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In December 2019, the COVID-19 pandemic began, which has claimed the lives of

millions of people around the world. This article presents a regional analysis of COVID-19

in Mexico. Due to comorbidities in Mexican society, this new pandemic implies a higher

risk for the population. The study period runs from 12 April to 5 October 2020 761,665.

This article proposes a unique methodology of random matrix theory in the moments of

a probability measure that appears as the limit of the empirical spectral distribution by

Wigner’s semicircle law. The graphical presentation of the results is done with Machine

Learning methods in the SuperHeat maps. With this, it was possible to analyze the

behavior of patients who tested positive for COVID-19 and their comorbidities, with the

conclusion that the most sensitive comorbidities in hospitalized patients are the following

three: COPD, Other Diseases, and Renal Diseases.

Keywords: random matrix theory, COVID-19, Wigner’s law, multivariate distribution, SuperHeat map, eigenvalue

distribution

1. INTRODUCTION

1.1. COVID-19
Throughout its history, humanity has faced several pandemics in which millions of people lost
their lives around the world. The recent epidemics of SARS-CoV and MERS-CoV stand out [1]. In
December 2019, in the city of Wuhan China, a series of cases were reported that met the criteria
for pneumonia with severe characteristics. Local health authorities noted an epidemiological
relationship in the patients with a wholesale seafood market, where wild animals were also sold [2].

By 31 December, the Chinese Center for Disease Control and Prevention was notified and began
an epidemiological investigation. As a first security measure, the seafood market was closed to
the public on 1 January 2020. On 9 January, the Chinese government reported the discovery of
the new coronavirus, and on 12 January, they released their genomic sequence of nCoV-2019. In
the beginning, the epidemic growth rate was predicted to be about 0.10 per day (95% CI among
696 daily cases, and it was doubled in 7.4 days1). On 11 January, the first death was reported in
China [1].

On 13 January in Thailand, the first imported case was registered in a 61-year-old patient from
Wuhan. The USA reported its first confirmed case on 20 January in a 35-year-old patient who
traveled to Wuhan. It was not until January 30 that the WHO declared the nCoV-2019 infection

1This transmission dynamic modeling is described on: https://www.nature.com/articles/s41598-021-81985-z#Tab1.

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.848898
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.848898&domain=pdf&date_stamp=2022-06-02
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:oralianolasco.jauregui@gmail.com
https://doi.org/10.3389/fams.2022.848898
https://www.frontiersin.org/articles/10.3389/fams.2022.848898/full
https://www.nature.com/articles/s41598-021-81985-z#Tab1


Nolasco-Jáuregui et al. RMT With Overlapping Semicircles

an international public health emergency. On 11 February, the
name of the disease officially changed to COVID-19 (coronavirus
disease). The name of the virus, after genomic analysis of the
sequences, is SARS-CoV-2 [3].

COVID-19 arrived in Mexico in February 2020. On 27
February 2020, the media announced that one patient had tested
positive for the virus. This patient went to the INER, where
he mentioned having traveled to Bergamo, Italy, where he had
contact with an infected person. On 28 February, the Institute for
Diagnosis and Epidemiological Reference “Dr. Manuel Martnez-
Bez” (InDRE) confirmed the first case of COVID-19 in Mexico.
Following up on four more cases, they found that they had
traveled to Italy as well, and three of them had mild symptoms.
Two of these patients stayed in Mexico City and one in Sinaloa.
The fourth patient did not develop symptoms, so he was a carrier.
This was perhaps the first asymptomatic patient reported in
Mexico. On 1 March, all cases in Mexico were imported [2].

1.2. Random Matrix Theory and Wigner’s
Semicircle Law
The Random Matrix Theory (RMT) had its origins with John
Wishart, who analyzed the properties of multivariate normal
populations. This definition goes back to the seminal work of
Wigner [4], where he also proved the semicircle law, which states
that the asymptotic eigenvalue distribution of a Wigner matrix
is given with a high probability by the semicircle distribution.
Eugene Wigner studied the energy levels of heavy nuclei,
wherein quantum mechanics the prediction of these energy
levels is eigenvalues of self-adjoint operators. Wigner depicted
these operators by large dimensional random matrices with
independent entries. He found that the asymptotically empirical
distribution of the eigenvalues has a semicircular shape, which
led to his famous semicircle law. Wigner also analyzed the
distribution of the gaps in the set of energy levels, finding them to
be independent underlying material. As result, this energy level
model and its distribution were successfully reproduced by his
random matrix models.

Random Matrix Theorys [5] are a set of matrices in real
symmetric bands with inputs extracted from an infinite sequence
of interchangeable random variables, as far as the symmetry of
the matrices allows it [6]. The entries of the upper triangular
matrices are correlated, and these correlations are not assumed
to be small or sparse [7]. The RMTs have in their eigenvalue
distribution measures that converge to a semicircular shape
with random scale [8] and asymptotic behavior of the norm
attributions in 2 operators [9]. The key to his analysis is a
generalization of a classical Finetti result which allows the
underlying probability spaces to be represented as averages of the
Wigner band sets with the inputs not necessarily centered [10].
Some results appear to be new even for such Wigner band
matrices [11].

Abbreviations: D, Diabetes; CO, COPD; A, Asthma; IM, Immunosuppression;
HY, Hypertension; CA, Cardiovascular; RE, chronic kidney disease; OB, obesity;
OD, other diseases; R1, Region 1; R2, Region 2; R3, Region 3; R4, Region 4; R5,
Region 5; N, Non-hospitalized patient; H, Hospitalized patient.

Random Matrix Theory was designed by Wigner to deal
with the statistics of eigenvalues and eigenfunctions of complex
many-body quantum systems. In this domain, RMT has been
successfully applied to the description of spectral fluctuation
properties in large data dimensions with independent input [11].
Wigner has also analyzed the distribution of the gaps in the
energy levels, finding them to be independent of the underlying
matter; surprisingly, this gap distribution is successfully
reproduced by RMT [12].

According to the properties of Gaussian ensembles, they are
introduced as Hermitian matrices with independent elements
distributed as Gaussian, and joint distribution of all independent
elements invariant under conjugation by orthogonal unitary
matrices. As a result, Wigner, Dyson, and Mehta were able to
compute the exact gap distribution, called WDM which is the
bulk universality conjecture for Wigner matrices [13], it asserts the
kth-point correlation function of the eigenvalues of random n x
n Wigner matrices in the bulk of the spectrum converge to the
kth-point correlation function of the Dyson sine process in the
asymptotic limit n → ∞.

There has been much recent progress on this conjecture,
which states that local spectral statistics of random matrices
should be independent of the exact distribution of their entries,
and this coincides with the Gaussian case [14]. In 2009, the
so-called local law was developed, proving to be a powerful
tool both for testing the WDM-conjecture for Wigner matrices
and for providing insights into the mechanisms that govern
convergence of the empirical distribution of the eigenvalues to
the semicircle distribution and oriented to graph models like in
this document [14].

In Shang [15], on the skew-spectral distribution of randomly
oriented graphs, simulated and computed the eigenvalue
distribution for aWigner matrix, with the results showing perfect
agreement with his theoretical model prediction.

Random Matrix Theories have grown enormously in fields
such as wireless communication theories [16], RNA analysis [17],
pure mathematics [18], probability [19], and others [5].

1.3. Maximum Local Overlapping
Semicircles for Comorbidity Analysis
The main methods used to study RMTs can be classified
using the analytical method and the method of moments. Both
methods deal with the asymptotic eigenvalue distributions of
large random matrices. This manuscript has focused on the
method of moments, showing in particular how this method is
powerful and fruitful in studying RMTs and its application to
commodities analysis.

In this application, it is important to mention that our interest
is the moments of a probability measure and some properties
of the real symmetric matrix are positive and real values. It will
often not be of interest if a sequence of numbers belongs to a
probability measure, this result is automatically obtained when
employing the method of moments.

This method assumes a priori that the target distribution
has specific moments, so it can be used to check convergence
to a random probability measure. In any case, the essential for
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the method of moments is the knowledge about the uniqueness
of distribution with given moments, i.e., that there is at most
one distribution with a given sequence of moments. In random
matrix theory, the probability measure that appears as the
limit of the empirical spectral distribution is naturally that
of semicircle distribution. "Naturally" means that it appears
in Wigner’s semicircle law, which is the easiest non-trivial
randommatrix ensemble, as it has standardized entries which are
independent up to the symmetry constraint. It is safe to say that
the role of the semicircle distribution in random matrix theory
is as large as the role of the standard normal distribution in
probability theory. Remember that the semicircle distribution is
the probability measure.

The focus of this document is on RMTs, Wigner matrices,
and Hermitian random matrices with independent up to the
symmetry constraint and constant variance. Until the last
decade, RMT had never been applied to epidemiological and
comorbidities (in large data) application in the literature, so that
was the main motivation for this study.

Note that there are no overlapping semicircle laws from the
distribution of randomly oriented graphs in the state of the
art, and this is the main contribution of this research. As a
consequence, this fresh method guarantees that in one plot (with
a simple view), it is possible for a rapid visual comparison
between the local semicircles that are immersed in the plot. The
maximum local is the result of the comparison between the local
asymptotic values (refer to Table 1) of the empirical distributions
from the overlapping semicircular shapes that are immersed in
the graph 2.

This study focuses on a particular case in Mexico, but this
methodology is indubitably applicable to many countries in the
world. One of the approaches proposed in this research is RMT,
which originated from John Wishart’s analysis of properties in
multivariate normal populations [20]. Also in the prediction’s in
quantum mechanics, the energy levels can be calculated by the
eigenvalues together with the RMT elements [21]. In general, the
RMTs can work to analyze the multivariate behavior of data as
in this study. One of the most important contributions of this
document is Wigner and RMT in the comorbidities of patients
with COVID-19.

The effect of the COVID-19 pandemic in Mexico has been
investigated by some authors, such as Medel-Ramírez et al. [22],
which used data mining for data analysis. Parra-Bracamonte et
al. [23] analyzed the risk factors for COVID-19 and managed
to rank the most determining factors using multivariate logistic
regression. In Najera and Ortega-Ávila [24] found a high
incidence of comorbidities in deaths that had occurred up
to August 2020. In another analysis, Prieto et al. [25] gave
predictions on the spread of the pandemic in 2021 using Bayesian
inference.

However, as far as we know, there is no study using the
methodology presented here that has analyzed the Mexican case.
This methodology describes a tool that helps to infer weak
convergence: the method of moments in a probability measure.

2for more details about this research visit our public repository https://github.com/
OraliaNJ/RMT_And_Overlapping_Wigner_Semicircles.

The authors propose applying this method for both deterministic
and random probability measures. This article provides an in-
depth study of the concepts of weak convergence of probability
measures and random probability measures with Wigner’s law.

Note that the RMT analysis is in a static setting analysis (refer
to Table 1), in the sense, that their entries are not depending
on the time. In the interest of studying the evolution of the
pandemic over time, which is growing every day in the five
regions of Mexico, and the region with the highest risk of
contagion in Mexico, this document completes the study with
a SuperHeat map resulting from a Machine Learning algorithm
which compares by clusters (grouping the lowest scale of
infections to the highest density of infections occurred in 176
with the pandemic situation) the risk of the population and their
commodities day-by-day who tested positive to COVID-19 in
Mexico in the period from 12 April to 5 October 2020 761,665.

2. METHOD

2.1. Definitions of RMT
The special unitary group of degree n, denoted SU(n), is the Lie
group of n x n unitarymatrices with determinant 1. The Lie group
is used in many applications (for more details refer to Hall [26]).
The SU(1) is the simplest case, with only a single element. In
this application, we are interested especially in the group SU(2)
because it is isomorphic to the group of quaternions of norm 1
and is, thus, diffeomorphic to the 3-sphere, meaning that it can
be used to represent rotations in 3-dimensional space, as there
is a subjective homomorphism from SU(2) to the rotation group
SO(3) with identical symmetry groups [26]. The Lie algebra of
SU(2) consists of 2 x 2 skew-Hermitian matrices with trace zero.
Mentioned the last properties, note that the Wigner matrices are
unit matrices, written in an irreducible unit group (SU), and their
rotationally (SO) matrices:

SU(2) =
{ (

a −b̄
b ā

)

: a, b ∈ C, |a|2 + |b|2 = 1

}

(1)

SO(3) = {3× 3 orthogonal matrices with determinant = 1}
(2)

Where Jx, Jy, and Jz are generators of the Lie algebra of the
previous groups [27], i.e., there is a non-associative vector of
space g, with an alternate bilinear map: g × g → g; (x, y) →
[x, y], satisfying the Jacobi identity, which means that the sum
of all even permutations is zero. So these three operators are the
components of a vector operator, known as angular momentum.

DEFINITION 1 (Hermitian matrix). A square matrix A ∈
Mn(C) is called a Hermitian matrix if it has the property of A∗ =
A, where A∗ denotes the conjugate transpose (or Hermitian
transpose) of A, i.e., where the subscripts i, j are formally defined
by (ai,j) = (āj,i). An important property of these matrices is that
each Hermitian matrix is diagonalizable, its eigenvalues are real,
and its eigenvectors are 2 x 2 orthogonal.

DEFINITION 2 (Probability Density Function). The
probability density function fx(t) of a continuous random
variable, is a function whose value at any given sample (or
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TABLE 1 | Maximum values of probability and radius of the Wigner semicircles, of the 9 comorbidities reported in Mexico.

ASTHMA

R1_H R2_H R3_H R4_H R5_H R1_N R2_N R3_N R4_N R5_N

Prob 2.43 3.12 2.19 1.69 2.05 0.81 0.68 0.71 0.49 0.63

Radio 23.985 18.345 26.68 35.923 29.107 82.031 101.549 99.205 159.963 118.817

CARDIOVASCULAR

Prob 1.33 1.79 1.34 0.83 1.54 1.88 1.57 1.48 0.74 1.76

Radio 46.31329 33.71971 47.2955 82.64672 39.66252 32.2947 39.96393 42.2855 91.70461 34.20063

COPD

Prob 25.6 26.6 11.3 7.9 18.6 37.9 25.8 19.4 11.4 26.4

Radio 22.307 21.421 56.192 81.21 32.0916 14.8121 22.05335 30.73746 56.84873 21.97052

INMUNOSUPPRESSION

Prob 3.59 4.08 2.31 1.06 2.87 4.18 2.54 2.36 1.12 3.27

Radio 15.83425 13.89497 25.32691 57.92767 19.5242 13.72003 22.948215 24.31022 55.21519 17.27304

O.DISEASES

Prob 11.1 17.6 13 7.4 13.7 14.3 12 9.7 6.3 12.8

Radio 53.958992 33.676518 47.313197 89.922003 44.34744 44.817937 52.908196 65.160098 108.74722 48.565917

RENAL

Prob 16 14.8 10 6.5 11.6 36.9 20.2 18.5 10.5 21.1

Radio 36.86582 39.94179 64.73533 109.7202 52.6605 15.00147 29.4304 32.75973 61.67652 27.520779

DIABETES

Prob 3.2 3.3 2.8 1.7 2.5 3.7 3.1 2.7 1.9 2.6

Radio 275.2625 261.7669 335.1854 721.8501 370.9789 209.0088 373.9429 333.43024 657.72615 354.62443

HYPHERTENSION

Prob 2.7 3.3 2.4 1.6 2.8 2.5 2.2 2.4 1.4 32.5

Radio 372.74029 290.57336 395.70552 760.63216 414.68995 347.3256 501.10825 458.28626 837.50335 17.273039

OBESITY

Prob 4.3 1.2 3.4 2.1 3 2.4 2.1 2.1 1.4 1.9

Radio 192.7953 1476.1465 251.99781 502.98685 273.98022 409.32085 551.662258 540.032056 1070.49996 585.834888

point) in the sample space (the set of possible values taken by
the random variable) can be interpreted as providing a relative
likelihood that the value of the random variable would equal
that sample. A distribution has a density function if and only if
its cumulative distribution function FX(x) is continuous. In this
case, F is almost everywhere differentiable, and its derivatives can
be used as a probability density:

FX(x) = RX ≤ x =
∫ x

−∞
fX(t)dt (3)

DEFINITION 3 (The empirical measure). Let X1,X2, ... be a
sequence of identically distributed independent random variables
with values in R. Where P is denoting their probability
distribution. The empirical measure Pn is a measurable subset
of A ⊂ R. The empirical distribution function is an estimate
of the cumulative distribution function that generated the points
in the sample. It converges with probability 1 to that underlying
distribution, according to the Glivenko Cantelli theorem. Several
results exist to quantify the rate of convergence of the empirical
distribution function to the underlying cumulative distribution
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function:

Pn(A) =
1

n

∑

i=1

1A(Xi) =
#{1 ≤ i ≤ n|Xi ∈ A}

n

Where 1A is the indicator function. Note that if it chooses A =
[−∞, x],∀x ∈ R, then Pn(A) is the distribution of the empirical
function.

DEFINITION 4 (Wigner matrix). A Wigner matrix Wn ∈
Mn(C) is a Hermitian matrix where (Xi,j) with subscripts
i < j such that Xi,j are independent and identically randomly
distributed variables and are of the complex type with i < j [11]
as follows:

• The Xi,j are independent and identically distributed real
random variables

• E[Xi,j] = 0,∀i,j
• E

[

[Xi,j]2
]

= s2 if i 6= j
• E

[

[Xi,i]2
]

< ∞

REMARK 1 (Ensembles of RMT). The main ensembles of RMT,
which are called the Gaussian Unitary Ensemble GUE(n) and
Gaussian Orthogonal Ensemble GOE(n) and which ensembles
are the most classical and most widely studied random matrix
ensembles in the literature. The main statistical properties of the
eigenvalues of the GOE/GUE random matrices were reviewed,
and the random matrices in the Gaussian Unitary Ensembles
were found to be invariant under the conjugation of unitary
matrices. The entries are independent (up to symmetry) complex
centered Gaussian random variables, and the diagonal entries are
real centered Gaussian variables with variance 1/N, whereas the
diagonal entries can be written as N(0, 1/2)+ iN(0, 1/2).

The GUE consider a complex Wigner matrix where Xi,j is the
standard complex Gaussian (i.e. Xi,j ∼ N(0, 1/2) + iN(0, 1/2)
and Xi,i ∼ N(0, 1) (real)), which are defined as follows (for more
details refer to Arous and Guionnet [6]):

(GUE) :(Wn)ij : =
{

Xi,j ≡ N(0, 12 )R + iN(0, 12 )R, i > j
Xi,j ≡ N(0, 1)R, i = j

}

Let C ∈ C
n×n be unitary, so CC∗ = I and C ∗ WnC have

the same distribution as Wn, i.e., (GOE) is invariant under unit
conjugation. GOE is a real Wigner matrix where Xi,j ∼ N(0, 1)

and Xi,i ∼
√
2N(0, 1) [28].

(GOE) :(Wn)ij : =
{

Xi,j ≡ N(0, 1)R, i 6= j

Xi,j ≡
√
2N(0, 1)R, i = j

}

Where C ∈ R
n×n are orthogonal, CCT = I and CTWnC have the

same distribution asWn, that is, GOE(n) is an invariant function
under orthogonal conjugation. Now, the focus is on Gaussian
Wigner matrices, whose inputs are Gaussian random variables
with zero mean and variance s2 if i 6= j and 2s2 if i = j, but
this theory only applies to general distributions.

DEFINITION 5 (The Operator Norm for Band Random
Matrices). The semicircle law for Wigner band ensembles
suggests that in the case of centered entries, the operator norm
should asymptotically be of the order of the square root of the

bandwidth. It was already observed in Disertori et al. [29] and
Valente-Acosta et al. [40] that this cannot hold if the bandwidths
do not grow at least at some logarithmic rate with the matrix size.

In the first subsection, Definitions ([Hermitian matrix]-
[Wigner matrix]) and the remark [Ensembles of RMT] show
positive results in this direction that guarantee an almost certain
upper bound on the operator norm that grows proportionally
and the bandwidth satisfies some growth condition for centered
Wigner band ensembles. The second subsection considers the
situation of Wigner band ensembles with arbitrary means and
de Finetti band ensembles. The method of the moment was used
to obtain the almost certain limit of the appropriately rescaled
operator norms for centered Wigner ensembles; then, let M ∈
Matn×n(C) be a matrix.

The matrix operator norm ofM is defined as:

||Mn||op : = sup||Mx||

with ||x|| ≤ 1. In that case, x ∈ Cn and ||.|| ≤ is a normalized
vector of Cn.

THEOREM 1 (Bai-Yin Law). The limiting spectral distribution
for a Wigner matrixWn is the upper limit of Bai and Yin [30].

lim
n→∞

sup
||Mn||op√

n
≤ 2

As result, the normalized version is defined as Xn : = Wn√
n

THEOREM 2 (Semicircle for Wigner Distribution). If the
Wn(Wn)n≥1 is a sequence of Wigner matrices, let µn be the
probability measure [6]:

µn(I) =
#{i ∈ {1, ..., n} : li(Xn) ∈ I}

n
, I ⊂ R

In this case, the λ1(Xn) ≤ ... ≤ λn(Xn) ∈ R are the eigenvalues of
Xn. As a consequence, the µn weakly converges to the semicircle
distribution:

µsc(x)dx =
1

2πs2

√

4s2 − x21|x|≤2sdx

2.2. Definitions of the Method of Moments
for Probability Measures
One of the most iconic and straightforward tests of the Wigner
macroscopic random matrix scale is that it uses the method
moments. This approach is based on the intuition that the
eigenvalues of the Wigner matrices are distributed according
to a limiting law, which is the semicircle distribution µsc.
The moments of the empirical distribution µn correspond to
sampling moments of the limit distribution, where the number
of samples is given by the size of the matrix.

To calculate the k-th moment with the µ-law of a random
variable of X, which is the expectation of the E(Xk), the
eigenvalues of Xn are denoted by λj(Xn) with an order of
λ1(Xn) ≤ λ2(Xn) ≤ ... ≤ λn(Xn). Note that Xn can be
diagonalized since it is a Hermitian matrix. In fact, it has Xn =
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UtDnU where Dn = diag(λ1(Xn) ≤ λ2(Xn) ≤ ... ≤ λn(Xn)).
Therefore, they are obtained for the k-th moment:

Eµn [X
k
n] =

1

n

n
∑

j=1

lj(Xn)
k =

1

n

n
∑

j=1

(Dn)
k
jj =

1

n
Tr(UtDk

nU)

=
1

n
Tr(Xk

n)

This is a very useful method, especially considering that it does
not make any assumptions about the target to measure µn. In the
literature on random matrices, this condition is often used as the
method of moments (refer to Bai and Yin [30]). In summary, this
is the theorem used when applying the method of moments to
random matrix theory [31].

The empirical spectral distributions of random matrices,
which are K-valued in their entries, have absolute moments of
all orders. Then if (mk)k is a sequence of real numbers that satisfy
the Carleman condition, then (σn)n converges in expectation to
a probability measure µ on (R,B) with moments (mk)k. The k-th
randommoment is given by a real-valued random variable whose
expectation is finite.

The Catalan numbers uniquely determine Wigner’s semicircle
distribution via its moments, given by:

Eµn [X
k
n] =

∫

xkµsc(x) =

{

skC k
2
, if k is even

0, if k is odd

}

Cn is the n-th Catalan number, which is given directly by the
binomial coefficients:

Cn =
1

n+ 1

(

2n

n

)

The Catalan numbers are elements of the sequence of natural
numbers. As a result of the semicircle law, it is the unique
distribution where the k-th moments are given by the Catalan
numbers:

Eµn [X
k
n] →

n

∫

xkµsc

Note that semicircle distribution is uniquely determined by its
moments, in other words, the moments of the semicircle are the
Catalan number sequence interjected with zeros: 0, 1, 0, 0, 2, 0,
5, 0, 14. Thus, the limit of the k-th moment is measured with
the probability distribution with n → ∞ (refer to more details
in Random Matrix Theory: A combinatorial Proof of Wigner’s
Semicircle Law [32]):

∀j, k ≥ 1,Eµsc (X
k) → Eµsc (X

k) with n → ∞, where µn → µsc

However, the Catalan numbers are not only the (even) moments
of the semicircle distribution; they also appear as the solution
to various combinatorial problems (refer to Achim [33] or
Charalambides [34] for examples).

The method of moments for random probability works as
follows: If one wants to show weak convergence of random
probability measures in expectation, in the probability or almost
certainly, it will suffice to show that the random moments
converge in expectation, in the probability, or almost certainly.

2.3. Implementation and COVID-19 Data
Analysis
This section presents a COVID-19 risk analysis for the regions
of Mexico. For the record, the database is from the official
government web page created by the Secretary of Health
in Mexico, available at: https://www.gob.mx/cms/uploads/
attachment/file/604001/Datos_abiertos_hist_ricos_2020.pdf.

The Mexico COVID-19 database has the following
hierarchical variables (refer to Figure 1): 1) positive patients and
negative patients, 2) symptomatic patients, and 3) hospitalized
and non-hospitalized patients.

The geographical information of patients infected by the
virus in Mexico is divided into 5 regions (refer to shown in
blue in Figure 1). Remember that Mexico has 32 federal states,
each with a particular political, economic, population, and social
situation. The federal states are grouped by regions: Northwest
Region (R1), Northeast Region (R2), West Region (R3), Central
Region (R4), and Southeast Region (R5). R1 has the following
states: Baja California, Baja California Sur, Chihuahua, Sinaloa,
and Sonora. In R2 are Coahuila, Durango, Nuevo León, San
Luis Potosí, and Tamaulipas. R3 contains Mexico City, the State
of Mexico, Guerrero, Hidalgo, Morelos, Puebla, and Tlaxcala.
R4 has Aguascalientes, Colima, Guanajuato, Jalisco, Michoacán,
Nayarit, Querétaro, and Zacatecas. Finally, R5 covers the states of
Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz,
and Yucatán. Symptomatic patients were characterized by
presenting the major COVID-19 symptoms, such as cough, sore
throat, fever, or shortness of breath. Once the viral detection test
was applied, if the patients tested positive, they were classified as
positive patients and assumed to have the virus; otherwise, they
were considered negative patients. Figure 1 was extracted from
the corresponding author’s previous study; for more details visit
the file repository dataset inputs and their analyses3.

In the first position on the hierarchical variables are positive
patients (shown in maroon in Figure 1) these cases have the
following subsections: symptom onset date, clinic admission
date, and clinic discharge date. In second place are symptomatic
patients, who are subsections as hospitalized patients and
non-hospitalized patients (shown in orange in Figure 1). For
symptomatic patients with severe to critical diseases or those
who are severely immunocompromised, health experts admitted
them to the clinic immediately and classified them as hospitalized
patients in the database. For symptomatic patients with mild to
moderate disease who are not severely immunocompromised,
the health experts recommended that they must keep a strict
quarantine at home and were classified as non-hospitalized
patients in the database.

The case study report is based on a comparison of
hospitalized and non-hospitalized patients with the patients’
comorbidities and their risk of exposure to the virus in
different regions of Mexico [35]. These statistical analyses,
detail the patients’ primary comorbidities (shown in purple
in Figure 1), such as diabetes (D) [36], COPD (CO), asthma
(A), immunosuppression (IM), hypertension (HY) [37],

3This method describing the Bayesian network and correlation matrices is
available on: https://github.com/OraliaNJ/COVID-19_Mex_Analysis.
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FIGURE 1 | A network database was constructed with hierarchical variables, with the hierarchy level identified by 5 different colors: maroon, orange, blue, green, and

purple.

cardiovascular (CA) problems [38], chronic kidney disease
(RE) [39], obesity (OB) [40], and others diseases (OD) [41].
People suffering from any comorbidities are at increased risk of
severe COVID-19 infection [40]; the aforementioned diseases
play an important role in the recovery potential of patients who

have acquired the virus [36–41]. Figure 1 describes Mexico’s
COVID-19 database extraction and its hierarchical variables.
Note that the database analysis period corresponds from 12
April to 5 October 2020 761,665, with a total of 176 daily record
files.
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3. RESULTS

The authors propose applying random matrix theory to the
probability measure that appears as the limit of the empirical
spectral distribution by the Wigner semicircle law of the
hierarchical network shown in Figure 1 for every region of
Mexico by comorbidities for hospitalized (H) patients and
Non-hospitalized (N) patients (refer to Figure 2). Figure 2 is
a beautiful graphical representation of the Wigner semicircles
overlapping as a result of this proposal, which enables the reader
to draw conclusions about the comorbidity of the regions of
Mexico and their patients with COVID-19.

In Figure 2A, asthma comorbidity, it can be observed that R2
presents a greater probability of this morbidity in the case of
hospitalized patients, while there is a lower probability in non-
hospitalized patients. Consequently, the radius of R2 indicates
that there are fewer hospitalized than non-hospitalized patients.
R1 also has the most cases of hospitalized patients with this
comorbidity, R1 hasmore non-hospitalized patients than R2. The
radius in outpatients is more platykurtic than in hospitalized ones
since the distribution is more leptokurtic (refer to Table 1).

Table 1 has the local asymptotic values of the local limit from
the semicircular Wigner shape distribution, so the reader can
compare the analytical values. Note that the x-axis has a scaled
largest eigenvalue because it is a semicircle, so it has negative and
positive values; the radius indicates the absolute asymptotic value
of the eigenvalue distribution.

Figure 2B shows cardiovascular comorbidity; almost all
regions and patient types have the same numbers because the
radius has similar values, except R4. The radius of R4 indicates
that there are more hospitalized and non-hospitalized patients
in this region than in other regions but R4 presents a fewer
probability of this morbidity than in other regions. Figure 2B
shows that R1 presents a greater probability of this morbidity
in the case of non-hospitalized patients; Following up to R1 is
R2, with the highest probability in hospitalized patients with this
comorbidity (refer to Table 1).

Figure 2C shows COPD comorbidity; the probability value in
this morbidity is higher than the previous diseases in all cases,
and the highest radius is that of R4 in hospitalized patients;
as a result, this region of Mexico has the greatest number of
patients infected with this morbidity. In Figure 2C, it can be
seen that R1 presents the greatest probability of this morbidity
in the case of non-hospitalized patients. Next is the R2, with the
highest probability in both types of patients (ambulatories and
hospitalized); the distribution is leptokurtic for both cases.

In Figure 2D, Immunosuppression comorbidity, it can be
observed that R1 presents a greater probability of this morbidity
in the case of non-hospitalized patients. Next is R2, which also
has the greatest number of cases in hospitalized patients with this
comorbidity. The highest radius is that of the R4 in both types
of patients. As a result, this region of Mexico has the greatest
number of patients infected with this morbidity.

In Figure 2E, for other diseases, it can be observed that R2
presents a greater probability of these comorbidities in the case of
non-hospitalized patients. Next is R1, which also has the greatest
number of non-hospitalized patients with this comorbidity. The

highest radius is that of the R4 in non-hospitalized patients. As a
result, this region of Mexico has the greatest number of patients
infected with these comorbidities.

In Figure 2F, renal diseases, it can be observed that R1
presents a greater probability of these comorbidities in non-
hospitalized patients. Next is R2 with the greatest number of non-
hospitalized patients with this comorbidity. The highest radius is
that of the R4 in both types of patients. As a result, this region
of Mexico has the greatest number of patients infected with this
morbidity.

Table 1 is a summary of Mexico’s patient regions; with the
percentage of patients for each region who have tested positive
for COVID-19 but who do not have any type of comorbidity. Of
these patients, 61 − 69% are N patients, while 29 − 41% were H
patients.

This document has amedullary analysis with a SuperHeatmap
(refer to Figure 3) as a complement to the previous analysis. This
SuperHeat map [42] is used as a correlation analysis between the
comorbidities of the regions of Mexico and the daily behavior
pandemic analysis. Figure 3 is interpreted as follows: it is the
dendrogram [42] on its left axis, which indicates in its farthest
lines the representation of the highest to the lowest hierarchical
correlation, toward the center of the map, the lowest hierarchy
appears and its relationship between all elements.

Three large groups can be seen on the SuperHeat map,
resulting from a Machine Learning algorithm called K-
means [43]. This is a type of algorithm clustering characterized
by indicating how similar these three groups are, i.e., the
similarity coefficient. The similarity coefficient is achieved with
a distance called Euclidean Distance [44]. In Figure 3, the right
axis indicates the number of days of the pandemic (from 12 April
2019, to 4 October 2020) and the density of infected cases for 176
days. The color scale on the right side of the map indicates the
density of infected patients ranging from 1,000 in blue to 200 in
pink, corresponding to daily cases.

The SuperHeat has three large groupings or clusterings. The
first clustering has the lowest scale of infections approximately
200 days (from day 75 to day 176 during the pandemic). The
second clustering has the highest density of infections occurring
in the first days of the pandemic, from day 1 to day 50; in this
clustering, the N and H patients were infected in practically all
regions and all comorbidities, and there were about 1,000 daily
cases of contagion (blue) (refer to Figure 3). The third clustering
was the result of selecting the days with the highest number of
infection transitions, ranging from 1,000 to less than 200 daily
infections in all regions and by patient comorbidity type. The
third clustering is approximately from day 51 to day 74 of the
pandemic in Mexico (refer to Figure 3).

In the first clustering analysis, there are four cases with an
average prolongation of the density of N infected patients for
a longer period, alternating between 800 and 600 daily infected
cases from day 75 to day 176 of the pandemic. As a result, for
N patients, R1 patients with COPD, Immunosuppression, and
Renal diseases; and N R5 patients with Immunosuppression have
an average prolongation of the density of infected patients for
the longest time ranging from 800 and 600 daily infected cases
of almost 101 days of the pandemic. There are only three cases
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FIGURE 2 | Empirical spectral distribution from the Wigner overlapping semicircular shapes by comorbidities in all regions of Mexico.

that are alternating between 800 and 600 daily infected cases, for
H patients, R1 patients with Immunosuppression, R2 patients
with Asthma, and R2 patients with Immunosuppression. The

remaining regions and comorbidities among hospitalized and
non-hospitalized patients alternate, with a density of infected
patients of approximately 400 and less than 200 daily cases.
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FIGURE 3 | SuperHeat map shows the daily behavior of the pandemic, grouping the lowest scale of infections to the highest density of infections by comorbidities in

all regions of Mexico.

Note that this clustering has reported the least number of H
cases; the majority of infected are N patients, who are recovering
at home.

In the second clustering analysis, both N and H patients
in all regions have the highest density of infections with
around 1,000 daily cases. For N patients, R1 patients with
COPD, Immunosuppression, and Renal diseases have an average
prolongation of the density for the longest time ranging from
1,000 to 800 infected patients daily for almost 50 days of the
pandemic. For H patients, R2 patients with Cardiovascular,
COPD, Renal diseases, and Other Diseases; and N patients
with Immunosuppression have an average prolongation of the
density for a longer time ranging from 1,000 to 800 infected
patients daily of almost 50 days of the pandemic. For H
patients, R3 patients with Cardiovascular, COPD, Renal diseases,
and N with Immunosuppression have an average prolongation
of the density for longer periods ranging from 1,000 to 800
patients infected daily for almost 50 days of the pandemic. For
H patients, R5 patients with Cardiovascular diseases, COPD,
Immunosuppression, and N with Renal diseases have an average
prolongation of density for a longer time ranging from 1,000 to
800 infected patients daily for almost 50 days of the pandemic.
For H patients, R2 is the only region that has the prolongation
of mean density by greater time ranging from 1,000 to 800
infected patients daily for almost 50 days of the pandemic, in
comorbidities such as Asthma, Cardiovascular diseases, COPD,
and Immunosuppression.

4. CONCLUSION

The difficult work in this study is the correct application of
all mathematics properties involved in RMTs. This is the main
reason for including the two sections in the description of the
method (refer to Sections 2.1 and 2.2). The Section 2.3 was
written in detail in order that the reader will be able to implement
this method. The simulation was programmed in a scripting
language in Octave GNU software. A public repository is freely
available with the above codes in order to reproduce all the results
of this article4.

This article was written in detail so that the reader
need not attend the literature review, and includes references
for understanding RTMs, Wigner’s semicircle law, probability
theory, Hermitian randommatrices even for the layperson; this is
the main reason for including Sections 1.2 and 1.3 in this article.

Note that there are no overlapping semicircle laws from the
distribution of randomly oriented graphs in the state of the art,
and this is the main contribution of this research. Thus, Figure 2
is a fresh plotting that allows a rapid visual comparison between
the local semicircle laws immersed in the plot. Future study
will aim to answer the following question: What are the limit
dimensions of thematrices where thismethod can be able to work

4Repository available on: https://github.com/OraliaNJ/
RMT_And_Overlapping_Wigner_Semicircles.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 June 2022 | Volume 8 | Article 848898

https://github.com/OraliaNJ/RMT_And_Overlapping_Wigner_Semicircles
https://github.com/OraliaNJ/RMT_And_Overlapping_Wigner_Semicircles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Nolasco-Jáuregui et al. RMT With Overlapping Semicircles

correctly in large data? Does this method have limits? or even is
the technology itself?

This methodology is undoubtedly applicable to many
countries in the world, (although this study focuses on a
particular case in Mexico). It describes a tool that helps to
infer weak convergence using the method of moments in a
probability measure. The authors propose applying this method
for both deterministic and random probability measures (refer to
Table 1).

In Table 1, it can be concluded that COPD comorbidity, renal
diseases, and other diseases represent the highest probability in
infected hospitalized patients (H). In the case of COPD, renal
diseases, and other diseases, Regions 1 and 2 present the highest
probability value for hospitalizations. On the other hand, these
same comorbidities are also found in non-hospitalized patients,
where high levels of probability prevail among those infected.

This research culminates in studying the evolution of the
pandemic over time, how it is growing in the five Mexican
regions on a day-to-day basis, and the region with the highest
risk of contagion in Mexico; this document completes the
study with Figure 3 (SuperHeat map), the result of a Machine
Learning algorithm which occurring by clusters [grouping the
lowest scale of infections to the highest density of infections
occurred in the period from 12 April to 5 October 2020 (761,665
Patients)].

From the analysis in Figure 3, it can be concluded that there
are four cases with an average prolongation of the density of
non-hospitalized infected patients for a longer period, alternating
between 800 and 600 new infections daily from day 75 to day 176
of the pandemic are (refer to first clustering): 1) for H patients, R1
patients with COPD, renal disease, 2) for N patients, R1 patients
with Immunosuppression, and 3) for N patients, R5 patients
with Immunosuppression.

Two cases have the longest time ranging from 800 and 600 new
infections daily of almost 101 days: 1) for H patients, R1 patients
with Immunosuppression, and 2) for H patients, R2 patients with
Asthma and Immunosuppression.

From day 1 to day 50 analysis, it can be concluded that in all
regions, both N and H patients, were infected in practically all
regions and all comorbidities, and there were about 1,000 daily
cases of contagion (refer to second clustering, Figure 3). There
are four cases that have the average prolongation of the density
of infected patients for the longest time ranging from 1,000 to
800 new infections daily for almost 50 days of a pandemic: 1)
for N patients, R1 patients with COPD, Immunosuppression, and
Renal diseases, 2) for H patients, R2 patients with Cardiovascular
diseases, COPD, Renal diseases, Other Diseases, and for N, R2
patients with Immunosuppression, 3) for H patients, R3 patients
with Cardiovascular diseases, COPD, Renal diseases, and for N
patients with Immunosuppression, and 4) for H patients, R5
patients with Cardiovascular diseases.
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