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In this work, we explore how the emergence of collective motion in a system of particles

is influenced by the structure of their domain. Using the Vicsek model to generate

flocking, we simulate two-dimensional systems that are confined based on varying

obstacle arrangements. The presence of obstacles alters the topological structure of the

domain where collective motion occurs, which, in turn, alters the scaling behavior. We

evaluate these trends by considering the scaling exponent and critical noise threshold

for the Vicsek model, as well as the associated diffusion properties of the system. We

show that obstacles tend to inhibit collective motion by forcing particles to traverse the

system based on curved trajectories that reflect the domain topology. Our results highlight

key challenges related to the development of a more comprehensive understanding of

geometric structure’s influence on collective behavior.

Keywords: anomalous diffusion, collective behavior, Euler characteristic, integral geometry, Vicsek model

1. INTRODUCTION

Collective behavior associated with living in groups is documented across the animal kingdom
[1]. Although they are simpler organisms than animals, bacteria also demonstrate the ability to
generate complex collective motion when they occur in sufficiently dense swarms [2]. Similarly
to the recognizable aligned motion in fish schools and bird flocks, bacteria in swarms can align
their motion locally to achieve organized spatio-temporal patterns [3, 4]. However, in natural
environments, bacterial swarms may exist on structures with complex geometries [5] and the
relationship between these geometries and the resulting collection motion is as yet unstudied.
Experiments show evidence of individual bacteria colliding with obstacles and reversing their
direction of motion [6], but no experiments exist showing how these reversals necessarily influence
the motion of a group of bacteria. In this article, we seek to understand how complex domain
geometries impact collective motion through the model system of a particle swarm obeying a
flocking model which is well-studied in the physics literature.

The Vicsekmodel is widely used to study phase transitions in activematter [7–10]. Themodeling
framework is particularly useful to advance understanding for biological systems, since biological
agents frequently align their motion with each other, leading to a variety of interesting emergent
phenomena. Collective motion can be considered as a super-diffusive phenomenon, due to the fact
that particles that align their trajectories tend to move a greater distance compared to particles that
collide and interfere with each other [11]. Whereas basic diffusion can be modeled with a random
walk, the Vicsek model enables spontaneous alignment of particles, which results in symmetry-
breaking due to the non-conservative nature of the alignment process. Particles move at constant
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speed, with their trajectories determined by interactions with
other particles and random noise η. Inter-particle interactions
and noise are competing effects that determine the strength of
collective behavior generated by the model.

The dynamics of collective motion depend in part upon the
structure of the space where themotion occurs. Collectivemotion
on two-dimensional surfaces is important to a wide range of
applications including the movement of crowds [12, 13], herd
animals [14], and microbial activity such as biofilm growth on
surfaces [15]. Since the interactions between particles are local,
information exchange within such systems is constrained by
the structure of the space where the particle interactions occur.
In particular, the presence of obstacles alters the topology of
the domain where motion occurs, which exerts independent
influence over the aggregate behavior in the system. The
structure of the domain can be characterized based upon
invariant properties, which are integral measures that provide
an averaged measure of the geometry [16, 17]. The theoretical
basis for geometric characterization has been established in
several seminal works from the previous century. Weyl’s tube
formula establishes that the volume within a small distance of
any closed surface in R

3 is predicted from the surface area and
Euler characteristic [18]. Hadwiger’s characterization theorem
asserts that the geometry for an object in R

n is characterized
by n + 1 scalar measures [19, 20]. The Lesbesgue measure
for the object and its boundary are the first two invariants.
The remaining quantities can be identified as integrals of the
boundary curvature invariants, with the Euler characteristic
being among these measures [21]. Euler characteristic has a
well-established link to percolation, with χ = 0 defining the
boundary between percolating and non-percolating structures
[22, 23]. A two-dimensional surface is associated with three
isotropicmeasures, which are the surface areaA, perimeter length
L, and total curvature K. The total curvature K relates to the
topology of the structure (equivalently captured based on the
Euler characteristic), which represents a discrete contribution to
the system dynamics. The capacity for geometric invariants to
characterize complex structures has been explored in detail for
three-dimensional systems [24]. In this work, we consider how
these inherently geometric effects influence the scaling behavior
for the Vicsek model.

Confined diffusion provides a natural analog for these studies
[25]. Persistent random walk models are routinely used to
develop mechanistic understanding into anomalous diffusion
phenomena [26]. Geometric effects often play an important
role in anomalous diffusion, most notably in systems that
involve confinement, e.g., due to the presence of a complex
microstructure [27, 28]. Because the presence of obstacles
inhibits diffusion, confinement is widely associated with sub-
diffusive scaling. Crowding has been identified as an important
source of sub-diffusion in cellular systems [29]. The mechanism
itself may be self-reinforcing, and anomalous diffusion can be
considered as a driving mechanism for spatial heterogeneity
[30]. Geometric barriers have a natural tendency to inhibit
information exchange within a system. Since these effects are
antagonistic in comparison to the super-diffusive tendencies
associated with collective motion, it is interesting to consider

their interaction. Within this context, the influence of geometry
is of interest due to the possibility that confinement may frustrate
a superdiffusive process. Viswanathan et al. [31] established a
criterion to characterize super-diffusive phenomena based on
the correlation timescale for orientation persistence in random
walks. Due to particle alignment the Vicsek model leads to
superdiffusive behavior when the contribution of random noise
is sufficiently small. The introduction of obstacles, in the form
of disk-like versus particle-like agents, has been shown to alter
the emergence of order in the Vicsek model depending on the
characteristics of collision which are defined [32].

In this article, we explore how geometric constraints,
imposed by static obstacles in the domain, alter the scaling
behavior recovered from the Vicsek model. We demonstrate
that the diffusion coefficient, critical noise threshold, and scaling
exponents are each sensitive to the topology of the space
where motion occurs. Introducing obstacles changes the domain
topology and forces particles to travel along curved trajectories;
based on the fact that geodesic curves cannot intersect with the
obstacles, particles cannot travel long distances along straight-
line trajectories when obstacles are present. This geometric effect
leads to fundamental changes to the scaling behavior. Since
geometry is an inherent component in many physical problems,
we suggest that structural effects may inhibit universality for
other systems. In the sections that follow, we provide a
straightforward demonstration of these effects and consider their
consequences for collective motion.

2. MODELING

2.1. Flocking Model
Vicsek et al. [7] presented an elegant model of flocking for groups
of self-propelled particles which has garnered interest across
science and engineering particularly for the phase transitions
it shows between ordered and disordered group behavior. The
model considers particles moving at a constant speed in a two-
dimensional, periodic domain and which perform an averaging
protocol with the heading directions of their nearby neighbors
corrupted by additive noise. In this work, we introduce obstacles
into the domain and study their effect on group alignment using
the order parameter from Vicsek et al. [7] and a measure of the
particles’ diffusion.

Consider a two-dimensional periodic domain with side length
L containing N particles. Particle j, for j = 1, . . . ,N, has position
xj(t) ∈ [−L/2, L/2]2 and velocity vj(t) ∈ R

2 at time step t ∈
N ∪ {0}. We define particle j’s heading direction as

θj(t) = arg
[

vj(t)
]

(1)

which updates at successive time steps according to

θj(t + 1) =
〈

θk(t)
〉

+ ηξj(t) , (2)

where k denotes the index for all neighbors k 6= j such that the
distance between particle j and k is less than R. The random noise
source term ξj is uniformly distributed, independent, random
variables with −π ≤ ξj(t) ≤ π . The amplitude for the noise is
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TABLE 1 | Simulation parameters.

Variable Symbol Value

Number of particles N 100-200

Particle density ρ 2

Domain side length L 10

Particle interaction radius R 1

Particle speed c 0.15

Noise amplitude η 0.01-1

Length of simulation in time steps T 10,000

Length of discarded transient in time steps − 5,000

Number of Monte Carlo replicates − 20

Window length for power law fit of M − 100

Window length for linear fit of M − 50

scaled by η ∈ [0, 1]. Particle j’s velocity and position are then
updated as

vj(t + 1) = eiθj(t+1)

xj(t + 1) = xj(t)+ cvj(t + 1)

where c > 0 is the constant particle speed (see Table 1) and i =√
−1. Note that vj has unit length. In this work, we consider the

presence of obstacles in the particles’ domain. When the updated
position xj(t + 1) is inside the boundary of an obstacle, we take
xj(t + 1) = xj(t) and set vj(t + 1) = −vj(t) to model elastic
collisions with the obstacles.

Critical behavior in the Vicsek model is assessed by an order
parameter based on the mean particle velocity. The so-called
polarization ϕ is defined at time step t as

ϕ(t) =
1

N

∣

∣

∣

∣

∣

N
∑

j=1

vj(t)

∣

∣

∣

∣

∣

. (3)

When particles are not aligned, ϕ is close to zero. When the
system is more ordered, ϕ is close to 1. It is the transition
from the disordered phase to the ordered phase in steady state,
driven by the magnitude of the noise η, that the Vicsek model
is generally constructed to consider. Stationary conditions are
determined such that the statistics of the particles’ polarization
do not change based on translations of the time window along
the time axis. In the standard Vicsek model, the critical transition
is well-described by

ϕ ∼ |τ |β , (4)

where |τ | is the distance of η to some critical noise ηc (i.e.,
τ = η − ηc) and β is the associated critical exponent.

It is well-known that finite size effects alter the scaling
behavior. As particles in the system align their motion, a
correlation structure develops such that the motion of adjacent
particles are strongly correlated. In an infinite system, the length
scale for spatial correlations can be arbitrarily large. In a finite-
size system with length scale L, the correlation length cannot

exceed L. In such systems the stationary scaling behavior should
obey the relation [33].

ϕ(τ , L) = L−β/ν ϕ̃(τL1/ν) . (5)

where ϕ̃ is a suitable scaling function and ν determines the scaling
behavior for finite size systems. In this work, we further consider
the role of the domain structure on the scaling behavior for the
Vicsek model. We will demonstrate that, as the topology for
the domain is altered, critical phase transitions will necessarily
change as well.

2.2. Diffusion
Diffusion provides a conceptual framework to measure how
particles pervade in the domain as a function of the obstacle
geometry and the collective behavior resulting from the Vicsek
model. For this work, we use a definition of the diffusion
coefficient based on the mean square displacementM covered by
the particles over time, which is defined as

M(t) =
〈

‖xj(t)− xj(t0)‖
〉

, (6)

where t0 is selected as a time step when the system exhibits
steady-state behavior and ‖ · ‖ is the Euclidean norm. In standard
diffusion, M(t) grows linearly with time based on the diffusion
coefficient D such that

M(t) = 2Dt . (7)

Due to the collective behavior generated by interactions in
systems using low noise, particles may behave super-diffusively
or sub-diffusively based on the power law

M(t) ∼ tP . (8)

When P = 1, the particles move according to standard diffusion;
the sub-diffusive regime is associated with P < 1 and the
super-diffusive regime with P > 1. For the Vicsek model,
super-diffusive effects are driven by the tendency for particles
to align their motion with nearby particles [31]. A competing
effect is due to the influence of obstacles, which prevent particles
from moving long distances along a straight-line path. When
obstacles are present, particles must follow a curved trajectory
to traverse the system, and thus the mean-squared displacement
will be smaller per unit time on average. All possible paths must
necessarily conform to the topology of the domain structure, and
the shortest distance paths will be geodesic curves that inherit
their curvature from the space where movement can occur. This
leads to sub-diffusive behavior in confined systems. We will
consider the diffusion coefficient as a measure of these effects in
the case where these two basic forces compete due to the obstacle
arrangement and noise.

2.3. Geometric Measure Theory for
Anisotropic Systems
The tendency for the Vicsek model to produce polarization
presents intriguing possibilities with respect to geometric
interactions. Structural effects can also produce anisotropic
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tendencies, which have potentially interesting interactions with
emergent collective motion. Measure theory provides a formal
mathematical basis for the characterization of complex geometric
structures. The Minkowski tensors derived by Schröder-Turk
et al. [34] provided a quantitative basis to assess the role of
geometry in such contexts. Here, we consider this approach
applied in the context of two-dimensional systems.

Consider the set � ∈ R
2 with boundary ∂�, which represents

the domain where motion can occur, meaning that the particle
trajectories xj(t) ∈ � for all j. The scalar invariants are well-
known in the context of the Minkowski-Steiner formula, which
has provided the basis for influential theoretical works [18, 19,
21]. These invariants are the quermassintegrals,

W0 =
∫

�

dS , W1 =
1

2

∫

∂�

ds , W2 =
1

2

∫

∂�

kds , (9)

where k is the boundary curvature. The quermassintegrals define
a complete set of measures to account for the rotation-invariant
properties of a structure. For two-dimensional sets, the relevant
invariants relate to the surface area, perimeter length and total
curvature, the latter being directly proportional to the Euler
characteristic, χ = W2/π . Note that for a 2D structure there
is only a single curvature invariant, whereas higher dimensional
structures will be associated with additional invariants (e.g., due
to both mean and Gaussian curvature for the case of a three-
dimensional surface). Therefore, as the dimension of the space
increases, so too does the set of invariants. The scalar invariants
have proven to be a powerful tool to characterize the properties
and behavior of complex materials [16, 24, 35–38].

Scalar measures are limited in the sense that they can only
describe the isotropic properties of a material. Generalized
tensor-valued measures are able to characterize the anisotropic
structure of sets. Following the convention used by Schröder-
Turk et al., this leads to the following definition for the
Minkowski tensors, which extend the set of measures considered
in Equation (9) to include vector and tensor-valued quantities.
Below we summarize the original approach, restricting the result
to two-dimensional systems in the interest of clarity. The first of
the vector-valued quantities is defined as

W1,0
0 =

∫

�

xdS (10)

where x is the position vector. The measure W1,0
0 is a geometric

analog for the center of mass. The normalized value x0 =
W1,0

0 /W0 will exactly coincide with the center of mass of a
structure if the material is homogeneous (uniform mass density).
It is noted that, while the definitions given by Schröder-Turk
et al. do not satisfy translation invariance; this can be achieved by
determining all other measures relative to the geometric center.
The vector-valued boundary invariants are, therefore,

W1,0
1 =

1

2

∫

∂�

x′ds , W0,1
1 =

1

2

∫

∂�

nds , (11)

W1,0
2 =

1

2

∫

∂�

kx′ds , W0,1
2 =

1

2

∫

∂�

knds , (12)

where x′ = x −W1,0
0 /W0 and n is the unit vector normal to the

structure boundary. For the cases relevant to this work, ∂M is a
closed curve andW0,1

1 = W0,1
2 = 0.

Second order tensors are also be defined using this approach,
which is of particular significance due to the application of
Alesker’s theorem [39]. Any additive, continuous functional F
depending on the structure can be represented as a sum that
involves a limited set of shape contributions

F(�) =
∑

r+s+2p=2

α
r,s
i QpWr,s

i (�), (13)

where the coefficients αr,s
q do not depend on� and the unit tensor

Q ≡ e1e1 + e2e2, where e1 and e2 are unit vectors that constitute
an orthonormal basis for R

2. Independent shape information
is thereby contained in the basis constructed from the scalar
invariants based on QW0, QW1, and QW2, and the tensorsW2,0

0 ,

W2,0
1 ,W2,0

2 ,W0,2
0 , andW0,2

0 , which are defined as given below. A
geometric analog of the inertia tensor is obtained in the form

W2,0
0 =

∫

�

x′x′dS . (14)

The tensor-valued boundary invariants are

W2,0
1 =

1

2

∫

∂�

x′x′ds , W0,2
1 =

1

2

∫

∂�

nnds , (15)

W2,0
2 =

1

2

∫

∂�

kx′x′ds , W0,2
2 =

1

2

∫

∂�

knnds . (16)

These boundary invariants characterize structural asymmetries
based on the location of boundary and its curvature. For two-
dimensional systems, Equations (14)–(16) define a set of seven
geometric tensors that account for the anisotropic properties of
a structure. The measures are geometric in that the expressions
involve only units of length. Each of the tensors listed in Equation
(16) satisfy both the homogeneity condition as well as the
translation invariance condition. In the present context, we will
consider the role of the topology in particular, which is embedded
in the tensor invariantW0,2

2 . Using the fact that n is a unit normal
vector,

Tr
(

W0,2
2

)

=
1

2

∫

∂�

kTr
(

nn
)

ds =
1

2

∫

∂�

kds = W2 . (17)

where Tr is the trace of a matrix. The eigenvalues ofW0,2
2 thereby

relate to the directional contribution of the total curvature. Since
the total curvature is proportional to the Euler characteristic, a
topological invariant, the connectivity can be considered in an
anisotropic context based on W0,2

2 . In this work, we focus our
attention on how topology influences the scaling behavior in the
Vicsek model. We show that these effects are of considerable
consequence, noting that a comprehensive geometric treatment
should also consider the full set of tensor invariants given in
Equations (14)–(16). For sufficiently isotropic structures, the
scalar measures should provide an adequate characterization of
geometric contribution to the scaling behavior.
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FIGURE 1 | Fifteen cases of obstacle topologies. Particle motion occurs within the white region. Each row corresponds to a different topology, with one obstacle on

the first row, two disjoint obstacles on the second row and six disjoint obstacles on the third row. Each column has comparable surface area where particles are

allowed to move.

3. SIMULATIONS

We consider simulations of the 2DVicsekmodel subject to fifteen

different geometric constraints as depicted in Figure 1, where
the white area indicates where particles may move and the black

areas are obstacles. Periodic boundary conditions are applied in

all cases with the understanding that a periodic rectangular 2D
domain is homeomorphic to a torus. The geometries shown in

Figure 1 thereby correspond to surfaces of a torus with holes
punched in it. The cases have one (A), two (B), or six (C) disjoint
circular obstacles and, for each of these, the obstacles increase
in size as the case number increases. Noting that χ = 0 for a
torus, the Euler characteristic for each structure is determined
from the number of obstacles; as long as no two obstacles contact
each other, each obstacle is associated with a single geodesic loop
in the domain with a corresponding unit decrease to the Euler
characteristic. Structures on the top row therefore have χ = −1,
the second row χ = −2, and the third row χ = −6. Moving
from left to right in each row, the structures have fixed topology
but an increasing ratio of obstacle perimeter to area.

The number of particles is chosen so that the particle density
is constant for all simulations. This choice was made to exclude

the possibility for critical transitions based on the particle density.
The number of particles, therefore, decreases as the total obstacle
area is increased. For example, in case A5, the effective domain
area is A = L2 − (obstacle area) = (10)2 − π(42) ≈ 100 −
50.3 = 49.7 and so the number of particles required to maintain
a constant density between cases is N = ρ × A = ⌈(2)(49.7)⌉ =
100, i.e., half the number as in a case with no obstacles.

In addition to the fifteen domains with obstacles, two control
cases are considered to better understand the results of this
study. The first (“control 1”) is the native Vicsek model in a 2D
domain with no obstacles. This condition allows for assessing
the role of the obstacles in the emergence of group order.
The second (“control 2”) defines the particles as performing
random walks independent of each other, thus, neglecting any
interaction defined by the averaging rule in Equation (2). This
condition allows for extracting the role of group alignment on
the diffusion metrics.

Simulations of the model were performed with Matlab
(version 2019a, Mathworks, Natick, MA, USA). A 5,000-
time-step transient was eliminated to allow for computing
polarization, mean square distance, and corresponding diffusion
metrics in the steady-state regime. For each value of the selected
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FIGURE 2 | Steady-state polarization ϕ as a function of the noise amplitude η for fifteen obstacle cases, control 1 (interaction but no obstacles), and control 2 (no

interaction, no obstacles). Plots show mean values over 20 Monte Carlo replicates and the error bars in gray indicate ± one standard deviation.

parameters and domain cases, we performed 20 Monte Carlo
replicates with random initial conditions for particle positions
and velocities. This, and the elimination of the transient in each
simulation, serves to remove the effect of initial conditions. In the
following figures of the results, error bars indicate mean values±
one standard deviation with statistics taken over the 20 replicate
simulations. A summary of the simulation parameters is given in
Table 1.

4. RESULTS

Simulation results, presented in Figure 2, show a phase transition
between ordered and disordered states analogous to the native
Vicsek model. When the obstacles are very small (cases A1, B1,
and C1), the system behaves almost identically to the Vicsek
model without obstacles (control 1). This is expected in situations
where the length scale for the obstacles is smaller than the
length-scale for particle interactions. The system shows lower
polarization as the number and size of obstacles increase for
the cases with low noise. This is because particle collisions with
obstacles frustrate the persistent alignment of particles, making
it less probable for flocks of particles to travel together for long
distances. This decrease in polarization is most profound when
more obstacles are present, e.g., comparing cases A5, B5, and
C5. This effect persists as η approaches the transition from the
ordered to the disordered phase.

Since the polarization curves show shallower decay as the
obstacle area is increased, it is natural to ask what is the critical
value of η which evidences the disordered state, denoted ηc as
in Vicsek et al. [7]. For each case, values of ηc are determined

by performing a non-linear least-squares regression based on
the form

ϕ = a

(

ηc − η

ηc

)b

(18)

where the parameters a, b, and ηc are computed independently
per case. Best-fit values for ηc and b are provided along with the
geometric descriptors of the cases in Table 2. For cases with one
or two obstacles (A1–A5, B1–B5), the value of ηc increases as
the area of the obstacles increases, and the values of cases with
different number of obstacles but similar areas have comparable
values. However, the relationship between obstacle area and
critical noise is more complex for cases with six obstacles (C1–
C5), suggested by the non-monotonic trend in ηc with changing
geometry. Since the contribution due to topology is inherently
discrete, non-monotonic and even discontinuous transitions
should not be considered surprising.

With the horizontal axis shifted by ηc and set on logarithmic
scale, the polarization curves are shown in Figure 3. For all cases,
the function Equation (18) adequately represents the scaling
behavior as η → ηc, indicating that this is an appropriate
functional form. For a single obstacle, the exponent b shows a
clear increasing trend with increasing obstacle size. The trend
observed for a single obstacle is no longer evident with more
obstacles (see Table 2). It is clear from cases A5, B5, and C5 in
Figure 1 that arrangements with more obstacles correspond to
obstacles with a smaller radius of curvature. Since the average
particle trajectories must curve to avoid the obstacles, this length
scale will necessarily alter the scaling behavior. There is a clear
shift for the critical noise ηc.
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TABLE 2 | Geometric measures of the domain structure with fitted critical noise amplitude ηc and scaling exponent b.

Case N A P χ ηc b

A1 200 99.97 0.63 -1 0.57 0.72

A2 199 99.21 3.14 -1 0.59 0.79

A3 194 96.86 6.28 -1 0.60 0.85

A4 175 87.43 12.57 -1 0.61 0.84

A5 100 49.73 25.13 -1 0.65 0.96

B1 200 99.94 1.26 -2 0.58 0.74

B2 197 98.43 6.28 -2 0.58 0.79

B3 188 93.72 12.57 -2 0.61 0.88

B4 172 85.86 18.85 -2 0.61 0.83

B5 122 60.73 31.42 -2 0.61 0.87

C1 200 99.81 3.77 -6 0.58 0.74

C2 198 98.82 9.42 -6 0.59 0.77

C3 191 95.29 18.85 -6 0.52 0.54

C4 163 81.15 37.70 -6 0.55 0.53

C5 131 65.44 50.27 -6 0.62 0.75

FIGURE 3 | Mean steady-state polarization ϕ as a function of the distance from the critical noise ηc for fifteen obstacle cases.

As we consider values of η further from ηc, we see that the
presence of obstacles suppresses the effect of polarization due in
the collective motion regime (ηc − η > 0). However, we also
note that the obstacles lead to small amounts of polarization even
in noise-dominated regimes (ηc − η < 0). This is because the
obstacle arrangement is not perfectly isotropic, so the particle
motion will tend to have a preferred orientation.

The effect of the obstacles on group order can be interpreted
by considering the motion of the particles as a process of mass
diffusion in the domain. Figure 4 gives the diffusion coefficient
for all cases and noise values in the left column of plots. From

a first viewing of the plots, we can see that increasing the
noise parameter decreases the diffusion in the system, which
can be explained by noticing that higher noise induces more
convoluted paths for each particle. Similarly to the polarization
plots, the cases with small obstacles (A1, B1, and C1) are virtually
indistinguishable. As a note, the plots for D with noise equal to 1
go to a value of≈ 0.02.

We see the effect of increasing obstacle area in the low noise
conditions, since particle paths are less likely to traverse long
distances and intersect obstacles when noise is high. For the low
noise conditions, the mean diffusion coefficient decreases and the
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FIGURE 4 | Diffusion coefficient D (left plots) and the diffusion exponent P (right plots) as a function of the noise amplitude η for the fifteen obstacle cases. Cases are

indicated in figure titles. Cases are grouped by the number of obstacles by color (see legend), and are placed on the same subplot when obstacles (whether 1, 2, or 6)

are approximately the same size. The individual obstacle size increases for lower subplots. Shaded regions indicate mean ± one standard deviation over the 20 Monte

Carlo replicates.
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FIGURE 5 | Diffusion coefficient D (left) and the diffusion exponent P (right) as a function of the noise amplitude η for the two control cases. Control 1 is the native

Vicsek model with no obstacles in the domain; control 2 is random walker dynamics with no interactions between the particles. Shaded regions indicate mean ± one

standard deviation over the 20 Monte Carlo replicates.

variation among replicates (shown as ± one standard deviation
in the shaded area) increases as obstacle area rises. This effect is
more noticeable for larger numbers of obstacles, as shown by the
lower values for the yellow shaded areas with six obstacles (C1–
C5) in comparison to the purple and blue areas for one (A1–A5)
and two (B1–B5) obstacles, respectively.

These trends are echoed by the diffusion exponent P, shown
in the right column of plots in Figure 4. When the obstacles
are small, all cases show super-diffusion, although the exponent
decreases with increasing noise. As the obstacle area is increased,
the variation between replicates grows, shown again by the
shaded areas, particularly for the low noise conditions. The
effect of the obstacles is so strong that it qualitatively changes
the nature of mass diffusion in the system, pushing the mean
diffusion exponent less than one and into a sub-diffusive regime
in many cases. It should be noted that, although the plots seem
to show values for P < 0, this is not the case. The shaded
region indicates the mean P± one standard deviation over the
20 replicates, and the lower bound for this area may be negative
when themean and standard deviation, both positive, are low and
high, respectively.

The control cases shed light on the possible sources for these
trends. Figure 5 shows the diffusion coefficient and exponent for
the two control cases. In the left plot, we see that the diffusion
coefficient is significantly larger for the Vicsek model (control 1)
than for a system of independent particles (control 2) when noise
is low, and that increasing noise decreases diffusion in either
case. Furthermore, both cases can be classified as super-diffusive
when noise is near zero, but this effect is quickly replaced
by standard diffusion with increasing noise when particles are
independent (control 2). For interacting particles (control 1),
the super-diffusivity is more robust to noise, but is replaced
by standard diffusion in high noise conditions. This can be
explained if the super-diffusivity results from the coordination
between the particles, which is lost as noise dominates the
collective behavior.

5. DISCUSSION

In this work, we consider the extent to which critical phenomena
are influenced by geometric structure in the context of the
Vicsek model. We simulate dynamics of the Vicsek model on 2D
surfaces with varying topology, and we study the ramifications
for scaling behavior and the critical phase transition. The effects
of geometric structure can be considered within the broader
context of length scale effects within the system. Length scale
effects can be understood based on three scales. In the native
Vicsek model, length scale effects in the system are controlled
by the particle interaction radius R and system size L control,
which determine scaling effects with respect to density and
finite size. The third length scale associated with our model
with obstacles is the size of obstacles based on their radius of
curvature. The operative length scales in the system are non-
dimensionalized based on the radius for particle interactions;
direct particle-particle interactions occur within radius R = 1.
The physical size of the system and the length scale for geometric
structure are normalized accordingly. Since the topology can
be directly related to the total curvature, structures with a
larger magnitude Euler characteristic will have a smaller average
radius of curvature at fixed area. This is visually apparent from
Figure 1. The domain topology is measured based on the Euler
characteristic, already a non-dimensional measure. The Euler
characteristic is a natural link to incorporate scaling studies
associated with percolation, which can be considered alongside
other finite-size scaling effects in the system [9, 33].

While the limitations of finite-size are well-established for
the Vicsek model, finite size systems are in many cases better
suited to represent the inherent inhomogeneities in many
actual natural and biological systems. Geometric invariants
provide a quantitative basis to assess these effects in a
practical setting. Noting that the polarization in the system
introduces anisotropic effects, scalar geometric invariants cannot
be expected to completely parameterize the problem. A more
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complete description for the aniostropic effects can be formulated
in terms of the Minkowski tensors [34]. The relevant tensor-
valued measures are presented in this work for two-dimensional
systems. In a system that is isotropic, scalar geometric effects will
be sufficient to characterize leading order effects with respect to
the polarization strength.

The effects of domain structure are directly evident from
the diffusion coefficient, which is evaluated using the mean-
square displacement. Competing effects are observed based on
the super-diffusive tendency for particles to align their movement
and the sub-diffusive tendency associated with confined systems.
As the domain becomes more topologically complex, this
influences the diffusive scaling behavior by forcing particles to
follow more curved trajectories that avoid the obstacles. For
a fixed timescale, the mean-squared distance for the particle
trajectories will be smaller due to the fact that they must
traverse a greater distance along the curved trajectory, since
the most efficient pathways will follow geodesic curves. This is
a basic reason why confinement leads to sub-diffusion. In the
Vicsekmodel, confinement frustrates the typically super-diffusive
tendencies of collective motion. Since particle-particle alignment
is favored for ηc − η > 0, the scaling exponents indicate that the
Vicsek model is super-diffusive. However, the effect is suppressed
when the number of obstacles is increased, as shown in Figure 4.
We also note that the obstacles have a significant impact on
low noise cases, when particle polarization tends to be the most
significant. Particle collisions with obstacles tend to break up
groups of particles so that the collective motion is less persistent
at large length and time scales. In some situations, noise may even
enhance alignment when obstacles are present. The crossover
between these two regimes is also clearly evident from Figure 3

based on cases B2, C2 and C3.
When we consider this work in the context of the

phenomenon of bacterial swarming, we see that the Vicsek model
echoes phase transitions between disordered to ordered behavior
from experimental studies on bacterial swarms. For instance,
swarms of Bacillus subtilis show phase transitions with varying
particle density or mean speed [3]. Based on our results, we
would expect that bacterial collective motion would be impacted
by obstacles similarly to the particles in our model; that is, the
introduction of obstacles into the domain would promote more
disorder in the system, with the effect enhanced by more and
smaller obstacles. Such an expectation is supported by noting

that microscopy shows Bacillus subtilis reversing its heading
direction when it collides with obstacles, which would create a
negative effect of the reversed particle in the polarization and
reduce the order in the system as a whole [6]. Experimental
work considering these collisions with respect to the group
behavior would be a next step to trace the role of geometry in
these transitions.

In summary, geometric structure and domain topology in
particular have important consequences for collective motion.
While structural effects are an essential component for a very
wide range of natural and engineered systems, the scaling
behavior for collective motion will be altered by even a basic
level of structural complexity. Results from geometric measure
theory provide a basis to quantitatively assess the associated
effects, an approach that can be extended to consider arbitrarily
complex structures. Problems of practical interest can be easily
identified that involve arbitrary two-dimensional surfaces as well
as three-dimensional systems. The study of complex structures
necessarily collides with the study of finite-size effects, since
geometric structure introduces additional length scales into the
system. This work focuses on the scaling behavior associated
with the critical noise, with the particle density held constant.
Based on the literature on the Vicsekmodel, the system’s behavior
is expected to be sensitive to particle density as well. Further
characterization of these effects is an important component to
understanding collective motion in a practical setting.
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