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Several problems in compressed sensing and randomized tensor decomposition can

be formulated as a structured linear system with a constrained tensor as the solution.

In particular, we consider block row Kronecker-structured linear systems with a low

multilinear rank multilinear singular value decomposition, a low-rank canonical polyadic

decomposition or a low tensor train rank tensor train constrained solution. In this

paper, we provide algorithms that serve as tools for finding such solutions for a large,

higher-order data tensor, given Kronecker-structured linear combinations of its entries.

Consistent with the literature on compressed sensing, the number of linear combinations

of entries needed to find a constrained solution is far smaller than the corresponding

total number of entries in the original tensor. We derive conditions under which a

multilinear singular value decomposition, canonical polyadic decomposition or tensor

train solution can be retrieved from this type of structured linear systems and also derive

the corresponding generic conditions. Finally, we validate our algorithms by comparing

them to related randomized tensor decomposition algorithms and by reconstructing a

hyperspectral image from compressed measurements.

Keywords: tensor, decomposition, compressed sensing (CS), randomized, Kronecker, linear system

1. INTRODUCTION

In a wide array of applications within signal processing, machine learning, and data analysis,
sampling all entries of a dataset is infeasible. Datasets can be infeasibly large either because
their dimensions are huge, like a matrix with millions of rows and columns, or because they are
higher-order. In several cases, a relatively limited set of indirectly sampled datapoints, i.e., linear
combinations A x = b of the datapoints x, suffices for recovering an accurate approximation of
the full dataset, making the problem tractable again. For example in compressed sensing [1, 2]
and randomized tensor decomposition algorithms [3], random measurement matrices are used to
compress the data x. Directly sampling a subset of the datapoints can also be written in the format
A x = b, in which the measurement matrix a now consists of a subset of the rows of the identity
matrix. Hence, problems such as incomplete tensor decomposition [4], non-uniform sampling [5]
and cross-approximation [6] can also be formulated in this manner.

Retrieving the original data from such a linear system is generally only possible if it is
overdetermined. This would mean that the number of indirectly sampled datapoints equals at least
the total number of dataset entries, which is the opposite of what is needed in the compressed
sensing (CS) setting. This requirement becomes especially restrictive for higher-order datasets.

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.832883
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.832883&domain=pdf&date_stamp=2022-03-17
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stijn.hendrikx@kuleuven.be
https://doi.org/10.3389/fams.2022.832883
https://www.frontiersin.org/articles/10.3389/fams.2022.832883/full


Hendrikx and De Lathauwer BRKS Systems With Low-Rank Solutions

“Higher-order” means that the dataset consists of more than
two dimensions or modes, in which case the number of
entries increases exponentially with the number of modes.
This phenomenon is commonly known as the curse of
dimensionality (CoD).

Real data often allows compact representations thanks to
some intrinsic structure, such as the data being generated by
an underlying lower-dimensional process [1, 7]. In this case,
x can be well approximated by a sparsifying basis 8 and a
sparse coefficient vector θ , namely x ≈ 8θ . The literature on
compressed sensing (CS) shows that for a measurement matrix
and sparsifying basis pair with low coherence, the linear system
can be solved in the underdetermined case [1, 2]. This means that
x can be recovered using far fewer compressed measurementsAx
than the total number of entries in x, breaking the CoD in the
case of a higher-order dataset. An appropriate sparsifying basis is
known a priori for some types of data, for example a wavelet basis
for images, or can be obtained through dictionary learning [8]. If
the sparsifying basis is known, then the measurement matrix can
be chosen such that the coherence between the sparsifying basis
and the measurement matrix is low. If no sparsifying basis for
x is known a priori, one often chooses a random measurement
matrix, as they are largely incoherent with any fixed basis [1].

In this paper, we exploit intrinsic structure that is common
in real data by compactly approximating x using tensor
decompositions, which in turn allows us to solve A x = b in the
underdetermined case. This means that we will solve

Avec (X) = b with X of low rank and vec (X) = x. (1)

Concretely, we will consider X constrained to a multilinear
singular value decomposition (MLSVD), a canonical polyadic
decomposition (CPD) or a tensor train (TT) of low rank1. Note
that at this point we have addressed the dimensionality issue
only partially: on one hand, x is compactly modeled by a tensor
decomposition; however, on the other hand, the number of
columns of A remains equal to the total number of entries in x

and thus still suffers from the CoD. Therefore, we will employ
a block row Kronecker-structured (BRKS) measurement matrix
A. Efficient algebraic algorithms for solving this linear system
will be obtained by combining this Kronecker structure with
the low-rank constraints on x such that A and x do not need
to be fully constructed. A standard approach for computing the
CPD of a tensor is to first orthogonally compress this tensor, for
example using the MLSVD, and then compute the CPD of the
compressed tensor [9]. In this paper, we generalize this approach
to the CS-setting.

Unstructured measurement matrices compress all modes
of X simultaneously. On the contrary, Kronecker-structured
measurement matrices produce compressed versions of X by
compressing each mode individually, making them useful for
higher-order datasets. Therefore, these Kronecker-structured
measurement matrices are used in the CS-setting [10–12]. In
Sidiropoulos and Kyrillidis [10] the CPD of a tensor is computed

1In this context, rank pertains to the definition of rank that corresponds to the

respective tensor decomposition.

by first decomposing multiple compressed versions of X and
then retrieving the factor matrices of the full tensor under
the assumption that their columns are sparse. There is some
similarity between the Kronecker compressive sampling (KCS)
approach [11] and ours, because it uses a Kronecker-structured
measurement matrix and assumes that x is sparse in a Kronecker-
structured basis. However, in KCS this basis is assumed to be
known a priori, while in our approach it is estimated as well.
In Kressner and Tobler [13], a low-rank approximation to the
solution of a parametrized set of linear systems, which can be
rewritten as a large linear system in which the coefficient matrix
consists of a sum of Kronecker products, is computed. This
approach is suited toward applications such as solving partial
differential equations rather than CS, as the requirement that
the smaller individual systems should be overdetermined makes
it infeasible for the latter purpose. Additionally, this approach
utilizes the hierarchical Tucker decomposition to constrain the
solution, as opposed to the MLSVD, CPD and TT constraints in
this paper.

Algorithms similar to the ones in this paper appear in the
literature on randomized tensor decomposition (RTD) [3, 14–
16]. The main difference is that the full tensor is available in
such a randomized algorithm, while our algorithms can also be
applied when only compressed measurements are available. In
a randomized algorithm, the tensor is compressed in multiple
modes to speed up further computations. In Zhou et al. [16]
the factor matrices of an MLSVD are computed by randomly
compressing the tensor. However, this compression is carried
out simultaneously in multiple modes in a manner that is not
Kronecker-structured. Also, the full tensor is needed to retrieve
the core S, as opposed to only compressed measurements like in
our approach. A similar randomized approach for computing the
MLSVD is introduced in Che et al. [15], with the difference that
the compression is carried out independently in different modes.
An overview of RTD algorithms for computing an MLSVD is
given in Ahmadi-Asl et al. [3, Section 5]. In Sidiropoulos et al.
[12], a CPD is computed by decomposing multiple randomly
compressed versions of the tensor in parallel and then combining
the results. The algorithm in Yang et al. [17] improves upon
this by replacing the dense random matrices with sketching
matrices in the compression step to reduce the computational
complexity. In Battaglino et al. [14], sketching matrices are used
to speed up the least squares subproblems in the alternating
least squares approach for computing the CPD. Multiplication
with a sketching matrix is a Johnson-Lindenstrauss Transform
(JLT), which transforms points in a high dimensional subspace
to a lower dimensional subspace while preserving the distance
between points up to a certain bound. In Jin et al. [18], it is
proven that applying a JLT along each mode of a tensor is
also a JLT. On the other hand, in cross approximation, CUR
decompositions and pseudo-skeleton decompositions, a tensor
is decomposed using a subset of directly sampled vectors along
each mode [6, 19–21]. These subsets are determined on the basis
of heuristics, for which algebraic results on the obtained quality
of the approximation are available [22].

In the next part of this section, we introduce notations and
definitions for further use in this paper. In Section 2, we propose
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an algorithm for computing an MLSVD from a BRKS linear
system and derive conditions under which a solution can be
found. In Section 3, we generalize the standard approach for
computing a CPD, in which the tensor is first compressed
using its MLSVD, to computing a CPD from a BRKS linear
system. We also derive conditions under which the CPD can
be retrieved. In Section 4, we compute a TT from a BRKS
linear system and derive conditions under which the TT can
be retrieved. Finally, in Section 5, we validate our algorithms
by computing tensor decompositions in a randomized approach
using synthetic data and by applying them to a hyperspectral
imaging application.

1.1. Notations and Definitions
A scalar, vector, matrix and tensor are, respectively, denoted by
x, x,X andX. The dimensions of a tensorX ∈ R

I1×···×IN of order
N are denoted by In for n = 1, . . . ,N. The rank of a matrix X is
denoted by r (X). The identity matrix is denoted by II ∈ R

I×I .
A set and its complementary set are, respectively, denoted by
I and Ic. A matricization of a tensor is obtained by reshaping
the tensor into a matrix and is denoted by X[I;Ic], with I ⊂
{1, . . . ,N}. The sets I and Ic, respectively, indicate which modes
of the tensor are in the rows and columns of the matricization.
See Kolda [23] for a more detailed, elementwise definition of a
matricization. We use a shorthand notation for the matricization
that contains a single mode in its rows, also known as the mode-n
unfolding, namely

X[n] := X[n;1,...,n−1,n+1,...,N].

The mode-n, outer, Kronecker and Khatri–Rao product are
denoted by ·n, ⊗,⊗ and ⊙. The mixed product property of the
Kronecker product is (A⊗B) (C⊗D) = (AC)⊗ (BD), with
A ∈ R

I×J , B ∈ R
L×M , C ∈ R

J×K and D ∈ R
M×N .

Similarly, the mixed product property of the Khatri–Rao product
is (A⊗B) (C⊙D) = (AC)⊙ (BD). The rank of the Kronecker
product of matrices equals the product of the ranks of those
matrices, i.e., r (A⊗B) = r (A) r (B). A shorthand notation for
a sequence of products is:

N
⊗
n=1

U(n)
:= U(1)⊗ · · ·⊗U(N),

N
⊙
n=1

U(n)
:= U(1)⊙ · · ·⊙U(N).

The multilinear singular value decomposition (MLSVD)
decomposes a tensor as

X = S ·1 U
(1) · · · ·N U(N) =:

r
S;U(1), . . . ,U(N)

z
,

with column-wise orthonormal factor matrices U(n) ∈ R
In×Rn

for n = 1, . . . ,N and an all-orthogonal core tensor S ∈
R
R1×···×RN [24]. The tuple (R1, . . . ,RN) is the multilinear rank

of X, in which Rn = r
(

X[n]

)

for n = 1, . . . ,N. In vectorized
form, this decomposition equals

vec (X) =
(

N
⊗
n=1

U(n)

)

vec (S) . (2)

The canonical polyadic decomposition (CPD) decomposes a
tensor as a minimal sum of rank-1 tensors

X =
R
∑

r=1

u(1)r
⊗ · · · ⊗ u(N)

r =:
r
U(1), . . . ,U(N)

z
,

with factor matricesU(n) ∈ R
In×R for n = 1, . . . ,N. The number

of rank-1 tensors R equals the rank of X. In vectorized form, the
CPD equals

vec (X) =
(

N
⊙
n=1

U(n)

)

1R

with 1R a vector of length R containing all ones. The tensor train
(TT) factorizes each entry ofX as a sequence of matrix products

xi1···iN = G
(1)
: i1 :

· · ·G(N)
: iN :

,

with G
(n)
: in :

∈ R
Rn−1×Rn for n = 1, . . . ,N and R0 = RN = 1

[25]. An index that has not been fixed is indicated by :, meaning

thatG
(n)
: i : is the ith mode-2 slice of a third-order tensor. The cores

of the TT are obtained by stacking G
(n)
: in :

for n = 2, . . . ,N − 1

and for n = 1,N into third-order tensors and matrices G(n) ∈
R
Rn−1×In×Rn , respectively. The tuple (R0, . . . ,RN) is the TT-rank

ofX. We use

X = LG(1), . . . ,G(N)M

as a shorthand notation for the TT.

2. COMPUTING AN MLSVD FROM A BRKS
LINEAR SYSTEM

Using a BRKS linear system avoids the need for constructing and
storing the full measurement matrix A and results in efficient
algorithms for retrieving a low-rank constrained x. With this
structure, Equation (1) becomes











⊗N
n=1 A

(1,n)

⊗N
n=1 A

(2,n)

...

⊗N
n=1 A

(M,n)











vec (X) =











b(1)

b(2)

...

b(M)











, (3)

with generating matrices A(m,n) ∈ R
Pmn×In and compressed

measurements b(m) ∈ R

∏N
n=1 Pmn for m = 1, . . . ,M and n =

1, . . . ,N. This type of linear system appears, for instance, in
RTD and hyperspectral imaging, as illustrated in Section 5. Each
block row of this linear system corresponds to a linear subsystem
that produces a compressed version of X. This can be seen by
tensorizing themth block row as

B(m) = X ·1 A
(m,1) · · · ·N A(m,N), (4)

in which B(m) is b(m) reshaped into a tensor of dimensions
Pm1 × · · · × PmN . Each mode of B(m) has been compressed by
mode-nmultiplication with A(m,n) for n = 1, . . . ,N.
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If X is approximately of low multilinear rank (R1, . . . ,RN),
reflecting some inherent structure, then the vectorized MLSVD
in Equation (2) can be substituted into Equation (3):

A

(

N
⊗
n=1

U(n)

)

vec (S) = b. (5)

Note that the factor matrices would be in the reverse order
when vectorizing conventionally, meaning ⊗1

n=N U(n). However,
by vectorizing like in Equation (5), the index n of the generating
matrices A(m,n) for m = 1, . . . ,M and n = 1, . . . ,N corresponds
nicely to the mode it operates on.

In order to solve the linear system in Equation (5) in
the underdetermined case, it will not be directly solved for
(

⊗N
n=1 U

(n)
)

vec (S). Instead, the factor matrices U(n) for n =
1, . . . ,N will be retrieved individually using the linear subsystems

(

N
⊗
n=1

A(m,n)

)(

N
⊗
n=1

U(n)

)

vec (S) = b(m) form = 1, . . . ,M

(6)
in Equation (5). If the BRKS linear system consists of N
linear subsystems, then all factor matrices can be computed.
Therefore, we assume from this point on that M = N. The
case where M < N is of use when not all factor matrices need
to be retrieved. Next, the core tensor will be retrieved using
the computed factor matrices. The linear system in Equation
(6) is similar to the problem that is solved in KCS, namely
⊗N

n=1 A
(m,n),⊗N

n=1 U
(n) and vec (S), respectively, correspond to

the Kronecker-structured measurement matrix, the Kronecker-
structured sparsifying basis and the sparse coefficients. In CS,
choosing a good basis that sparsifies the data [8] and determining
the sparse coefficients of the data in this basis [1, 2] are separate
problems. In this paper, both problems are solved simultaneously
using one BRKS linear system. Furthermore, unlike in the CS-
setting, the coefficients vec (S) are not necessarily sparse. In the
remainder of this section, we discuss the methods for retrieving
the factor matrices and the core tensor.

2.1. Computing the Factor Matrices
Themth linear subsystem in Equation (6) can be simplified to

(

N
⊗
n=1

(

A(m,n)U(n)
)

)

vec (S) = b(m) form = 1, . . . ,N (7)

using the mixed product property of the Kronecker product.
This corresponds to a vectorized MLSVD with factor matrices
A(m,n)U(n) for n = 1, . . . ,N and core S. Rearranging Equation
(7) as the mode-mmatrix unfolding of this MLSVD

A(m,m)U(m)S(m) = B
(m)
[m] with (8)

S(m) =





∏

n6=m

S ·n

(

A(m,n)U(n)
)





[m]

form = 1, . . . ,N

= S[m]

(

⊗
n6=m

(

A(m,n)U(n)
)

)T

,

shows that solving the linear system

A(m,m)F(m) = B
(m)
[m] with F(m) = U(m)S(m) form = 1, . . . ,N

(9)
for the unknown matrix F(m) yields linear combinations of the
columns of U(m). Therefore, the dominant column space of
F(m) is the same as the subspace spanned by the columns of
U(m) if S(m) is of full column rank. This means that we can
find the column space of the mth factor matrix by computing
an orthonormal basis that spans the dominant column space
of F(m). In applications that allow the generating matrices to
be chosen, setting A(m,m) = IIm for m = 1, . . . ,N avoids
the need for solving this linear system altogether. In this case,
B(m) in Equation (4) equals X multiplied in every mode except
the mth with a generating matrix. This situation is similar to
RTD methods for computing an MLSVD, where the tensor is
compressed in all modes except themth in order to retrieve U(m)

[15, 16]. Generically, the dimensions Pmn, for m, n = 1, . . . ,N
and n 6= m, of the generating matrices can be chosen much
smaller than the rank Rn of the mode-n unfolding of X, as we
will further explain in Section 2.4. As a first indication, note that
for the factorization in the right-hand side of Equation (9), we
expect

∏

n6=m Pmn = Rm to be sufficient, allowing Pmn ≪ Rm for
m, n = 1, . . . ,N and n 6= m.

2.2. Computing the Core Tensor
In some applications, not only the factor matrices U(n) for n =
1, . . . ,N but also the core S are needed. At first sight, it looks
like a data efficient way to compute the core is reusing the linear
combinations with which the column space of the factor matrices
has been computed. The core tensor that corresponds to the
retrieved column spaces of the factor matrices is then obtained
by solving the linear system in Equation (5) for vec (S), with the
column space ofU(n) already available for n = 1, . . . ,N, which is

















⊗N
n=1

(

A(1,n)U(n)
)

⊗N
n=1

(

A(2,n)U(n)
)

...

⊗N
n=1

(

A(N,n)U(n)
)

















vec (S) = b. (10)

The core can be retrieved if the coefficient matrix of this
system is of full column rank. However, the requirement that
this coefficient matrix must be of full column rank imposes
much more severe constraints on the dimensions Pmn than the
constraints for computing the factor matrices in Section 2.4.
Under these harder constraints, the right hand sides b(n) would
have to contain far more compressedmeasurements than actually
needed to retrieve the nth factor matrix U(n) for n = 1, . . . ,N.
The reason is that in the coefficient matrix in Equation (10) there
are many linear dependencies between the rows, because the
same factor matrices U(n) appear in each block row. Therefore,
it is not practical to compute the core by solving the system in
Equation (10) for vec (S).

Instead, the core can be computed by solving a separate linear
system, independent from the N block rows of the BRKS system
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used for computing the factor matrices, for vec (S), namely

(

N
⊗
n=1

(

C(n)U(n)
)

)

vec (S) = d (11)

with extra generating matrices C(n) ∈ R
Qn×In for n = 1, . . . ,N

and compressed measurements d ∈ R

∏N
n=1 Qn . This approach

allows us to choose the dimensions Qn for n = 1, . . . ,N such
that the core can be retrieved, without the need to increase
the dimensions Pmn for m, n = 1, . . . ,N. Additionally, this
additional system can be solved efficiently by subsequently
solving smaller linear systems

(

C(n)U(n)
)

S̃
(n)
new = S̃

(n)
for n = 1, . . . ,N (12)

for S̃
(n)
new. Here, S̃

(1) = D[1], in which D[1] is the mode-1 matrix

unfolding of the tensorization D ∈ R
Q1×···×QN of d, and S̃

(n) =
reshape

(

S̃
(n−1)
new , [Qn,

∏n−1
i=1 Ri

∏N
i=n+1 Qi]

)

for n = 2, . . . ,N.

After solving all N systems, S̃
(N)
new is the mode-N matrix unfolding

of S. These linear systems, with coefficient matrices of size Qn ×
Rn for n = 1, . . . ,N, are much smaller than the linear system in
Equation (10), consisting of all compressed measurements used
to estimate the factor matrices, with a coefficient matrix of size
∑N

m=1

(

∏N
n=1 Pmn

)

×
∏N

n=1 Rn. This coefficient matrix is so large

because of the Kronecker products. In Section 2.4, we show that
generically the core can be retrieved if the dimensions Qn are
greater than or equal to Rn for n = 1, . . . ,N. Therefore, solving
the subsequent systems in Equation (12) is a computationally
much cheaper approach for computingS than solving the system
in Equation (10) is. This additional linear system can be added
to the BRKS linear system in Equation (3) by renaming C(n)

for n = 1, . . . ,N and d to A(N+1,n) and b(N+1), respectively.
The complete BRKS linear system now consists of N + 1 block
rows with generating matrices A(m,n) ∈ R

Pmn×In and compressed

measurements b(m) ∈ R

∏N
n=1 Pmn for m = 1, . . . ,N + 1 and for

n = 1, . . . ,N.
If we estimate the core tensor using a separate linear system,

we do not use all available compressed measurements, since we
disregard the first N block rows of the BRKS linear system. This
can be resolved by solving the full BRKS linear system for vec (S)

with a numerical algorithm such as conjugate gradients, using the
matrix-vector product











⊗N
n=1

(

A(1,n)U(n)
)

...

⊗N
n=1

(

A(N+1,n)U(n)
)











vec (S) ,

which can be computed efficiently by exploiting the block
rowwise Kronecker structure. Alternatively, all block rows of
the system can also be used if the full BRKS system is solved
for a sparse core S, which we will illustrate in an experiment
in Section 5.

Algorithm 1: MLSVD from a BRKS linear system
(lsmlsvd_brks).

Input: (CS-setting) A(m,n), b(m) for
m = 1, . . . ,N + 1; n = 1, . . . ,N

Input: (RTD-setting) A(m,n) for
m = 1, . . . ,N + 1; n = 1, . . . ,N andX

Output: S, U(m) for m = 1, . . . ,N
begin

if RTD-setting then

Compute b(m) for m = 1, . . . ,N using Equation (3)
/* Estimate factor matrices */
form = 1 to N do

Solve A(m,m)F(m) = B
(m)
[m] for F

(m)

Find U(m) by computing an orthonormal basis that
spans the dominant column space of F(m)

/* Estimate core tensor */

S̃ = reshape
(

b(N+1), [PN+1,1,
∏N

i=2 PN+1,i]
)

for n = 1 to N do

Solve
(

A(N+1,n)U(n)
)

S̃new = S̃ for S̃new

S̃ = reshape
(

S̃new, [PN+1,n,
∏n−1

i=1 Ri
∏N

i=n+1 PN+1,i]
)

2.3. Algorithm
By combining the steps in Sections 2.1 and 2.2, we obtain
Algorithm 1 for computing theMLSVD ofX from a BRKS linear
system. In the outlined version of the algorithm, the additional
linear system in Equation (11) is used to estimate the core tensor.
The computation of each factor matrix depends only on one
compressed tensorB(m) for m = 1, . . . ,N, allowing the different
factor matrices to be computed in parallel. In the RTD-setting,
the full tensor is available and is then randomly compressed
in order to efficiently compute a tensor decomposition. On the
other hand, compressed measurements can be obtained directly
in the data acquisition stage in the CS-setting. To accommodate
for both settings, Algorithm 1 accepts either the generating
matrices and the compressed measurements or the generating
matrices and the full tensor as inputs.

2.4. Conditions for MLSVD Retrieval
In this section, we derive the conditions in Theorem 1, under
which the retrieval of the MLSVD of X from a BRKS system is
guaranteed. Since the factor matrices and the core are intrinsic
to the data X, the conditions in this section are to be seen as
constraints on the generating matrices.

Theorem 1. Consider a tensor X ∈ R
I1×···×IN of multilinear

rank (R1, . . . ,RN), admitting an MLSVD
r
S;U(1), . . . ,U(N)

z

with factor matrices U(n) ∈ R
In×Rn for n = 1, . . . ,N and core

tensor S ∈ R
R1×···×RN . Given linear combinations b of vec (X)

obtained from a BRKS linear system with generating matrices
A(m,n) ∈ R

Pmn×In for m = 1, . . . ,N + 1 and n = 1, . . . ,N,
the factor matrices U(n) for n = 1, . . . ,N can be retrieved if and
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only if

1) r
(

A(m,m)
)

= Im form = 1, . . . ,N;

2)

N
∏

n6=m

r
(

A(m,n)U(n)
)

≥ Rm form = 1, . . . ,N.

The core S can be retrieved if and only if

3)

N
∏

n=1

r
(

A(N+1,n)U(n)
)

=
N
∏

n=1

Rn.

Proof: Condition 1): The linear system in Equation (9) can be
uniquely solved for F(m) if and only if A(m,m) is of full column
rank Im for m = 1, . . . ,N.
Condition 2): An orthonormal basis of dimension Rm for the
column space of F(m) can be retrieved if and only if

r
(

U(m)S(m)
)

= r

(

U(m)S[m]

(

⊗
n6=m

(

A(m,n)U(n)
)

))

= Rm form = 1, . . . ,N

holds. Since r
(

U(m)
)

= r
(

S[m]

)

= Rm, which follows from the

definition of the MLSVD, this condition reduces to

r

(

⊗
n6=m

(

A(m,n)U(n)
)

)

=
N
∏

n6=m

r
(

A(m,n)U(n)
)

≥ Rm form = 1, . . . ,N.

Condition 3): The linear system in Equation (11) can be
uniquely solved for vec (S) if and only if the coefficient matrix

⊗N
n=1

(

A(N+1,n)U(n)
)

is of full column rank:

r

(

N
⊗
n=1

A(N+1,n)U(n)

)

=
N
∏

n=1

r
(

A(N+1,n)U(n)
)

=
N
∏

n=1

Rn.

The conditions in Theorem 1 are satisfied in the generic case, in
which the generating matrices are sampled from a continuous
probability distribution and thus are of full rank with probability
1, if and only if the conditions in Theorem 2 hold. The conditions
in the latter theorem allow us to determine the dimensions Pmn

for m = 1, . . . ,N+1 and n = 1, . . . ,N of the generatingmatrices
such that generically the MLSVD ofX can be retrieved.

Theorem 2. With generic generating matrices A(m,n) for m =
1, . . . ,N + 1 and n = 1, . . . ,N, the conditions in Theorem 1 hold
if and only if

1) Pmm ≥ Im form = 1, . . . ,N;
2)

∏

n6=m

min (Pmn,Rn) ≥ Rm form = 1, . . . ,N;

3) PN+1,n ≥ Rn for n = 1, . . . ,N.

Proof: The proof of these conditions follows from the conditions
in Theorem 1 and the properties of generic matrices.
Condition 1): Since a generic matrix is of full rank,

r
(

A(m,m)
)

= min(Pmm, Im) for m = 1, . . . ,N.

Condition 2): The matrix product A(m,n)U(n) is of full rank
min (Pmn,Rn) with probability 1 for a generic matrix A(m,n) and
U(n) of full column rank (the latter following from the definition
of an MLSVD) with Pmn,Rn ≤ In for m = 1, . . . ,N + 1 and
n = 1, . . . ,N [10, Lemma 1].
Condition 3): Similar to the proof of condition 2),

generically r
(

A(N+1,n)U(n)
)

= min
(

PN+1,n,Rn
)

for

n = 1, . . . ,N according to Sidiropoulos and Kyrillidis [10,
Lemma 1]. Condition 3) in Theorem 1 then reduces to
∏N

n=1min(PN+1,n,Rn) ≥
∏N

n=1 Rn, which holds if and only if
condition 3) in this theorem is satisfied.

In practice, the dimensions Pmn can easily be chosen such
that the second generic condition is satisfied with Pmn < Rn
for m, n = 1, . . . ,N and n 6= m. The second condition then
reduces to

∏N
n6=m Pmn ≥ Rm for m = 1, . . . ,N. Assuming that

Pmn for m = 1, . . . ,N and n 6= m are approximately equally
large, we obtain the condition Pmn ≥ N−1

√
Rm, meaning that the

generating matrices A(m,n) ∈ R
Pmn×In for m, n = 1, . . . ,N and

n 6= m can be chosen as fat matrices. Therefore, the mth block
row of Equation (3) compresses all modes of X except the mth,
as illustrated in Figure 1, similar to an RTD algorithm for the

MLSVD. Additionally, this implies that B
(m)
[m] ∈ R

Pmm×
∏

n 6=m Pmn

holds at least Rm columns, which is indeed the minimum
required number for estimating the Rm-dimensional mode-m
subspace of X. Algorithm 1 uses an oversampling factor q ≥ 1
such that this matrix holds more than the minimum required
number of columns, namely

∏

n6=m Pmn = qRm columns for
m = 1, . . . ,N. These additional compressed measurements allow
a better estimation of the factor matrices if the data is noisy.

2.5. Noisy Data
In applications, noise can be present on the compressed
measurements and/or on the entries of the tensor. In the former

,

,

FIGURE 1 | Similar to the RTD algorithm in Che et al. [15], we recover the first

MLSVD factor matrix from B
(1), which is a version of X that is compressed in

every mode except the first.
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case, the linear system becomes Avec (X) = b + n, in which
the noise vector n is partitioned into subvectors n(m) for m =
1, . . . ,N, consistent with the partitioning of b in Equation (3).
The linear system in Equation (8), with a noise term n, becomes

A(m,m)F(m) = B
(m)
[m] + N

(m)
[m] form = 1, . . . ,N,

in which N(m) ∈ R
Pm1×···×PmN is the tensor representation of

n(m) and N
(m)
[m] its mode-m matrix unfolding. The rank of the

matrix, obtained by solving this subsystem for F(m), generically

equals min
(

Im,
∏N

n6=m Pmn

)

due to the presence of the noise and

thus exceeds Rm if q > 1 for m = 1, . . . ,N. If the signal-to-noise

ratio ||b||2
||n||2 is sufficiently high, then the dominant column space of

F(m) is nevertheless expected to be a good approximation for the
column space of U(m). A basis for this dominant column space
can be computed with the singular value decomposition (SVD)
and the approximation is optimal in least squares sense if n(m) is
white Gaussian noise.

In the case of noisy tensor entries, the linear system becomes
Avec (X+N) = b, with N ∈ R

I1×···×IN . In contrast with the
former case, the coefficient matrix now also operates on the noise.
Equation (8) then becomes

A(m,m)
(

F(m) + N(m)
)

= B
(m)
[m] with

N(m) =





∏

n6=m

(

N ·i A
(m,n)

)





[m]

form = 1, . . . ,N.

Because of the noise, the rank of F(m) + N(m) generically exceeds
Rm for m = 1, . . . ,N. The least squares optimal approximation
of the column space ofU(m) can again be retrieved using the SVD

if
(

⊗N
n=1 A

(m,n)
)

vec (N) is white Gaussian noise. As derived

in Sidiropoulos et al. [12], this holds true if vec (N) is white

Gaussian noise and A(m,n)A(m,n)T = IPmn for m, n = 1, . . . ,N.
The latter condition is approximately satisfied for large tensor
dimensions if the generating matrices are sampled from a zero-
mean uncorrelated distribution.

3. COMPUTING AN ORTHOGONALLY
COMPRESSED CPD FROM A BRKS
LINEAR SYSTEM

Since the core of the MLSVD of an Nth order tensor is also an
Nth order tensor, the MLSVD suffers from the CoD. On the
contrary, the number of parameters of the CPD scales linearly
with the order of the tensor. Additionally, the CPD is unique
under mild conditions. For applications that are more suited to
these properties, such as blind signal separation, we introduce an
algorithm for computing a CPD from a BRKS linear system in
this section. An efficient, three-step approach for computing the
CPD of a tensor is: 1) compressing the tensor, 2) decomposing
the compressed tensor and 3) expanding the factor matrices to
the original dimensions. In Bro and Andersson [9], the tensor is

orthogonally compressed using the factor matrices of its MLSVD,
i.e., the orthogonally compressed tensor corresponds to the core
tensor of the MLSVD. In this section, we generalize this popular
approach to computing a CPD from the BRKS linear system
in Equation (3). Following this approach, we can find the CPD
of a large tensor of order N by computing the CPDs of N
small tensors.

3.1. Computing the Factor Matrices
IfX is approximately of rank R, it admits a CPD

X =
r
W(1), . . . ,W(N)

z
(13)

with W(n) ∈ R
In×R for n = 1, . . . ,N. Since the dimension of

the subspace spanned by the mode-n vectors of X is at most of
dimension R for n = 1, . . . ,N, as X is of rank R, X also admits
an MLSVD

X =
r
S;U(1), . . . ,U(N)

z
(14)

with U(n) ∈ R
In×R for n = 1, . . . ,N and S ∈ R

R×···×R. Note
that the rank Rn of the mode-n vectors of X can be smaller
than R for any n = 1, . . . ,N, namely when W(n) is not of full
column rank. In this case, an orthogonal compressionmatrixU(n)

of dimensions In × Rn can still be used. Equation (13) and (14)
together imply that the core tensor S admits the following CPD:

S =
r
U(1)TW(1), . . . ,U(N)TW(N)

z
=

r
V(1), . . . ,V (N)

z
. (15)

Alternatively, the CPD ofX can be written as

X =
r
U(1)V(1), . . . ,U(N)V(N)

z

by substituting Equation (15) into Equation (14). This CPD can
be substituted for S in the BRKS system in Equation (3). Using
the mixed product property of the Khatri–Rao product, the mth
block row of the BRKS system becomes

(

N
⊙
n=1

(

A(m,n)U(n)V(n)
)

)

1R = b(m) form = 1, . . . ,N.

Tensorizing this equation yields a polyadic decomposition (PD)
expression for each block row of the BRKS system:

r
A(m,1)U(1)V(1), . . . ,A(m,N)U(N)V(N)

z
= B(m) form = 1, . . . ,N.

(Note that, since the number of rank-1 terms in this PD is
not necessarily minimal, it is a priori not necessarily canonical.
However, we will assume further on that the m-th factor matrix

in the PD of B̃
(m)

is unique for m = 1, . . . ,N. As that implies
that a decomposition in fewer terms is impossible, the PDs are
CPDs by our assumption). After solving Equation (9) for F(m)

and estimating U(m) for m = 1, . . . ,N as described in Section
2.1, the tensorization F(m) ∈ R

Pm1×···×Im×···×PmN of F(m) is
orthogonally compressed

B̃
(m) = F(m)

·m U(m)T
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=
r
A(m,1)U(1)V(1), . . . ,V(m), . . . ,A(m,N)U(N)V(N)

z

form = 1, . . . ,N. (16)

The CPD of the compressed tensor B̃
(m)

shares the factor matrix
V(m) with the CPD of the core tensor S. The factor matrices V(n)

for n = 1, . . . ,N of the CPD of the core can thus be found by
computing the CPD of each compressed tensor if the mth factor

matrix of the CPD of B̃
(m)

is unique for m = 1, . . . ,N. If the
CPD of the full tensorX is also unique, its factor matrices can be
retrieved by expanding the factor matrices W(n) = U(n)V(n) for
n = 1, . . . ,N. Since a CPD can only be unique up to the factor
scaling and permutation indeterminacies and each factor matrix
V(n) for n = 1, . . . ,N is retrieved from a different compressed
tensor, the indeterminacies must be addressed. To this end, the

fact that the N tensors B̃
(m)

all have the same CPD, up to the
(known) compression matrices A(m,n) for m, n = 1, . . . ,N, can
be exploited.

3.2. Algorithm
The steps in Section 3.1 mimic the popular approach in Bro and
Andersson [9] for computing the CPD of a fully given tensor,
which is: 1) compute the MLSVD of X, 2) compute the CPD of
the core S and 3) expand the factor matrices W(n) = U(n)V(n)

for n = 1, . . . ,N. The corresponding steps in the approach
in this paper are: 1) compute the MLSVD factor matrices U(n)

for n = 1, . . . ,N and orthogonally compress the tensors F(m)

for m = 1, . . . ,N, 2) compute the CPD of the compressed
tensors and 3) expand the factor matrices W(n) = U(n)V(n)

for n = 1, . . . ,N. Instead of computing the CPD of a core
tensor of dimensions R × · · · × R, this approach computes the
CPD of the N tensors in Equation (16) which are of dimensions
Pm1 × · · · × Pm,m−1 × R × Pm,m+1 × · · · × Pm,N for m =
1, . . . ,N. As will be shown in Section 3.3, these tensors can be
far smaller than the core tensor. Algorithm 2 outlines all steps
needed to compute a CPD with orthogonal compression from a
BRKS linear system. All steps of this algorithm can be computed
in parallel. LikeAlgorithm 1,Algorithm 2 accomodates both the
RTD- and CS-setting.

Instead of computing the CPDs of the tensors B̃
(m)

for m =
1, . . . ,N separately, they can also be computed simultaneously
as a set of coupled CPDs. These CPDs are coupled since their
factor matrices all depend linearly, with coefficients A(m,n)U(n),
on the same factors V(n) for m, n = 1, . . . ,N with n 6= m. This
set of coupled CPDs can be computed in Tensorlab [26] through
structured data fusion [27].

3.3. Conditions for CPD Retrieval
In this section, we derive conditions for the identifiability of the
CPD ofX from a BRKS system. The CPD can be identified if the
conditions in Theorem 3 hold. In Domanov and De Lathauwer
[28], conditions are provided to guarantee that one factor matrix
of the CPD is unique.

Theorem 3. Consider a tensor X ∈ R
I1×···×IN of rank R,

admitting a CPD
r
W(1), . . . ,W(N)

z
with factor matrices W(n) ∈

Algorithm 2: Orthogonally compressed CPD from a BRKS
linear system (lscpd_brks).

Input: (CS-setting) A(m,n), b(m) form, n = 1, . . . ,N
Input: (RTD-setting) A(m,n) form, n = 1, . . . ,N andX

Output:W(m) for m = 1, . . . ,N
begin

if RTD-setting then

Compute b(m) for m = 1, . . . ,N using Equation (3)
form = 1 to N do

Solve A(m,m)F(m) = B
(m)
[m] for F

(m)

Find U(m) by computing an orthonormal basis that
spans the dominant column space of F(m)

Orthogonally compress B̃
(m) = F(m)

·m U(m)T

Compute the CPD of B̃
(m)

and set V(m) equal to the
mth factor matrix
Scale and permute V(m) = D(m)−1

P(m)TV(m) to fix
CPD indeterminacies
ExpandW(m) = U(m)V(m)

R
In×R for n = 1, . . . ,N. Given linear combinations b of vec (X),

obtained from a BRKS linear system with generating matrices
A(m,n) ∈ R

Pmn×In for m, n = 1, . . . ,N, the factor matrices W(n)

for n = 1, . . . ,N can be retrieved if

1) r
(

A(m,m)
)

= Im form = 1, . . . ,N;

2)

N
∏

n6=m

r
(

A(m,n)U(n)
)

≥ R form = 1, . . . ,N;

3) Themth factor matrix of B̃
(m)

is unique for m = 1, . . . ,N;
4) The CPD ofX is unique.

Proof: Conditions 1) and 2): For the compression matrices U(n)

for n = 1, . . . ,N, the factor matrices of the MLSVD of X must
be retrievable. These conditions are the same as the first two
conditions in Theorem 1.
Condition 3): The CPD of the compressed tensor B̃

(m)
for m =

1, . . . ,N in Equation (16) shares the mth factor matrix with the
core of the MLSVD of X if the mth factor matrix is unique for
m = 1, . . . ,N.
Condition 4): While condition 3) ensures that the factor matrices
W(n) for n = 1, . . . ,N are unique, condition 4) is needed to
ensure that there is only one set of rank-1 tensors, consisting of
the columns of W(n) for n = 1, . . . ,N, that forms a CPD of X,
i.e., to exclude different ways of pairing.

In the generic case, in which the generating matrices and
the factor matrices of the CPD are sampled from a continuous
probability distribution, the CPD of X can be identified if the
conditions in Theorem 4 hold. Here we used a generic condition

to prove the uniqueness of the full CPD of B̃
(m)

for m =
1, . . . ,N, which a fortiori guarantees the uniqueness of its mth
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factor matrix. The conditions in Theorem 4 can be used to
determine the dimensions of the generating matrices that are
generically required for the identifiability of the CPD ofX.

Theorem 4. With generic generating matrices A(m,n) for m, n =
1, . . . ,N, the conditions in Theorem 3 hold if

1) Pmm ≥ Im form = 1, . . . ,N;

2)

N
∏

n6=m

min (Pmn,R) ≥ R form = 1, . . . ,N;

3) Im ≥ R form = 1, . . . ,N;

4)
{

∃N ⊂ {[1, . . . ,N] \m} :min (J2, J3) ≥ 3

and (J2 − 1)(J3 − 1) ≥ R
}

form = 1, . . . ,N

with J2 =
∏

n∈N
Pmn and J3 =

∏

n∈Nc

Pmn

Proof: Conditions 1) and 2): These conditions are the same as the
first two conditions in Theorem 2.
Condition 3) and 4): The mth factor matrix of B̃

(m)
is unique

for m = 1, . . . ,N if the CPD of these tensors is unique. The

Nth order tensor B̃
(m)

can be reshaped to a third-order tensor
Y ∈ R

J1×J2×J3 , with J1 = Im, J2 =
∏

n∈N Pmn, J3 =
∏

n∈Nc Pmn

and N ⊂ {[1, . . . ,N] \m}, of which the first mode corresponds

to the uncompressed mth mode of B̃
(m)

. The second and third
mode, respectively, correspond to a subset N of the remaining
N − 1 modes and its complementary subsetNc. The rank R CPD

of B̃
(m)

is unique if there exists a subset N such that the rank R
CPD of the reshaped third-order tensorY is unique. Generically,
a third-order tensor Y ∈ R

J1×J2×J3 of rank R is unique if J1 ≥ R,
min (J2, J3) ≥ 3 and (J2 − 1)(J3 − 1) ≥ R [29]. Condition 3)
guarantees that the former condition is satisfied and condition

4) guarantees that the latter two conditions are satisfied for B̃
(m)

for m = 1, . . . ,N. Additionally, condition 3) guarantees generic
uniqueness of the CPD ofX since for each reshaped, third-order
version ofX, all dimensions exceed R [30, Theorem 3].

As explained in Section 2.4, the second condition in Theorem
4 implies that Pmn ≥ N−1

√
R if the values Pmn are approximately

equally large for m, n = 1, . . . ,N and n 6= m. Similarly, the
fourth condition in Theorem 4 implies that

Pmn ≥ N−1

√

(

1+
√
R
)2

form, n = 1, . . . ,N and n 6= m.

(Note that this bound is derived for tensors of uneven order N.
The bound for tensors of even order is similar, but does not have a
simple expression). The latter constraint poses only slightly more
restrictive bounds than the former, meaning that the dimensions
Pmn for m, n = 1, . . . ,N and n 6= m can still be chosen such
that they are much smaller than R. In real applications, tensor
dimensions often exceed the tensor rank, satisfying the third
condition in Theorem 4.

Remark: Note that the rank of a tensor can exceed some of
its dimensions, in which case Theorem 4 cannot be satisfied.
This can be resolved by using a different uniqueness condition to

guarantee the uniqueness of the CPDs of B̃
(m)

for m = 1, . . . ,N,
such as the generic version of Kruskal’s condition [31]. However,
using this condition also results in stricter bounds on Pmn for
m, n = 1, . . . ,N and n 6= m.

4. COMPUTING A TT FROM A BRKS
LINEAR SYSTEM

Since the TT also does not suffer from the CoD, we derive an
algorithm for computing a TT from a BRKS linear system in
this section. The TT-SVD algorithm in Oseledets [25] computes
the cores using sequential SVDs. Unlike in TT-SVD, for a BRKS
linear system the SVDs can be computed in parallel by processing
the compressed tensors B(m) for m = 1, . . . ,N ofX separately.

4.1. Computing the TT Cores
If X is approximately of TT-rank (R0, . . . ,RN), it admits a TT
LG(1), . . . ,G(N)M with cores G(n) ∈ R

Rn−1×In×Rn for n = 1, . . . ,N.
Substituting this TT for X into the BRKS linear system in
Equation (3) leads to

Avec
(

LG(1), . . . ,G(N)M
)

= b.

It follows that the tensorized mth block row of this BRKS
system corresponds to the TT ofX transformed through mode-n
multiplication with the generating matrices A(m,n):

B(m) = LH(m,1), . . . ,H(m,N)M

with H(m,n) = G(n)
·2 A

(m,n) for n = 1, . . . ,N. Rearranging this
transformed TT into its mode-m unfolding leads to

A(m,m)
(

LH(m,1), . . . ,H(m,m−1),G(m),H(m,m+1), . . . ,H(m,N)M
)

[m]

= B
(m)
[m].

This unfolding corresponds to a linear system

A(m,m)B̃
(m)
[m] = B

(m)
[m] (17)

that can be solved for B̃
(m)
[m]. The tensor B̃

(m)
is a transformed TT

of X that shares the mth core G(m) with the TT of the full tensor
X. Following the definition of a TT, this core can be retrieved
from the column space of the following matrix unfolding

B̃
(m)
[1,...,m;m+1,...,N] =

(

LH(m,1), . . . ,H(m,m−1),G(m)M
)T

[m+1]

(

LH(m,m+1), . . . ,H(m,N)M
)

[1]
. (18)

(W.r.t. the matricization, note that while
LH(m,1), . . . ,H(m,m−1),G(m)M consists of m cores, it is a
tensor of order m + 1 since Rm is not necessarily equal to one).
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First, we retrieve G(1) by computing an orthonormal basis of
dimension R1 for the dominant column space of the matrix
unfolding in Equation (18) for m = 1. For m = 2, . . . ,N, the
column space of this unfolding also involves the preceding cores
H(m,1), . . . ,H(m,m−1). If the cores are computed in order, then
these preceding cores are known and can be compensated for by
subsequently solving smaller linear systems

H
(m,n)
[1,2;3]B

(n)
new = B(n) for n = 1, . . . ,m− 1, (19)

for B
(n)
new, with B(1) = B̃

(m)
[1] and B(n) =

reshape
(

B
(n−1)
new , [Rn−1Pmn, Im

∏N
k=n+1 Pmk]

)

for n = 2, . . . ,m−
1. After solving these systems, G(m) is retrieved by computing
an orthonormal basis of dimension Rm for the dominant

column space of reshape
(

B
(n)
new, [Rm−1Im,

∏N
k=m+1 Pmk]

)

for

m = 1, . . . ,N.
Alternatively, we can immediately compute an orthonormal

basis of dimension Rm for the dominant column space of the
matrix unfolding in Equation (18) for m = 1, . . . ,N, without
compensating for preceding cores first. Computing these bases
is more expensive, since they are obtained from a larger matrix
than in the case where the preceding cores have already been
compensated for. On the other hand, the orthonormal bases
can be computed in parallel, as there is no dependency on any
preceding core. If after the orthonormal bases have been found,
also the cores of the TT are desired, compensation of preceding
cores can be done in a similar manner as described above, namely
by subsequently solving linear systems. These linear systems have
the same coefficient matrix as the linear systems in Equation (19).

4.2. Algorithm
Algorithm 3 outlines all steps needed to compute a TT
from a BRKS linear system for the approach in which the
orthonormal bases are computed first and the preceding cores
are compensated for second. Note that only N − 1 SVDs need
to be computed, just like in the standard TT-SVD algorithm,
in which the final SVD reveals both cores N − 1 and N. Like
Algorithm 1 and 2, Algorithm 3 also accommodates both the
RTD- and CS-setting.

Remark: When computing the mth core in Algorithm 3, the

m− 1 preceding compressed coresH(m,1), . . . ,H(m,m−1) in B̃
(m)

are compensated for from left to right, i.e., for m = 1, . . . , n− 1.

If B̃
(m)

is unfolded in reverse, i.e.,

B̃
(m)
[N,...,m;m−1,...,1] =

(

LH(m,N), . . . ,H(m,m+1),G(m)M
)T

[N−m+2]

(

LH(m,m−1), . . . ,H(m,1)M
)

[1]
, (20)

then the column space of the unfolding contains, besides G(m),
the N − m next compressed cores H(m,N), . . . ,H(m,m+1). This
way, it is possible to compute the mth core by compensating
for these next compressed cores from right to left, i.e.,
H(m,N), . . . ,H(m,m+1). The efficiency of Algorithm 3 can be
improved by computing the first half of the cores using the
unfolding in Equation (18) and compensating for the preceding

Algorithm 3: TT from a BRKS linear system (lstt_brks).

Input: (CS-setting) A(m,n), b(m) form, n = 1, . . . ,N
Input: (RTD-setting) A(m,n) form, n = 1, . . . ,N andX

Output: G(m) for m = 1, . . . ,N
begin

if RTD-setting then

Compute b(m) for m = 1, . . . ,N using Equation (3)
form = 1 to N do

Solve A(m,m)B̃
(m)
[m] = B

(m)
[m] for B̃

(m)
[m]

Estimate G̃
(m)

as an orthonormal basis for the
dominant column space of B̃

(m)
[1,...,m;m+1,...,N]

for n = 1 tom− 1 do

Reshape G̃
(m)

to dimensions
Rn−1Pmn × Pm,n+1 · · · Pm,m−1ImRm

Solve the systemH
(m,n)
[1,2;3]Gnew = G̃

(m)
for Gnew

Set G̃
(m) = Gnew

G(m) = reshape
(

G̃
(m)

, [Rm−1, Im,Rm]
)

cores from left to right, and the second half of the cores using
the unfolding in Equation (20) and compensating for the next
cores from right to left. This halves the number of cores that
need to be compensated for compared to Algorithm 3, in which
cores are only compensated for from left to right to simplify
the pseudocode.

4.3. Conditions for TT Retrieval
In this section, we derive the conditions in Theorem 5, under
which retrieval of the TT ofX from a BRKS system is guaranteed.
The compensation for preceding cores occurs in both approaches
for computing the TT in Section 4.1. Therefore, the linear
systems that are solved to compensate for them must have
a unique solution. Since these linear systems have the same
coefficient matrices in both approaches, the condition under
which they have a unique solution is the same, regardless of the
chosen approach.

Theorem 5. Consider a tensor X ∈ R
I1×···×IN of TT-rank

(R0, . . . ,RN), admitting a TT LG(1), . . . ,G(N)M with cores G(n) ∈
R
Rn−1×In×Rn for n = 1, . . . ,N. Given linear combinations b

of vec (X), obtained from a BRKS linear system with generating
matrices A(m,n) ∈ R

Pmn×In for m, n = 1, . . . ,N, the cores G(n) for
n = 1, . . . ,N can be retrieved if and only if

1) r
(

A(m,m)
)

= Im form = 1, . . . ,N;

2) r
(

B̃
(m)
[1,...,m;m+1,...,N]

)

= Rm form = 1, . . . ,N;

3) r
(

H
(m,n)
[1,2;3]

)

= Rn form = 1, . . . ,N and n = 1, . . . ,m− 1.

Proof: Condition 1): The linear system in Equation (17) can be

uniquely solved for B̃
(m)
[m] if and only if A(m,m) is of full column
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rank Im for m = 1, . . . ,N.
Condition 2): An orthonormal basis of dimension Rm for the

column space of the matricization B̃
(m)
[1,...,m;m+1,...,N] in Equation

(18) can be retrieved if and only if the rank of this matricization
equals Rm.

Condition 3): The linear systems that are solved to
compensate for compressed cores have a unique solution if and
only if

r
(

H
(m,n)
[1,2;3]

)

= Rn form = 1, . . . ,N and n = 1, . . . ,m− 1

holds.

In the generic case, in which the generating matrices are
sampled from a continuous probability distribution, the TT
of X can be retrieved if the conditions in Theorem 6 hold.
These conditions can be used to determine the dimensions of
the generating matrices such that the TT of X can generically
be retrieved.

Theorem 6. With generic generating matrices A(m,n) for m, n =
1, . . . ,N, the conditions in Theorem 1 hold if and only if

1) Pmm ≥ Im form = 1, . . . ,N;

2) Pmn ≥ Rm

Rn−1Im
∏m−1

k=n+1 Pmk

form = 1, . . . ,N and n = 1, . . . , n− 1;

3) Pmn ≥ Rm

Rn
∏n−1

k=m+1 Pmk

form = 1, . . . ,N and n = m+ 1, . . . ,N;

4) Pmn ≥ Rn

Rn−1
form = 1, . . . ,N and n = 1, . . . ,m− 1.

Proof: Condition 1): This condition is the same as condition 1)
in Theorem 2.
Condition 2): The matricization B̃

(m)
[1,...,m;m+1,...,N] in Equation

(18) equals

B̃
(m)
[1,...,m;m+1,...,N] =
(

G
(m)
[3]

(

H
(m,m−1)
[3]

(

· · ·H(m,2)
[3]

(

H
(m,1)
[3] ⊗ IPm2

)

· · · ⊗ IPm,m−1

)

⊗ IIm

)

)T

(

H
(m,m+1)
[1]

(

IPm,m+1 ⊗ · · ·H(m,N−1)
[1]

(

IPm,N−1 ⊗H
(m,N)
[1]

)

)

)

=: DTE.

(21)

Generically, the rank of B̃
(m)
[1,...,m;m+1,...,N] equals Rm if and only

if the rank of both D and E equals Rm. Condition 2) relates

to D and condition 3) to E. Since G
(m)
[3] is of full rank, which

follows from the definition of a TT, and H
(m,n)
[3] for n 6= m is

generically of full rank, each matrix product in Equation (21)
is also of full rank [10, Lemma 1]. Therefore, the rank of D
generically equals

min

(

r
(

G
(m)
[3]

)

, min

(

r
(

H
(m,m−1)
[3]

)

, . . . ,

min
(

r
(

H
(m,2)
[3]

)

, r
(

H
(m,1)
[3]

)

Pm2

)

Pm3 · · · Pm,m−1

)

Im

)

.

Both arguments of the leftmost min(·) must at least equal Rm
such that r (D) ≥ Rm holds. Following the definition of a

TT, this always holds true for the first argument r
(

G
(m)
[3]

)

. The

second argument is min(·)Im, so both arguments of this second

min(·) must at least equal Rm
Im

. Generically r
(

H
(m,m−1)
[3]

)

=
min(Pm,m−1Rm−2,Rm−1), leading to the conditions Pm,m−1 ≥

Rm
Rm−2Im

and Rm−1Im ≥ Rm. The latter condition is satisfied by the

definition of a TT. Repeating the same steps for each subsequent
min(·) leads to the conditions

Pmn ≥ Rm

Rn−1Im
∏m−1

k=n+1 Pmk

form = 1, . . . ,N and n = 1, . . . ,m− 1.

Condition 3): In a similar fashion, it can be proven that r (E) ≥
Rm holds if and only if

Pmn ≥ Rm

Rn
∏n−1

k=m+1 Pmk

form = 1, . . . ,N and n = m+1, . . . ,N.

Condition 4): Since a generic matrix is of full rank, r
(

H
(m,n)
[1,2;3]

)

=
min (Rn−1Pmn,Rn) for m, n = 1, . . . ,N.

5. EXPERIMENTS

In this section, we validate our algorithms using synthetic and
real data. The algorithms are implemented in MATLAB and
are available at https://www.tensorlabplus.net. In the practical
implementation of the algorithms, column spaces are estimated
using the SVD and linear systems are solved using the MATLAB
backslash operator. All experiments are performed on a laptop
with an AMD Ryzen 7 PRO 3700U processor and 32GB RAM.
The algorithms are run sequentially even though each algorithm
can (partly) be executed in parallel.

Since it is possible to choose the generating matrices in the
experiments in this section, we set Amm = IIm for m =
1, . . . ,N. This means that the first step in each algorithm, namely
solving a linear system with Amm as the coefficient matrix, can
be skipped. First, we use synthetic data to compare the accuracy
and computation time of these algorithms to related algorithms.
All synthetic problems are constructed by sampling the entries
of the factor matrices and/or core(s) of a tensor decomposition
from the standard normal distribution. Additive Gaussian noise
N is added to these randomly generated tensorsX and the noise
level is quantified using the signal-to-noise ratio (SNR):

SNR = 10 log10

( ||X||2F
||N||2F

)

.

5.1. Randomized MLSVD
In the first experiment, a random third-order tensorX ∈ R

I×I×I

of low multilinear rank (R,R,R), with I = 200 and R = 10,
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is generated with varying levels of noise. The factor matrices of
the MLSVD of X are then retrieved from a BRKS linear system
using Algorithm 1. The entries of the generating matrices are
sampled from the standard normal distribution. This means that
we are using Algorithm 1 in the RTD-setting in this experiment.
The dimensions of the generating matrices are determined using
the oversampling factor q = 5 and the multilinear rank of
X. For this value of q, the sampling ratio equals 0.005. This
ratio is defined as the number of compressed measurements
in b divided by the number of entries in X. We compare
the accuracy of our algorithm with related RTD algorithms
and a cross-approximation algorithm for low multilinear rank
approximation. These algorithms are:

• rand_tucker Algorithm 2 in [16]: The factor matrices U(n)

for n = 1, . . . ,N are retrieved as follows: 1) the mode-n
matrix unfolding of X is compressed through multiplication
with a random Gaussian matrix and 2) an orthonormal basis
for this compressed matrix unfolding is computed using the
QR decomposition. After computing each factor matrix, X is
orthogonally compressed using this factor matrix like in the
sequentially truncated higher-order SVD algorithm [32]. The
oversampling factor is set to p = 5, which means that this
algorithm actually estimates an MLSVD of multilinear rank
(R+ p,R+ p,R+ p).

• rand_tucker_kron algorithm 4.2 in [15]: Similar to
rand_tucker, but the algorithm uses a Kronecker-
structuredmatrix for compression and the SVD for computing
an orthonormal basis. The oversampling factor for this
algorithm is chosen such that it is the same as our
oversampling factor q in Section 2.4.

• mlsvd_rsi [33]: Computes an MLSVD using sequential
truncation [32] and uses randomized compression and
subspace iteration for estimating the SVD [34]. In the
randomized compression step, the mode-n unfolding X[n]

is compressed through matrix multiplication with a random
matrix of dimensions

∏

i6=n Ii × Rn + p, with an oversampling
factor p = 5. Next, the nth factor matrix is estimated by
computing an SVD of this randomly compressed matrix and
further refined using two subspace iteration steps with the full
mode-n unfolding X[n].

• lmlra_aca [21]: Cross approximation approach for low
multilinear rank approximation.

The last two algorithms are available in Tensorlab [26]. As the
full tensor X is usually available in the RTD-setting, the core is
computed as

S = X ·1 U
(1)T · · · ·N U(N)T.

Figure 2 compares the accuracy, quantified as a relative error

Erel =
||X− Ŝ ·1 Û

(1) · · · ·N Û
(N)||F

||X||F

with Ŝ and Û
(n)

for n = 1, . . . ,N the estimated core and factor
matrices, of these algorithms. The error shown in Figure 2 is the
average relative error over 10 trials. Algorithm lsmlsvd_brks

is more accurate than rand_tucker and lmlra_aca.
Algorithm mlsvd_rsi is far more accurate than all other
algorithms because it uses subspace iteration with the full mode-
n matrix unfolding of X for computing the nth factor matrix.
For this reason it also has the longest computation time of all
algorithms. Algorithm rand_tucker_kron is more accurate
than lsmlsvd_brks due to the sequential truncation step in
rand_tucker_kron after each factor matrix is computed. If
this step is omitted, which corresponds to Che et al. algorithm 4.1
in [15], it achieves the same accuracy as lsmlsvd_brks. This
sequential truncation step is not possible in lsmlsvd_brks
since this algorithm only uses the compressed measurements
b instead of the full tensor X. Note that increasing the
oversampling factors of the algorithms results in higher accuracy
in exchange for a longer computation time and requiring more
compressed datapoints.

5.2. Randomized CPD
In this experiment, we generate a CPD with random factor
matrices of a third-order tensor X ∈ R

I×I×I , with I =
100, of rank R = 10. Varying levels of noise are added
to this tensor. Algorithm 2 is used in the RTD-setting to
estimate the factor matrices of the CPD of X. To compute
the CPDs of the compressed tensors, we use the cpd
function in Tensorlab [26]. This function initializes the factor
matrices with a generalized eigenvalue decomposition if possible
and further improves them using (second-order) optimization
algorithms. The accuracy of the factor matrices estimated by
this algorithm are compared to results obtained with related
RTD algorithms:

• cpd_rbs [35]: In each iteration, a random subtensor
of X is sampled and the corresponding rows of
the factor matrices are updated. These updates are
computed using a Gauss–Newton algorithm. In this

FIGURE 2 | Algorithm mlsvd_rsi is by far the most accurate because it

used the full-sized matrix unfolding in the subspace iteration step. Algorithm

lsmlsvd_brks is more accurate than lmlra_aca and rand_tucker and

less accurate than rand_tucker_kron. If the sequential truncation step in

rand_tucker_kron is omitted, it achieves the same accuracy as

lsmlsvd_brks.
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experiment, the algorithm starts with random initial
factor matrices.

• cp_arls [14]: Alternating least squares with random
sketching for solving the least squares subproblems.

The accuracy of the estimated factor matrices is quantified as a
relative error

ECPD = max
n

||Û(n) − U(n)||F
||U(n)||F

,

in which the scaling and permutation ambiguities between the

true U(n) and estimated Û
(n)

factor matrix have been resolved
for n = 1, . . . ,N. Figure 3 shows the average relative error
on the left and the average computation time for tensors
with increasing dimensions on the right. Both averages are
computed over 10 trials. For lscpd_brks, sampling the
randomly compressed tensors, i.e., evaluating Equation (3), is
included in the computation time. The oversampling factor q of
lscpd_brks is set to 5, 10 or 50. For a larger value of q, U(n)

better captures the mode-n subspace ofX and less information is
lost during the orthogonal compression step. Figure 3 illustrates
that the algorithm is much more accurate for q = 50, while the
increase in computation time compared to q = 5 is negligible. If
q is set such that the size of the compressed tensors in Equation
(4) is of the same order as the full tensorX, then the computation
time will of course increase significantly. For q = 50, the number
of compressed datapoints in b equals just 15% of the total number
of datapoints in X. This sampling ratio can be even lower for
tensors with order greater than three. Algorithm cp_arls is
slightly more accurate than lscpd_brks with q = 50 while
being much slower in terms of computation time. Algorithm
cpd_rbs is even more accurate and is situated in between
lscpd_brks and cp_arls for smaller values of I. The
computation time of lscpd_brksis dominated by sampling
the randomly compressed tensors, since computing the CPD of
these small tensors is very fast. Therefore, the computation time
of cpd_rbs scales better for higher values of I since sampling
random subtensors ofX is less time consuming than the random

compression of X in lsmlsvd_brks, which requires multiple
large matrix products. In contrast to lscpd_brks, which uses
a fixed amount of compressed datapoints determined by the
size of the problem and the oversampling factor, cpd_rbs and
cp_arls continue randomly sampling from X every iteration
until a stopping criterion is met.

5.3. Randomized TT
In this experiment, we generate a TT with random core
tensors of a third-order tensor X ∈ R

I×I×I , with I =
500, of TT-rank (1, 10, 10, 1). We add varying levels of noise
to this tensor and estimate the cores using Algorithm 3 in
the RTD-setting. For this experiment, we use the version
of this algorithm that first computes orthonormal bases and
then compensates for preceding cores. Additionally, preceding
cores are compensated for from left to right for the first
half of the cores and from right to left for the second
half, as explained in Section 4.2. The dimensions of the
generating matrices are chosen such that the sampling ratio
equals 0.005.

The results of lstt_brks are compared with
the results of a related RTD algorithm and a TT
cross-approximation approach:

• rand_tt Algorithm 5.1 in [36]: This algorithm is a
randomized version of the standard TT-SVD algorithm. The
TT-SVD algorithm consists of three steps that are performed
for the first N − 1 cores: 1) tensor X is matricized, 2) a core
is estimated by computing a basis for the column space of this
matricization using the SVD and 3) tensor X is compressed
using this basis. Inrand_tt, thematricization in the first step
is compressed bymultiplying it with a randommatrix from the
right in order to speed up the computation of the SVD in the
next step.

• cross_tt [37]: This algorithm reduces the size of the
matricizations of X using a maximal volume cross-
approximation approach. The matricizations used in this
algorithm allow the TT-ranks to be determined adaptively.

FIGURE 3 | Increasing the oversampling factor q of lscpd_brks, for which the value is shown in the figure, greatly improves its accuracy while having a negligible

effect on the computation time. Algorithm lscpd_brks is faster than cp_arls and cp_rbs, for a range of tensor dimensions that are relevant for applications, with

a limited loss of accuracy.
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The accuracy of the results of these algorithms are quantified as a
relative error

Erel =
||X− LĜ(1)

, . . . , Ĝ
(N)M||F

||X||F
,

in which Ĝ
(n)

for n = 1, . . . ,N are the estimated cores.
Figure 4 shows the relative error, averaged over 50 trials, and
the computation time, averaged over 10 trials, for all algorithms.
Tensors of increasing size are used to estimate the computation
time. The relative errors achieved by the algorithms with these
tensors are in proportion with the errors shown in Figure 4. The
relative error is approximately the same for both rand_tt and
lstt_brks. The former is faster thanks to the compression step
that is performed after computing each core, which causes the
tensor to get progressively smaller as the algorithm progresses.
However, this algorithm requires the full tensor to be available,
whereas the latter works with a limited amount of Kronecker-
structured linear combinations of the entries of X. Therefore,
lstt_brks enables us to achieve accuracy comparable to
rand_tt in CS applications. If a method for obtaining any entry
ofX is available, then cross_tt can be used to recover a more
accurate approximation of the tensor, in exchange for a longer
computation time. However, this algorithm is not applicable in
the CS-setting either.

5.4. Compressed Sensing Hyperspectral
Imaging
In the RTD-setting, the tensor is fully acquired first and then
randomly compressed. In the CS-setting, the data can in some
applications be compressed during the data acquisition step. For
example in hyperspectral imaging, compressed measurements
can be obtained using the single-pixel camera [38] or the
coded aperture snapshot spectral imager (CASSI) [39]. A
hyperspectral image is a third-order tensor X ∈ R

I1×I2×I3 ,
consisting of images of I1 by I2 pixels taken at I3 different
wavelengths. The single-pixel camera randomly compresses the
spatial dimensions of a hyperspectral image. In CASSI, a mask

is applied to each I1 by I2 image for different wavelengths
and these masked images are then aggregated into a single
one, i.e., a snapshot. In general, compressed measurements
are often obtained in (hyperspectral) imaging by compressing
along each dimension separately, meaning that the measurement
matrix is Kronecker-structured [11, 40]. With a small number of
compressed measurements, a large hyperspectral image can often
be accurately reconstructed. Whereas, the random compression
step dominated the computation time of our algorithms in the
previous experiments, it is missing altogether in this experiment
since it is inherent to the application. Therefore, our algorithms
enable fast reconstruction of hyperspectral images.

We use lsmlsvd_brks to reconstruct a hyperspectral
image using compressed measurements sampled at different
sampling ratios. Similar to KCS, this approach expresses X in
a Kronecker-structured basis, namely the Kronecker product of
U(n) for n = 1, 2, 3, in which the core tensor S contains the
coefficients. In KCS, the bases are chosen a priori such that
these coefficients are sparse, which is not necessarily true for
the core of an MLSVD. Also, in lsmlsvd_brks, the bases do
not have to be chosen a priori as this algorithm also estimates
them using compressed measurements. Additionally, in KCS the
measurement matrix is Kronecker-structured, whereas it consists
of multiple Kronecker-structured block rows in our approach.

Instead of using just the final, (N + 1)th block row of the
BRKS system to estimate the core, it makes more sense to use
all available compressed measurements to improve the quality
of the estimation, since the number of measurements is limited.
Therefore, we solve the full BRKS system, with all N + 1 block
rows, for a sparse vec (S) by optimizing:

min
vec(S)

||vec (S) ||1 subject to ||Avec (S) − b||2 ≤ σ .

This is a basis pursuit denoising problem, which can be solved
using the SPGL1 solver [41, 42]. The reason for imposing sparsity
is as follows. If we were to estimate a dense core tensor using
lsmlsvd_brks in this experiment, the number of compressed
measurements b(N+1) certainly cannot be less than the number of

FIGURE 4 | Algorithm lstt_brks enables us to achieve accuracy similar to that of rand_tt in CS applications. If a method for obtaining any entry of X is available,

then cross_tt can be used to recover a more accurate approximation of the tensor, in exchange for a longer computation time.
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entries in the core if we want to be able to retrieve it. However, it
turns out that the mode-n vectors of the hyperspectral imaging
data X cannot be well approximated as linear combinations
of a small number of multilinear singular vectors, indicating
that the multilinear rank is not small. Estimating a dense core
tensor would then require a large number of measurements.
On the other hand, it also turns out that in this data only a
relatively small number of the entries in a relatively large core is
important. We exploit this by computing a sparse approximation
of the core, which results in reconstructions of better quality
than with the dense core approach, while requiring far less
compressed measurements.

The reconstruction results of our algorithm are compared
with two other approaches for reconstructing a hyperspectral
image from compressed measurements:

• GAP_TV [43]: A generalized alternating projection
algorithm that solves the total variation minimization
problem. Minimizing total variation leads to accurate
image reconstruction because images are generally locally
self-similar.

• KCS [11]: We used a two-dimensional Daubechies wavelet
basis to sparsify the spatial dimensions and the Fourier
basis for the spectral dimension. The sparse coefficients are
computed using the SPGL1 solver.

The quality of the reconstructed images is quantified using the
peak signal-to-noise ratio (PSNR)

PSNR = log10





max (X)
√

1
I1I2I3

||X− X̂||F



 ,

in which X̂ is the reconstructed hyperspectral image. In this
experiment, we used the corrected Indian Pines dataset, in which
some very noisy wavelengths have been left out [44]. This results
in a hyperspectral image of dimensions 145 × 145 × 200. For
lsmlsvd_brks, we compute an MLSVD of multilinear rank
(70, 70, 30) with a sparse core. This multilinear rank was obtained
by trying a wide range of multilinear ranks and assessing the
quality of their corresponding reconstructions.

TABLE 1 | This table shows the reconstruction quality, quantified in PSNR (dB), of

a hyperspectral image for a range of sampling ratios, obtained with different

algorithms. Algorithm lsmlsvd_brks performs approximately equally well as

GAP_TV, which is an algorithm specifically suited for image reconstruction. The

lower reconstruction quality for KCS indicates that the bases estimated by

lsmlsvd_brks suit the data better than the a priori determined bases used in

KCS.

Algorithm Sampling ratio

0.02 0.05 0.1

lsmlsvd_brks 25.58 28.67 28.25

GAP_TV 25.68 28.18 30.28

KCS 10.94 16.40 22.83

Table 1 shows the quality of the reconstructed images for a
range of sampling ratios. Whereas, GAP_TV is specifically
designed for imaging applications, lsmlsvd_brks
can be applied to a wide range of problems. Regardless,
lsmlsvd_brks performs approximately equally well in terms
of reconstruction quality. The reconstruction quality achieved
by lsmlsvd_brks is higher than for KCS, indicating that the
bases estimated by the former suit the data better than the a
priori determined bases used in the latter.

6. CONCLUSION AND FURTHER WORK

In this work, we have considered a general framework of BRKS
linear systems with a compact solution, which suits a wide variety
of problems.We developed efficient algorithms for computing an
MLSVD, CPD or TT constrained solution from a BRKS system,
allowing the user to choose the decomposition that best matches
their specific application. The efficiency of these algorithms is
enabled on one hand by the BRKS linear system, since such a
system produces multiple compressed versions of the tensor and
thus splits the problem into a number of smaller ones, and on
the other hand by the low (multilinear-/TT-)rank constrained
solution. With these algorithms, real data can be accurately
reconstructed using far fewer compressed measurements than
the total number of entries in the dataset. We have derived
conditions under which an MLSVD, CPD or TT can be retrieved
from a BRKS system. The corresponding generic versions of these
conditions allow us to choose the dimensions of the generating
matrices such that a solution can generically be found. Through
numerical experiments, we have shown that these algorithms can
be used for computing tensor decompositions in a randomized
approach. In the case of the CPD, our algorithm needs less
computation time than the alternative algorithms. Additionally,
we have illustrated the good performance of the algorithms
for reconstructing compressed hyperspectral images, despite not
being specifically developed for this application. In further work,
we will look into parallel implementations for the algorithms in
this paper.
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