extended toward TPS methods, on a

basis, which properly encodes specific knowledge about a problem. Transition between

methods is illustrated by comparing what happens in conventional Fourier transform

with what happened during the development of Jewett Transform, reported in previous

articles. The proper use of computational intelligence tools to perform Jewett Transform

allowed complexity algorithm optimization, which encourages the search for a general

TPS methodology.

Keywords: ELM, mathematical transforms, model-based data processing, non-orthogonal basis, Dynalet

transform

INTRODUCTION

Tailored to the Problem Specificity Mathematical Transforms (TPSMTs) were defined as extension
of linear transforms [1], when orthogonal bases of the classical Fourier or wavelets transforms are
replaced by “physiologically plausible,” non-orthogonal, and parametrized bases, more suited to the
physiology or physics of the phenomena being modeled, like in a transform called Dynalet, based
on the potential Hamiltonian decomposition of Liénard systems [2, 3]. This article is an effort to
improve TPS MT formalism. In this sense, it is claimed that because Extreme Learning Machines
(ELMs) [4] are implemented in Fast Artificial Neural Network (FANN), with an extremely fast and
analytically well-formalized training cycle, we use here FANN in place of backpropagation ANN
(BANN) previously used to define TPS MT.

GENERAL DESCRIPTION OF TAILORED TO THE PROBLEM
SPECIFICITY MATHEMATICAL TRANSFORM

Tailored to the Problem Specificity Mathematical Transform will be calculated in this article by
using a trained Fast Artificial Neural Network (FANN), which presents a low algorithm complexity
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as compared, for example, with numerical methods [4]. In
Figure 1, (ε1, ε2, . . . , εn) corresponds to the i-th input vector
of the FANN, whose weight matrices [�h] and [�0] contain
each n columns equal, respectively, to vectors (ωh

i,1, . . . ,ω
h
i,m)

and (ω0
i,1, . . . , ωi,p

0).

The vectors (ωh
i,1, . . . ,ω

h
i,m) and (ω0

i,1, . . . , ω
0
i,p) correspond,

respectively, to the synaptic coefficients from input to hidden
layer and from hidden to output layer matrices; the activation
vectors (Ah

1 , . . . ,A
h
m) and (A0

1, . . . ,A
0
p) are functions of hidden

and output neurons and vectors (σhm, . . . , σ
h
m) and (σ0p, . . . , σ

0
p)

are the neuron outputs of hidden and output layers. In reference
to Figure 1, using ELM within a single-layer FANN and under
assumptions, which are discussed in the middle of Section
4 of this article, its training cycle can be reduced to solve
the equation:

[

�o
]

=
[

6h
]−1

[T] , (1)

where [�o] is the synaptic weight matrix from hidden to

output layer, evidences learning matrix
[

6h
]−1

is the inverse

of the Moore–Penrose matrix of the input to hidden layer

FIGURE 1 | Trained single-layer Artificial Neural Network (ANN) of low complexity to solve Tailored to the Problem Specificity Mathematical Transform (TPS MT) [5].

neurons for each input vector, and [T] is the target matrix, for
every input vector. Finally, it is postulated that characterize the
above matrices can be dealt with as if they were mathematical
transforms between two vector spaces.

Biosignals have been described as being composed by
different sequential components that underlie a variety of
successive recorded physiological processes: mathematical
models of auditory brainstem responses (ABRs), blood pressure
waveforms (BPWs), hemodynamic response function (HRF),
and homeostatic system dynamics (HSD) will be indeed explored
in this article to illustrate TPS, for showing the generic character
of our general approach.

Auditory brainstem response in the cat is assumed
to be composed by waves originated in the sequential
activation of the synaptic relays within the auditory
pathway, from cochlear nucleus to cortical projections
from the thalamic medial geniculate nucleus to the
primary auditory cortical area [5]. ABR has been modeled
by 5 sequential components since 1986 [6] up to 2010
[3]. Each of the ABR components is named as a Jewett
component (JC). Each JC represents the effect of a global
postsynaptic potential in the corresponding relay within the
auditory pathway.
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Blood pressure waveform in human cardiovascular system is
assumed to be composed by up to three or four components
[7]. Main component is due to cardiac pumping and it has been
confirmed [8] the existence of two major reflection sites in the
central arteries. The first occurs in the juncture between thoracic
and abdominal aorta and the second occurs in the juncture
between abdominal aorta and common iliac arteries. These sites
produce the second and third BPW components. Each of the
BPW components is named here a Latham component (LC).

Hemodynamic response function is recorded in functional
magnetic resonance imaging. When a cortical area is recruited
while performing a synchronized motor task, the local oxygen
consumption increases, inducing a chain of events, including
variations in regional blood volume, blood flow, and relative
deoxyhemoglobin/oxyhemoglobin concentration that leads to an
increase in the local magnetic resonance signal. It is temporally
described by the hemodynamic response function (HRF). The
HRF is assumed to be composed by components of a balloon
model [9]. The first component corresponds to the inflation
phase of the “balloon” representing the local increase in blood
volume and the second component corresponds to the deflation
phase. Taking into account the elastic properties of the venous
compartment and corresponding transient mismatch between
variations in local parameters, the balloon model of the HRF
is operationally described by two mathematical equations [10,
11], both of them with two components. It is said here that
the HRF is composed by Glover component (GC) or Friston
component (FC).

Dynalet transform (DT) was defined to represent the HSD.
DT produces another example of mathematical transform-based
model [3, 12, 13]. It is represented by the general Liénard systems,
which obey a non-linear damping equation, generalizing the van
der Pol oscillator [14, 15]. Its solution has two components:
a Potential (P) and a Hamiltonian (H). DT is said here to be
composed by Demongeot components (DCs).

DESCRIPTION OF PROPOSED
TRANSFORMS

Vector spaces are commonly used to represent mathematical
transforms (MTs) in vector spaces (VSs) [1]. In the linear case,
however, these structures are restrained to conditions to be
accomplished by a subspace to be a basis of MT.

Auditory Brainstem Responses Modeling
Auditory brainstem response has been assumed to be well
represented by a linear combination of the first five JCs. Let
ABR be the vector subspace of the Banach space of the C∞
functions defined on R containing the ABRs and a (t) ∈ ABR,
approximation in JC model is defined by [3]:

a(t) =
5

∑

i=1

ciJi(t), (2)

where the Ji(t)
′s , for i equal 1 to 5, are five vectors modeling

each JC and ci is the corresponding ith coefficient in the linear

combination. Each Ji is modeled using the charging dynamics of
a pair of leaky electric capacitors circuit (Figure 2) and Ji(t) =
Ji (t|αi,βi, δi) is defined as a single piecewise function like in [16]:

Ji (t)=
[

e−αi(t−δi) − e−βi(t−δi)
]

, for t ≥ δi

Ji(t) = 0, for t < δi, (3)

where {(αi,βi, δi)|i ≤ 5, i∈ N} is the parameters set of the ith JC,
depending on the electric variables in Figure 2 and estimated to
fit data in applications.

Using Ji as basis, the Jewett transform (JT) is defined for an
ABR a (t) by:

J(a (t) )={(ci,αi,βi, δi) |i ≤ 5, i∈ N} (4)

The inverse JT converges if J−1oJ(a (t) ) =a(t)≈ a (t) , where
J−1 is the inverse of J. Figure 3 illustrates a reasonably well fit
of one ABR with its corresponding model. ABR physiological
bases were initially used in [6]. Later, the ANN approach has been
proposed to generalize this formalization [3, 16].

Blood Pressure Waveforms Modeling
The BPW mathematical description has been used in order to
develop a non-invasive minimally intrusive (nImI) methodology
to estimate blood pressure from pulse waves. Pulse waves were
measured using the photoplethysmography (PPG), while the gold
standard for BPW is Finapres Nova R© equipment [18]. Initially,
phase planes of PPG were recorded in right central finger and in
right main toe [19].

Blood pressure waveform is assumed to be well-represented by
a linear combination of the first three LCs. Let BPW be the vector
space containing every BPW and p (t) ∈ BPW, the LCmodel can
be written [20] as:

p(t) =
∑3

i=1
ciLi(t), (5)

where the L′is are three vectors modeling each LC and ci is the

corresponding ith coefficient in the linear combination. Each Li is
modeled using the solution of a Winkessel (WK) model [21]. In
Figure 4, the system WK-4 makes use of four electric elements
with an inertia analog to an inductor L, connected in series with
the aortic resistance R0. The compliance of the aorta, an analog
to a capacitor C, is in parallel with the systemic resistance at the
two aortic levels, thoracic (R1) and abdominal (R2), as given in
Figure 4 [22].

The cardiac function can be represented by a current periodic
source, with period Tc of the cardiac cycle, which during diastole
is off and during systole is given by:

I (t) = I0sin
2 (ω0t) = I0(1− cos (2ω0t))/2, (6)

where ω0 = 2π
Ts
, with Ts as systolic time duration.
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FIGURE 2 | Pair of leaky capacitors analog circuit [16].

Solving p(t) for each ith component in the LRC circuit of
Figure 4 during the systole, we get for t ≥ δi (a time delay), with
VS as the left ventricle stroke volume:

Li(t) = D− K

(

e
− t−δi

τi

−
(

1+
1

ni

)





cos
(

2πt
Ts

+ ϕi − δi

)

√
ni + 1

+ 1







 (7)

where : K =
VsRi

Ts

(

1+ 1
ni

) (8)

ni =
(

2πτi

Ts

)2

(9)

ϕi = tan−1 (√
ni

)

(10)

τi = RiC (11)

Then, during the diastolic phase of the cardiac cycle:







Li (t) = D− VsRi

Ts

(

1+ 1
ni

)

(

e
− t−δi

τi + 1

)

, for t ≥ δi

Li (t) = 0 , for t < δi

(12)

Remark that every Li is zero for t < δi and
Li(t) =Li (t|D, Vs,Ts,Tc,Ri, τi, δi) for t ≥ δi with parameters
of the previous heartbeat, where D is the diastolic pressure
and Ts and Tc are already defined for the cardiac
function as being global parameters applied to the three
LCs. WK-4S local parameters for each component are
{(

Ri, τi, δi, )|i ≤ 3, i∈ N
)}

[22].
Using the L′is as a basis, Latham transform (LT) is denoted

L (b (t)) and is defined for a BPW by:

L (b (t)) =
{

(D, Vs,Ts,Tc) ∪
(

ci,Ri, τi, δi)|i ≤ 3, i∈ N
)}

The inverse LT converges, if we have:
L−1oL (b (t)) = b (t)≈ b (t) , with L−1 the inverse of L.

Hemodynamic Response Function
Modeling
Hemodynamic response function is mathematically described
using a balloon model [9]. Two operational representations are
explored for this model [10, 11].

The Glover equation assumes that balloon model can be
represented by a linear combination of two Glover components
(GCs). In this case [23], the corresponding model can be
written as:

h (t) =
∑2

i=1
ciGi (13)

where the G′
is are two vectors modeling each GC, with G1 the

HRF inflation phase and G2 the HRF deflation phase, ci
corresponding to the ith coefficient in the linear combination
(c1 = 1 and c2 = −c in Glover equation). EachGi is modeled by:

Gi (t) = Gi (t|δi, τi)=
(

t

τi

)δi

e

((

δi
τi

)

(t−τi)

)

, (14)

where
{(

δi, τi)|i ≤ 2, i∈ N
)}

is the set of the iith GC parameters
of the Glover model.

Figure 5 illustrates actual HRF superimposed with Glover
transform and Levenberg–Marquardt Algorithm (LMA) model
[23]. Figure illustrates HRF in a healthy volunteer (blue trace),
recorded under informed consent, superimposed with the HRF
model estimated using Levenberg–Marquardt Algorithm (LMA)
(red trace) and HRF Glover model estimated using TPS MT
(green trace), when a conventional Backpropagation Artificial
Neural Network is used [23].

Although not tested, ELM in the place of backpropagation
should produce similar results.

Using the G′
is as a basis, Glover transform (GT) can

be defined. If G (h (t)) denotes the GT of a HRF, then
G(h (t))=

{(

ci, δi, τi)|i ≤ 2, i∈ N
)}

. It is said that the
inverse of direct GT converges if GT of h (t) verifies that:
G−1oG (h (t)) = h(t)≈ h (t ) .
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FIGURE 3 | Fitting filtered auditory brainstem response (ABR) a(t) with Artificial Neural Network (ANN) model a(t) [17].

FIGURE 4 | WK-4S analog circuit [22].

On another hand, the Friston equation assumes that the
Balloon model can be represented by a linear combination of
two, so called, Friston components (FCs). If h (t) ∈ HRF, Friston
model could be written:

h (t) =
2

∑

i=1

ciFi (t) , (15)

where the F′is are two vectors modeling each FC, F1 is the HRF
inflation phase and F2 is the HRF deflation phase and ci is the
corresponding ith coefficient in the linear combination (c1 = A
and c2 = −Ac in Friston equation). Each Fi is modeled as:

Fi(t) = Fi (t|αi,βi)=t
(αi−1)β

αi
i e−βit/Ŵ (αi) (16)

In addition,
{(

αi,βi)|i ≤ 2, i∈ N
)}

is the set of the FC parameters
of the model.

Using the F′is as a basis, the Friston transform (FrT) can
be defined. The FrT of a HRF h (t) can be written Fr(h (t) )=
{(

ciαi,βi)|i ≤ 2, i∈ N
)}

. It could be said that if Fr−1oFr(h (t) ) =
h(t) ≈ h (t) , Fr−1 being the inverse of Fr, then inverse
FrT converges.

In this study, GT was used instead of FrT.

Homeostatic System Dynamics Modeling
Dynalet was conceived to represent homeostasis regulation and
is based upon Liénard systems decomposition [2]. These systems
are second-order differential equation systems, such that:

dx

dt
= y and

dy

dt
= Q (x) + R(x)y, (17)

where Q and R are polynomials, e.g., for the van der Pol
oscillator [24]:

dx

dt
= y and

dy

dt
= −ω2x+ µ

(

1−
x2

b2

)

y (18)
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FIGURE 5 | Left: An example of hemodynamic response function (HRF) (black) fitting using Glover transform (GT) (violet) and Levenberg–Marquardt Algorithm (LMA)

(green). Right: Inverse GT for different measures (color code in the text).

This system has been proposed first to model heart activity

thanks to its feedback anharmonic term µ

(

1− x2

b2

)

y [15].

There is no algebraic solution to (18), so Hodge decomposition
[25] in regular vector space was used to give a family of
approximated explicit solutions to any Liénard system bymaking
explicit polynomial approximations of its potential, P, and
its Hamiltonian, H, [2, 12, 13, 25–27], which are related to
polynomials Q and R, complying:

dx

dt
= −

∂P

∂x
+

∂H

∂y
and

∂y

∂t
= −

∂P

∂y
−

∂H

∂x
(19)

Analogic computing methods were used later to simulate
Equation (18) [28]. Figure 6 illustrates this approach. The limit
cycle (in blue) corresponds to the stationary homeostatic cycle of
the van der Pol oscillator. It is a contour line of the Hamiltonian
H. Perturbations from the limit cycle, chosen as initial trajectory,
push the dynamics away from the Hamiltonian behavior, the
return to it following gradient dynamics with potential P.

The family D of approximate Liénard solutions has a non-
orthogonal basis of Demongeot components (DCs). Di and
each solution d(t) can be approximated (for the L2 norm) by
Equation (19):

d (t) =
n

∑

i=1

ciDi(t) (20)

where the Di(t)′s are given in [2, 12, 13]. They correspond to
relaxation dynamical systems whose periods are submultiples of
the fundamental period T of the limit cycle of the Liénard system,

unique in the van der Pol case. In this last case, the van der Pol
oscillator models the cardiac homeostatic regulation [14, 15]. ci is
the corresponding ith coefficient in the linear combination (20),
where n depends on the approximation precision.

MATHEMATICAL TRANSFORMS

In opposition with linear analysis, where orthogonal basis is used
because of mathematical convenience, TPS MT emphasizes the
“physiological plausibility” of the modeling approach. In order to
evaluate the impact of levering constraints for vectors considered
as physiologically plausible, as being part of basis B, the general
linear analysis is briefly visited and breakpoints are established
providing TPS formalization. Whether V is ABR, BPW, HFR,
orHDS, linear combination of physiologically plausible elements
conforming a basis B, could span the corresponding vector space.

The principles of mathematical transforms recall Jean
Baptiste Joseph Fourier’s approach [29, 30], while studying heat
propagation. Fourier findings were generalized in linear analysis
[1], where linear combination of elements of its orthogonal
basis, B, spans the corresponding vector space V. In his study
(done in Grenoble between 1804 and 1822), Fourier realized that
“functions of a variable, whether continuous or discontinuous, can
be expanded in a series of sines of multiples of the variable.” Later
on, Dirichlet [31] restricted this knowledge to functions defined
on [–π, π], linear combinations of the elements of the following
orthonormal basis B:

{

1
√
2π

,
cos(x)
√

π
,
sin(x)
√

π
, . . . ,

cos
(

kx
)

√
π

,
sin

(

kx
)

√
π

, . . .

}

(21)
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FIGURE 6 | Solution of (18) with ω = 1, µ = 3, b = 2.6 [28, 29].

Linear combinations of elements of B span the set of partial
continuous functions on [−π ,π], denoted C([–π , π]) [32].
Findings of Fourier gave rise to the series and transforms named
honoring him. As it is shown in the next section, coefficients of
Fourier series are analytically established because, on one hand,
basis is orthogonal and, on the other hand, Fourier coefficients
weight the linear combinations of the basis vectors, spanning
C([–π, π]).

At this stage, basis orthogonality is the necessary condition for
analytical solution of mathematical transforms (MTs).

Depending on the orthogonal vector set selected as basis B
of V, different orthogonal MTs are defined: Fourier, Laplace,
Legendre, Hermite, and Laguerre polynomial transforms and
orthonormal wavelet transform. These MTs satisfy the condition
of orthogonality and belong to Linear transforms [1].

Dynalet transform can be considered as a transition from
Linear transforms to TPS MT. Despite having a non-orthogonal
basis, it approximately solves the anharmonic relaxation
pendulum problem, with the desired precision level, depending
on the number of harmonics considered in the solution. Fourier
solves exactly the harmonic pendulum problem and Wavelet
solves its damped analog.

On Linear Mathematical Transforms
Nature is not necessarily complaisant with mathematicians. If
for the last, orthogonal basis is comfortable, for nature they are
not. If it is possible and convenient to continue talking this way,
“physiologically plausible” basis is generally going to be non-
orthogonal and their components can be highly parametrized.

Several approaches can be taken to explain the linear
transforms. The simplest and most suitable way to present them
is to show how the process by which a linear combination of
elements of an orthogonal basis B [1] is fitted to the epoch of a
signal under analysis in such a form that least mean squares error
criterion is satisfied.

Let v = v(t) be an element of a vector space V and {bi (t)} is
the set of elements in a vector basis of V denoted B.

Let v =
∑∞

i=0 cibi and let ε (t) be the temporal error in fitting
v. v is a linear combination of basis elements. The square error
is ε2 (t) = (v− v)2 and during time duration T, the mean square
errorM is equal to:

M =
1

T
{
∫ T

0
[v −

∞
∑

i=0

cibi]

2

dt} (22)

Coefficients ci are evaluated to minimize M. Finding these
coefficients implies solving the system of equations arising from
equalizing to zero, the partial derivatives of M with respect to
all ci, i.e., solving the Equation (23):

∂M

∂ci
= 0, ∀ci, ∀i (23)

Reminding that linear transforms basis B is orthogonal, it can be
demonstrated thatM is minimized if and only if:

ci =
1

T

∫ T

0
v(t)bi(t)dt , ∀i (24)
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If B is defined by (21), then V =C([-π, π]). Therefore:

ai = 1/π

∫ π

−π

v (x) sin (x) dx,

bi = 1/π

∫ π

−π

v (x) cos (x ) dx,

where ai and bi are the coefficients of the Fourier series with sine
and cosine components.

In a general linear transform, the coefficients of the best linear
combination, which minimizes M, can always be algebraically
solved because of basis orthogonality:

v =
n

∑

i=1

cibi (25)

with ci =

[

∫ T

0
v(t) bi(t)dt

]

/T, ∀i. (26)

On Tailored to the Problem Specificity
Mathematical Transforms
Tailored to the Problem Specificity challenge emerges because
any element in a biosignal vector space V should be represented
as linear combination of elements chosen in “physiologically
plausible” basis B.

Although realistic, these elements are not necessarily
orthogonal and are generally parametrized. In such cases:

B =
{

bi
}

where bi(t) = bi
(

t/p1,, p2,, . . . pm
)

.

It is looked forward that any v ∈ V is modeled by:

v =
n

∑

i=1

cibi (27)

In TPS, the mean square errorM is also minimized. Nevertheless,
in this case, while adjusting coefficients ci and the global or local
parameters of each B component bi of V, the optimization of the
Equation (27) comes, as in linear transforms, from the system:

∂M

∂yi
= 0, where yi ∈

{

ci, p1,, p2,, . . . pm
}

. (28)

This system, in contrast with those used in linear transforms, is
frequently non-linear and its equations are strongly intertwined.
Equation system (24) cannot be granted.

In this article, it is proposed to use ELM to solve the
system of Eq. 28. In contrast with linear transforms, where
basis warrants simple and elegant calculations, in TPS, B is
forced to be “physiologically plausible” and its elements should
realistically represent the sequential components underlying a
specific problem. “When, in the search of realism, a couple of
simple conditions, necessary for linear transforms, is loosened,
the solutions become cumbersome; analytical approach must be
abandoned and algorithms . . . are required to. . . solve the system”
by minimizing M [3]. The choice of ELM implemented in
an ANN.

Let us use again JT to illustrate the class of Equation system
(28) to be solved in order to calculate the coefficients and

parameters of ABR components while minimizing M defined
by (22); for every i and t ≥ δi, we have the following
equalities available:

N
∑

k=1

[

(ak − ak)
(

e−αi(t−δi) − e−βi(t−δi)
)]

= 0

∑N

k=1

[

(ak − ak) ci(t − δi)e
−αi(t−δi))

]

= 0 (29)

N
∑

k=1

[

(ak − ak) ci(t − δi)e
−βi(t−δi))

]

= 0

N
∑

k=1

[

(ak − ak) ci

(

αie
−αi(t−δi) − βie

−βi(t−δi)
)]

= 0,

where ak are the coordinates of the vector a, which encodes the
ABR, ak are the coordinates of the vector a which, when using
Equations (2) and (3), models ABR, ci is the coefficient of the ith

component of themodel, and αi, βi, and δi are the corresponding
parameters. The desired solution is the ABR Jewett transform
given by (4). The current proposal is to use Extreme Learning
Machine (ELM) to solve (29).

EXTREME LEARNING MACHINE

In previous studies [3, 16, 17, 28], backpropagation learning rule
was implicitly or explicitly proposed and/or used to train Single
Layer Feedforward Neural Network (SLFNN) to solve system
equations like (29) and to define a TPS. In this study, it is
claimed that ELM [4], implemented as an ANN with SLFNN
architecture, provides better tools to formalize, understand, and
rapidly simulate a TPS MT. Equation 1 is at the center of this
claim. According to Figure 1, let:

i. The ELM be an ANN with architecture n×m× p.
ii. The lth input and target vectors of an N elements training

set be, respectively, −→εl =
[

εl1, εl2, . . . , εln

]

and −→τl =
[

τ l1, τ l2, . . . , τ lp

]

, with 1≤ l ≤ N.

iii. The training set can be, respectively, represented by input
and target matrices [E]Nxn and [T]Nxp.

iv. The synaptic weights from hidden node i to each input node

be
−→
ωh
i = (ωh

i,1, ωh
i,2 . . . ωh

i,m), with 1≤ i ≤ m.
v. The synaptic weights from output node j to each hidden

node be
−→
ωo
j = (ωo

j,1, ωo
j,2 . . . ω0

j,p), with 1≤ j ≤ p.

vi. The hidden layer activation function Ah
k
be the same for

every node in the layer.
vii. The output of the kth hidden node for the lth input vector be

σ h
k
= A

h

k

(−→
ωh
k
,
−→
bh
k
,
−→
εl

)

, where
−→
bh
k
is the node bias.

viii. The output of hidden layer to the N input vectors be given

by the matrix
[

6h
]

, where each row is the vector
−→
σ hl =

(

σ h
1 , σ lh

2 . . . σ h
m

)

.

ix. The output layer activation function, Ao
k
, be the same for

every node.
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FIGURE 7 | Left: Correspondence between the signal and Fourier transform vector spaces. Right: Correspondence between the signal and Tailored to the Problem

Specificity (TPS) transform vector spaces.

x. The value of the qth output node, with 1≤ q ≤ p, for the lth

input vector is σ ol
q =

−→
σ hl •

−→
ωo
q .

xi. The ELM output matrix becomes:

[

6o
]

=
[

6h
]

[

�o
]

, (30)

where each column of the matrix [�o] is
−→
ωo
q , with 1≤ q ≤ p.

Finally, because the proposed ELM uses single hidden layer
FANN architecture, it is a universal approximator [32] for
every input matrix [6o], it can be as close as required to the
corresponding target matrix [T]. In such a case, [6o] can be
reasonably replaced by [T] and:

[T] =
[

6h
]

[

�o
]

(31)

Multiplying both the sides of Equation (31) to the left by
[

6h
]−1

, which denotes the generalized Moore–Penrose inverse

of
[

6h
]

, generates the Equation (1):

[

�o
]

=
[

6h
]−1

[T] (32)

In summary, TPS transform may be not orthogonal and its basis,
which can be parametrized, spans ABR space combining non-
linearly its elements. Using this kind of transforms maintains the
unified vision provided by the linear analysis in the sense that
they correspond to a direct transformation from vector space
V onto another space, containing the corresponding coefficients
and parameters.

There can also exist an inverse transform from parameter
space onto V, the set of the bi (t) , which are possibly
non-orthogonal and can represent independent components

spanning V. Nevertheless, TPS basis is chosen because of
its physiological plausibility, not because of mathematical
convenience. In TPS, the conditions for an orthogonal and non-
parametrized basis are removed while, on the contrary, from
the perspective of modeling, physiological plausibility of basis
generators is strengthened.

Left side of Figure 7 illustrates the mapping of a temporal
function onto the corresponding amplitude A and phase ϕ

spectra in a frequency space characterizing direct Fourier
transform F. In the opposite direction, inverse Fourier transform
F−1 is performed from the Fourier vector space to the signal
vector space. Right side of the Figure 7 illustrates the direct
TPS transform J mapping from the original temporal signal
space onto the corresponding parameter space. In the opposite
direction, inverse TPS transform J−1 performsmapping from the
parameter space onto temporal signal vector space.

UPGRADING CURRENT TAILORED TO THE
PROBLEM SPECIFICITY METHODOLOGY

In a previous study, an eight steps methodology was defined to
solve TPS MT [3]. Steps considered are:

• Identify basic components and select a realistic model.
• Collect the data.
• Use “adequate coding” to improve processes.
• Buildup the data training set (TS).
• Choose a supervised algorithm.
• While in previous study, backpropagation was selected to

perform JT, in current study, ELM is suggested to be used to
calculate JT and other TPS transforms.

• Calculate error.
• Perform the TPS transform using a training machine

learning algorithm
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FIGURE 8 | Smoothed curves for coronavirus disease 2019 (COVID-19) hospitalization cases in all the departments in France before (top) and after (middle)

vaccination. Bottom: Functional principal components (PCs) for the above hospitalization case curves (after [35]).
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TABLE 1 | Principal component analysis (PCA) variance proportion for 4 PCs.

Hospitalized before vaccination After vaccination has started

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

0.945 0.039 0.008 0.005 0.938 0.041 0.012 0.004

• Process recognition and testing phases with a trained
computer intelligence algorithm.

DISCUSSION

As previously pointed out, if TPS is possible, basis could express
causality better than linear transforms and “fundamental and
technical analysis” would be congruent between each other. Yet
it remains the following steps:

• Formalize a restrained vector space (for the mathematical
descriptions of the proposed TPS transforms).

• Restrict the space of solutions of the system equation.
• Introduce ELM with a new topological construction.
• Identify TPS parameters.
• Improve the formalization of the expected results.

This article can be considered as a trial to use ELM instead
of backpropagation learning rule in solving TPS, such as Jewett
transform, as well as an informal venture into the definition of
Glover, Friston, and Latham transforms and a first attempt to link
Dynalet transform with TPS transforms.

PERSPECTIVES AND CONCLUSION

A recent improvement of TPS MT approach is the functional
principal component analysis (FPCA), a tool of dimension
reduction with high correlations in functional data analysis [33,
34], which is used in epidemiologic problems as those related
to coronavirus disease 2019 (COVID-19) outbreak dynamics, as
given in Figure 8 [35–45].

Let {xi(t)}i=1,m be a given set of functions and let denote α =
(α1, . . . ,αm) a weight vector, FPCA is calculated such as it finds,
in the set of the C1 functions on the time interval of observation,
the first principal component weight function α1 (t) , for which
the first principal component score is given by:

f i1 =
∫

α1(t)xi(t)dt, (33)

while maximizing
∑

i=1,m f 2i1 is subjected to:
∫

α2
1 (t) dt = ‖α1‖2 = 1. (34)

Next, the weight function α2 (t) is calculated and the second
principal component score maximizes

∑

i=1,m f 2i2, and is

subjected to the constraints ‖α2‖2 = 1 and:
∫

α2 (t) α1 (t) dt = 0. (35)

Then, the process is repeated for many iterations. In our analysis,
we used a tool called pca.fd for the principal component analysis.
As given in Figure 8, the 4 PCs values plots throughout the
days considered for all the m (m = 101) French departments
providing functional data being before vaccination started and
during vaccination. Table 1 gives the weight of each PC for the
curves of hospitalization before and after vaccination has started.

This last example shows that the TPS approach is still here
relevant and can be considered as a valid concrete alternative
to realistically approach the modeling of temporal data in
epidemiological [46–51] or physiological [24, 52] examples.

To conclude, even with the recent techniques of the functional
principal component analysis (FCPA), the TPS MT approach is
relevant, in the sense that it makes it possible to consider the
experimental signal as a linear combination of functions that
are the weighted sum (not necessarily orthogonal) of the main
empirical variables of the system source of the recorded signal, in
a decreasing order of importance, which allows the interpretation
of the respective role of the empirical variables in the generation
of this signal.
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