
ORIGINAL RESEARCH
published: 03 March 2022

doi: 10.3389/fams.2022.818016

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 March 2022 | Volume 8 | Article 818016

Edited by:

Guillermo Huerta Cuellar,

University of Guadalajara, Mexico

Reviewed by:

Luca Martino,

Rey Juan Carlos University, Spain

Mingjun Zhong,

University of Aberdeen,

United Kingdom

*Correspondence:

Prasith Baccam

sid.baccam@iem.com

Specialty section:

This article was submitted to

Optimization,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 18 November 2021

Accepted: 26 January 2022

Published: 03 March 2022

Citation:

Suchoski B, Stage S, Gurung H and

Baccam P (2022) GPU Accelerated

Parallel Processing for Large-Scale

Monte Carlo Analysis: COVID-19

Parameter Estimation and New Case

Forecasting.

Front. Appl. Math. Stat. 8:818016.

doi: 10.3389/fams.2022.818016

GPU Accelerated Parallel Processing
for Large-Scale Monte Carlo
Analysis: COVID-19 Parameter
Estimation and New Case
Forecasting

Brad Suchoski 1, Steve Stage 2, Heidi Gurung 1 and Prasith Baccam 1*

1 IEM, Inc., Bel Air, MD, United States, 2 IEM, Inc., Baton Rouge, LA, United States

Markov Chain Monte Carlo methods have emerged as one of the premier approaches

to estimating posterior distributions for use in Bayesian computations. Unfortunately,

these methods often suffer from slow run times when the data become large or

when the parameter values come from complex distributions. This speed issue has

prevented MCMC analysis from being used to solve some of the most interesting

problems for which its technique is a good fit. We used the Multiple-Try Metropolis

variant of the basic Metropolis Hastings algorithm, which trades off running more parallel

likelihood calculations in favor of a higher acceptance rate and faster convergence

compared to traditional MCMC. We optimized our algorithm to parallelize it and to take

advantage of GPU processing. We applied our approach to parameter estimation for

a Susceptible-Exposed-Infectious-Removed (SEIR) model and forecasting new cases

of COVID-19. In comparison to a fully parallelized CPU implementation, using a single

GPU to execute the simulations resulted in more than a 13x speedup in wall clock time,

running on multiple GPUs resulted in a 36.3x speedup in wall clock time, and using a

cloud-based server consisting of 8 GPUs resulted in a 56.5x speedup in wall clock time.

Our approach shows that MCMC methods can be utilized to tackle problems that were

previously thought to be too computationally intensive and slow.

Keywords: COVID-19, GPU, mathematical modeling, compartment model, markov chain monte carlo, parameter

estimation

1. INTRODUCTION

This paper explores the use of computer algorithm optimization and parallelization to accelerate
large-scale Markov Chain Monte Carlo (MCMC) analyses which were applied to parameter
estimation for a Susceptible-Exposed-Infectious-Removed (SEIR) model and forecasting new cases
of COVID-19. A large quantity of simulations was run to estimate the parameter values in the
SEIR model and increase their accuracy through optimization via graphics processing unit (GPU)
processing and parallelization of both the likelihood function and multiple MCMC chains using a
multiple-try Metropolis (MTM) MCMC algorithm. The key accomplishment of this project was
the application of optimization and parallelization techniques to speed up the MCMC analysis
to the point that it could be used in a large, real-world situation, demonstrating that theoretical

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.818016
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.818016&domain=pdf&date_stamp=2022-03-03
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sid.baccam@iem.com
https://doi.org/10.3389/fams.2022.818016
https://www.frontiersin.org/articles/10.3389/fams.2022.818016/full

Suchoski et al. GPU Acceleration for MCMC Analysis

improvements are now achievable with existing computer
hardware, parallel programming, and GPU acceleration.

MCMC methods have emerged as one of the premier
approaches to estimating posterior distributions for use in
Bayesian computations, which have been useful in a number of
fields, including machine learning [1], physics [2], and systems
biology [3]. Unfortunately, these methods often suffer from slow
run times when the data become large or when the parameter
values come from complex distributions. This speed issue has
prevented MCMC analysis from being used to solve some of
the most interesting problems for which its technique is a good
fit. Finding methods to improve the speed while maintaining
accuracy without bias has been a topic many researchers have
investigated [4, 5]. Other methods have been proposed to
improve the convergence rate, resulting in more accurate results
for the same number of iterations of the MCMC algorithm [6, 7].
The Multiple-Try Metropolis algorithm is one technique that
has arisen that can improve computation speeds through parallel
processing because the algorithm itself is highly parallelizable
[8]. While parallelizing computations will inevitably reduce
computational time, we have sought to increase speed further
by optimizing the code to also leverage hardware advances to
decrease the time it takes for analysis by running on GPUs.

The idea for the MCMC method used in this example
comes from a source-reconstruction plume dispersion model
currently in development. This original work takes a time series
of chemical concentration signals recorded by field sensors at
known locations. It then works backwards from those signals
to estimate the most likely source of the chemical release. An
MCMC chain is used to run the plume model in a forward
direction, and the similarity of the real sensor data to the
estimates from the plumemodel is used as the likelihood function
to infer the most likely parameter values that describe the
chemical release.

In this paper we instead start with a time series of COVID-
19 cases. We then use MCMC to work backward to estimate
SEIR parameter values which works in a similar manner plume
model case. In both cases, the computation of the likelihood
function involves running a complex physics-based simulation
in the forward direction and then using the simulation’s results
to calculate a likelihood. The inclusion of the physics-based
simulation in the likelihood function makes it impractical to use
any MCMC variants, such as Hamiltonian Monte Carlo, which
require the gradient of the likelihood function. At the same
time, these particular physics simulations are simple enough that
running a single instance of them does not require enough work
to fully utilize the hardware of even a single modern GPU.

This creates a particularly challenging problem, because
MCMC methods are inherently sequential algorithms.
Calculating each step of the chain requires knowing the
state of the chain from the previous step as input. This can
make them computationally expensive when analyzing large
datasets and complex parameter sets, making them impractical
in those situations [9]. Many approaches to parallelizing and
accelerating MCMC algorithms have been proposed that mainly
fall into two categories. One approach is to divide the problem
into smaller pieces that can be run independently and in parallel.

The other approach is to use knowledge of the posterior, priors
or other information to accelerate the convergence rate and
reduce the number of iterations required [4, 5]. For example, the
simplest of these approaches is to just run several independent
chains in parallel and then average the results. Alternatively,
one can run multiple interacting chains that share information
at certain points in the step to reduce the number of iterations
required for convergence. Other methods such as Hamiltonian
Monte Carlo (HMC) and No U-Turn Sampling (NUTS) use
auxiliary parameters combined with Hamiltonian dynamics
and the ability to calculate the likelihood function’s gradients to
accelerate convergence [10, 11].

Our approach to accelerating the SEIR-based MCMC chains
was twofold. First, we used multiple parallel chains that
synchronize on each iteration before the next proposal point is
drawn. During the drawing of the proposal point, each chain
uses the other chain locations as samples to estimate the local
parameter covariances. This allows us to use a multivariate
Gaussian proposal distribution that more closely estimates the
target posterior at each step. Second, we used theMTM variant of
the basic Metropolis Hastings (MH) algorithm [8, 12]. The MTM
algorithm trades off runningmore parallel likelihood calculations
in favor of a higher acceptance rate, faster convergence, and
fewer total iterations compared to traditional MCMC. We then
optimized our algorithm to parallelize it from the top down
with a synchronization point in the likelihood function just
prior to starting the SEIR model simulations. This allowed us to
simultaneously launch an entire ensemble of SEIR simulations
that need to be run on GPU. The entire ensemble could then be
solved in parallel using the fine-grained data parallel execution
model of GPUs as opposed to the independent course-grained
task parallel model of central processing units (CPUs).

2. MATERIALS AND METHODS

2.1. Background
2.1.1. SEIR Applications
Prior to this research, IEM had developed a tool (BioSim) that
allows users to quickly and efficiently build epidemiological
compartment models with any number of compartments
and connections, and leverages the computational power of
Nvidia GPUs to significantly accelerate solving ensembles of
compartment model problems in parallel. The application of this
research was to explore methods for applying parallel solutions of
compartment models to estimating parameters and forecasting
new cases of the COVID-19 pandemic using recent confirmed
case counts.

The BioSim tool was built with three key unique components
over existing and traditional SEIR models. First, the model
itself has been parallelized and optimized to run ensembles of
simulations multi-threaded on CPU, or on GPU for additional
speedup, allowing large numbers of simulations to be run
quickly. This aspect is important for MCMC and other analyses
that require large volumes of data. Next, BioSim supports
aged transitions. That is, individuals move from compartments,
but also with reference to their time in the compartment.
This blends the standard compartment model concept with an

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 March 2022 | Volume 8 | Article 818016

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Suchoski et al. GPU Acceleration for MCMC Analysis

agent-based approach, as transitions between compartments are
controlled at the agent level. A third addition to BioSim which
is not found in existing SEIR modeling tools is the ability to
allocate resources and have those resource allocations impact the
outbreak. Resources include things like vaccines, hospital beds,
and treatment availability.

A number of other SEIR tools and packages are currently
available. They include: for R, the plotSIRModel package [13] that
plots Markov chain SEIR models; for Python, the SEIR package
[14] for building SEIR models within Python, and the Cornell
multi-region SEIR model with mobility [15], a web page that
allows users to build and observe SEIR models online. Many
researchers also use ordinary differential equation (ODE) solvers
available as packages in several different languages (such as
Python, R, and C++) to build their own SEIR models.

2.1.2. GPU Accelerated MCMC Applications
In 2013, Hall et al. proposed a Metropolis Monte Carlo (MMC)
method for running molecular simulations [16]. Their approach
used CUDA to run their CPU-GPU algorithm, with special
manipulation of the GPU memory to decrease the use of system
memory and swapping across devices. The system is designed
with one GPU per CPU process. The GPU is tasked with
parallelizing parts of the likelihood function asynchronous to
the CPU, and the CPU is responsible for running the parts of
the likelihood function that cannot be efficiently parallelized
before synchronizing with the GPU and combining the results.
This approach parallelizes only portions of the inner likelihood
function running the molecular simulations while each step of
the MCMC algorithm is computed sequentially on the CPU.
This is feasible in their use case because the molecular dynamics
simulations run during the likelihood function calculation were
sufficiently complex to provide enough parallel work that the
GPU was fully utilized.

Our use case involves solving an SEIR model during the
likelihood function calculation. In our case, and many like it, the
amount of work required for a single simulation is not sufficient
to completely utilize even a single GPU. Running ensembles of
many independent simulations simultaneously and in parallel
can increase GPU utilization. Even so, it may still require several
hundreds to several thousands of independent simulations in an
ensemble before GPU acceleration becomes beneficial. In order
to efficiently use the GPUs in these cases, the parallelization
cannot be limited to just the likelihood function as in Hall et al
[16]. It must rather be moved up a level to include portions of the
MCMC algorithm itself.

2.2. Methods
In this section we introduce our method, which can be broken
into four separate tasks:

1. Choosing an epidemiological model for taking a set of input
parameter values and modeling data such as cumulative case
counts over time

2. Implementing a parallelized modified MCMC analysis to
estimate epidemiological model parameter values that best fit
historic reported data

3. Developing an epidemiological model ’restart’ method which
allows tracking changes in epidemiological model parameters
over time by using MTM-MCMC to fit parameters in a series
of overlapping windows of historical data

4. Applying these techniques to first estimate the best model
parameters to fit historic values and then using those
parameters to project future parameter values and case counts.

Optimizing the epidemiological model and MCMC analysis
algorithms to run on GPU hardware is also included in the
activities of the first two tasks.

2.2.1. Epidemiological Model
The IEM BioSim tool was used to build the standard SEIR model
defined by the system of ordinary differential (Equation 1) [17].

S′ = −
βIS

N
,

E′ =
βIS

N
− µE,

I′ = µE− γ I,

R′ = γ I

(1)

We begin each of the simulations with the entire population
susceptible, except for a single person in exposed. The simulation
start date that this occurs on is one of our inferred MCMC
parameters. We used an estimate of 5.2 days as both the latent
period 1/µ and infectious period 1/γ [18]. We then allow
the transmissibility β(t) to be a function of time instead of a
constant as is typical with SEIR models. The rationale behind
this is that while the biological factors affecting transmissibility
are unlikely to change much over time, there are a multitude
of social, behavioral and political factors that do. Mask wearing,
social distancing, school closings and vaccinations, to name a
few, can all dramatically change the transmissibility on very short
time scales. They tend to not stay constant over the course of an
outbreak. Rather than attempt to account for all of these factors,
we simply used a general parameterized function β(t; θβ) for the
transmissibility and then used case data and MCMC to work
backward to infer the parameter θβ .

While the BioSim tool is capable of being generalized to any
number of compartments and supports resource constraints and
aged transitions between compartments, for this problem we
chose to use a simple SEIR model to minimize the assumptions
in the epidemiological model. All of the methods discussed
are applicable to arbitrarily complex epidemiological models.
We have successfully tested the methods using epidemiological
models that include factors such as hospitalization and ICU
admission, deaths, asymptomatic cases, and vaccinations, for
instance. For the context of the current discussion however, a
simple SEIR model illustrates all of the important issues.

2.2.2. Multiple-Try Metropolis Markov Chain Monte

Carlo Method
In order to find the most likely values of our epidemiological
model parameters that explain the observed data and to quantify
the uncertainty in those values, we employ the use of an MCMC

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 March 2022 | Volume 8 | Article 818016

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Suchoski et al. GPU Acceleration for MCMC Analysis

method. MCMC provides several important benefits over other
optimization algorithms, including but not limited to

• MCMC can locate not only the optimal solution to some
likelihood function but also estimates the shape of the entire
posterior probability function π(θ |y) of some parameters θ

given some observed data y.
• There are versions of the algorithm that do not rely on the

ability to calculate or estimate any derivatives of the likelihood
function, allowing for more complicated functions to be used.
In our case, the likelihood function uses the solution to our
SEIR model.

• The MTM variant of the standard MCMCmethod that we use
provides a significant level of parallel computation well suited
for execution on GPUs.

We used a variation of the MTM algorithm [12] that is similar to
the methods described in Martino et al. [19], Calderhead et al.
[20], and Corander et al. [6]. The core idea of MTM is that
instead of evaluating a single proposal parameter set at each
iteration it evaluates multiple proposals in parallel. Once the
likelihood of each proposal is calculated, it can be shown that the
likelihood values can be used to choose a single proposal and an
acceptance rate in a way such that the stationary distribution of
the chain matches the target posterior. The reason we chose the
MTM variant over the traditional MH is that it trades parallelism
for total likelihood function evaluations. The MTM variant
will typically have to perform more total likelihood function
evaluations to achieve the same level of convergence as compared
to the standardMH. However, because the likelihood evaluations
at each iteration of MTM can be computed in parallel, and fewer
MTM iterations are required to reach convergence, the MTM
algorithm can more effectively utilize a multi-core CPU or GPU.

The variation of MTM-MCMC analysis listed in Algorithm 1

is used in this paper and can be generalized to any problem by
simply changing the likelihood function. Most of Algorithm 1 is
run on the CPU with no optimization, the exception being the
likelihood calculation L(y|θ). Even so, the CPU portion is still
responsible for less than 6% of the total runtime in all of our
GPU benchmark tests. However, the problem-specific likelihood
function is both optimized and parallelized to run on GPU and is
responsible for the remaining compute time in our benchmarks.

The likelihood function L(y|θ) and prior probability pdf
g(θ) are problem specific. The proposal pdf Q(θ |2) can be
chosen for the specific problem being solved, but there are
generalizable options available. In the tests for this paper, we
chose to use the simple and generalized form of a multivariate
normal distribution

Q(θ |2) = N (θ ,3) (2)

where 3 is the estimated sample covariance matrix of the Nc

chain samples 2 = [θ (1), . . . , θ (Nc)].

2.2.3. Time Varying SEIR Model Parameters
One of the main aspects of the COVID-19 outbreak we are trying
to capture is the time-varying nature of the model parameters.
In particular, we know that the effective reproductive number,

Algorithm 1: Variation of the Multiple-Try Metropolis
Algorithm with Nt tries and Nc chains. It is identical to
the traditional Metropolis Hastings MCMC algorithm in
the case where Nt = 1 and Nc = 1, and is identical to
the Multiple-Try Metropolis Algorithm in the case where
Nt > 1 and Nc = 1. Increasing either Nt or Nc will
also increase the amount of computational work required
per outer NMTM loop. However, increasing either should
result in faster convergence thus requiring fewer total NMTM

iterations. Also, the inner Nc and Nt loops can be computed
in parallel using a single barrier synchronization point.

Data:
Observed data y
Initial Parameters 2(0) = [θ (0,1), . . . , θ (0,Nc)], one for each
chain
Likelihood pdf L(y|θ)
Prior probability pdf g(θ)
Proposal pdf Q(θ |2)

Importance weight function w(θ |2) =
L(y|θ)g(θ)
Q(θ |2)

Result: Parameter samples
2(i) = [θ (i,1), . . . , θ (i,Nc)],∀i ∈ [1, . . . ,NMTM]

for i = 1, . . . ,NMTM do

parfor c = 1, . . . ,Nc do

parfor t = 1, . . . ,Nt do

Draw test sample θ
(t,c)
s ∼ Q(θ

(t,c)
s |2(i−1))

Calculate the test importance weight

I(t,c) = w(θ
(t,c)
s |2(i−1))

end

Select a single θ̄ (c) from [θ
(1,c)
s , . . . , θ

(Nt ,c)
s] with

probabilities proportional to [I(1,c), . . . , I(Nt ,c)]
Barrier
Let 2̄ = [θ̄ (1), . . . , θ̄ (Nc)]
parfor t = 1, . . . ,Nt do

if t < Nt then

Draw reference sample θ
(t,c)
s ∼ Q(θ

(t,c)
s |2̄)

else

Let reference sample θ
(t,c)
s = θ (i−1,c)

end

Calculate the reference importance weight

J(t,c) = w(θ
(t,c)
s |2̄)

end

Draw α ∼ U(0, 1)

if α < I(1,c)+...+I(Nt ,c)

J(1,c)+...+J(Nt ,c)
then

Accept: θ (i,c) = θ̄ (c)

else

Reject: θ (i,c) = θ (i−1,c)

end

end

Let 2(i) = [θ (i,1), . . . , θ (i,Nc)]
end

Re(t), (or equivalently the transmissibility β(t) = Re(t)/γ) is not
constant but changes over the course of an outbreak due to many

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 March 2022 | Volume 8 | Article 818016

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Suchoski et al. GPU Acceleration for MCMC Analysis

factors including physical distancing, vaccination, quarantining,
masking, sufficient and appropriate use of personal protective
equipment (PPE), and contact tracing. We want to capture the
dynamic nature of the changing reproductive number without
making toomany assumptions that would restrict the exact shape
of the change and instead allow data to dictate its shape.

To accomplish this, we model the outbreak over time using a
series of overlapping constant size windows Wi spanning time
tb,i ≤ t ≤ te,i, with the beginning of each window being the
center of the previous window tb,i+1 =

1
2 (tb,i + te,i). Within each

window we model the transmissibility as changing linearly over
time βi(t) = Ait + Bi, and use Algorithm 1 to find the best
estimate values for Ai and Bi that match the reported data for
windowWi. By allowingAi and Bi to change from one window to
the next we can capture the time varying nature of the outbreak.

One obvious problem with this method is that the likelihood
function for window Wi involves using the solution to our SEIR
model during the current window’s time range tb,i ≤ t ≤ te,i.
However, to step the SEIR model forward in time through that
time period we need to know the initial conditions at some point
prior to the beginning of the window tb,i. The only time that
we know the model state with any certainty is at the start of
the outbreak tb,0 where we assume that the entire population is
susceptible with the exception of a single person who has been
exposed. To calculate the likelihood we have to either run each
SEIR model instance from tb,0 up to te,i using samples of Aj and
Bj ∀j ≤ i, or come up with a method for initializing the SEIR
model at the beginning of the current window tb,i and solve it
only for the current window’s time range tb,i < t ≤ te,i. We chose
the latter approach.

The key insight needed to accomplish this is to realize that
the initial state of the SEIR model for window Wi at time tb,i
does not take on a single well-defined value. It is instead itself
a random variable. Samples of it can be drawn by capturing the
SEIR model state of the chains from the previous window Wi−1

at time tb,i in the middle of that window’s time range. Ideally, to
get a truly random sampling of the initial state, we would run the
chains for window Wi−1 and Wi simultaneously. Applying this
approach recursively though would then require us to run all of
the windows back to W0 simultaneously, which would increase
computational complexity. We instead decided to store a finite
set of samples of the model state in the middle of each window
when running those chains. Then we then can draw a random
sample from that finite set for window Wi−1 when running the
window Wi as an approximation to the truly randomly drawn
initial conditions.

2.2.4. Application of Optimization and Parallelization

to the SEIR Model for R(t) Value and New Case

Projections
The parameter search space used by ourMTM algorithm consists
of a set of three parameters when running the first window and
then as sets of two parameters for each subsequent window.
The two common parameters are the linear coefficients Ai

and Bi that describe β(t) = Ait + Bi, and for the first
window only the additional third parameter is the start date on
which the first person was exposed. The prior probability, g(θ)

from Algorithm 1, used for these parameters was a rectangular
distribution. That is, they are uniformly distributed if the
parameter lies within feasible bounds and have a zero probability
outside those bounds. In our particular case, the feasibility region
is where the parameters result in a transmissibility β(t) that is
positive for all times in the current window β(t) > 0, ∀t where
tb,i ≤ t ≤ te,i.

All of the likelihood function L(y|θ) evaluations in
Algorithm 1 are located inside parallel loops over the Nc

chains and Nt tries. All iterations of those loops are advance
forward to the likelihood function evaluation before any iteration
starts evaluating the likelihood. We can then setup an ensemble
of all the forward SEIR simulations needed and solve them in
parallel using BioSim. The simulated number of incident new
cases each day c(t) is recorded from the BioSim SEIR runs. Our
model assumes the historical reported number of new cases each
day C(k) provided by Johns Hopkins University [21] includes

a normally distributed reporting error ε(k) = C(k) − C
(k)
true

with mean 0 and variance σ 2
rep. The likelihood L(C|θ) is then

supposed to be calculating the probability of reported values
being C(k) under the assumption that our simulated values c(k)

are the true values C
(k)
true. So that is simply

L(C|θ) =
∏

k

ϕ(Ck; ck, σrep) (3)

where ϕ(x;µ, σ) is the normal distribution pdf with mean µ and
variance σ 2. The reporting error variance σrep is not known, but

because the likelihood function is assuming that c(k) = C
(k)
true we

can approximate it as the estimated sample variance of the set of
residuals ε(k) = C(k)−c(k). Then for each stored parameter output

θ (i,c) from Algorithm 1 we can also store σ
(i,c)
rep as the sample of

the reporting error posterior.
For the last window Wn, the projections (cn at times t > te,n)

are theoretically separate from the historical estimations (cn a
times tb,n ≤ t ≤ te,n). However, for computational efficiency,
both the historical and projected values are calculated and stored
while running the forward SEIR simulations for the likelihood
calculation in the final window. The historical case values are only
dependent on the time-varying value of βn(t) within windowWn

for which we have data. The accuracy of projected case values
though is dependent on how we extrapolate β(t) past time te,n,
for which we have no data. This is an active area of our research.
Currently we use the constant value β(t) = βn(te,n), which is
to say the value of β(t) today will continue to the end of our
projection window (1–4 weeks in the future).

3. RESULTS

Our data source to test the method was cumulative case
timeseries data collected at the county level across the US
provided by the Johns Hopkins University Systems Science &
Engineering [21]. We used a selection of 385 individual counties
as well as the aggregate cases for all 50 states, 3 US territories,
and the US as a whole for a total of 439 jurisdictions. We
started each jurisdiction on March 8th, 2020, and ran 21-day

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 March 2022 | Volume 8 | Article 818016

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Suchoski et al. GPU Acceleration for MCMC Analysis

windows Wi through March 23rd, 2021. To test the speedup,
we measured and compared the wall clock time under different
hardware configurations for running NMTM = 250 iterations of
the modified MTM (Algorithm 1), with Nc = 32 chains and
Nt = 128 tries, for a single window on all 439 jurisdictions. With
2 likelihood function calls per iteration, that required running a
total of 899,072,000 complete SEIR simulations, covering a 20 day
window at 2.4 h timesteps.

3.1. Software Configuration
The IEM BioSim library used to execute the SEIR models
is written in C++/OpenMP/CUDA. It is fully capable of
running either optimized for single node multi-core CPU
execution or for optimized single GPU acceleration, with
that option being configurable through an argument on
a single API call. The MCMC code is written in Julia
with a few computationally intensive portions, such as the
likelihood calculation from Equation (3), being offloaded to
the GPUs using CUDA.jl when running in GPU mode [22,
23].

A majority of the MCMC algorithm, including drawing the
proposal, calculating acceptance rates, and sample recording,
is run on CPU in both the CPU and GPU configurations.
Some of it could be offloaded to the GPUs for acceleration, but
it currently accounts for less than 6% of the overall runtime
even in the 8xGPU HPC node configuration. Julia’s built-in
distributed processing was used to split the SEIR model runs
across multiple GPUs or CPUs, with each process responsible
for executing an ensemble of SEIR models on a single CPU or
GPU through the BioSim API, and then synchronizing with the
rest of the MCMC algorithm. In the CPU configuration tests,
each process’ CPU threads were locked to a single local NUMA
node. For these tests we scaled the solution up to multiple GPUs
on a single node, but Julia’s distributed processing interface is
capable of being scaled up to multi-node/multi-GPU without
code modifications.

3.2. Hardware Configuration
All tests were run in both CPU and GPU configurations on
one of three hardware configurations meant to be representative
of either a high-end developer’s workstation, a single-node
CPU optimized HPC server, or a single-node GPU optimized
HPC server. The CPU optimized HPC server tests were
run on the top tier Amazon EC2 x86 compute optimized
instance (c5.metal), and the GPU optimized HPC server tests
were run on the top tier EC2 accelerated computing instance
(p4d.24xlarge). The detailed specifications of each hardware
configuration are listed in Table 1, and the timing results of
running our test on each hardware configuration are listed
in Table 2.

3.3. Accuracy of the Results
The accuracy of the test results was assessed by using the
MCMC chain samples to calculate prediction intervals for the
number of reported daily incident cases. We then compared the
coverage of the actual reported data against those prediction
intervals. Doing this comparison for days in the projection

TABLE 1 | Benchmark test hardware configurations.

Configuration CPU Main

memory

GPUs

Workstation 1x Intel Core

i9-10920X

128 GiB 4x Nvidia RTX 2080 Ti

CPU HPC Node 2x Intel Xeon

Platinum 8275CL

192 GiB

GPU HPC Node 2x Intel Xeon

Platinum 8275CL

1024 GiB 8x Nvidia Tesla

A100-SXM4-40GB

TABLE 2 | Benchmark timing tests results.

Configuration Wall time

(seconds)

Speedup

(Rel to WS)

Speedup

(Rel to HPC)

Workstation 1xCPU 8,469 1.0x 0.67x

Workstation 1xGPU 624 13.6x 9.06x

Workstation 4xGPU 233 36.3x 24.30x

HPC Node 2xCPU 5,654 1.5x 1.00x

HPC Node 1xGPU 387 21.9x 14.60x

HPC Node 8xGPU 100 84.7x 56.50x

time range, that is at times t > te,n, would introduce errors
caused by the β(t) extrapolation method used in addition
to any errors in the MCMC analysis itself. In order to
isolate the MCMC analysis errors, we decided to calculate
this coverage for days within the final windows time range
tb,n ≤ t ≤ te,n.

The reported number of cases on any given day,Crep = Ctrue+

εrep, is assumed to be the sum of the true number of cases Ctrue

and some normally distributed reporting error εrep with 0 mean
and variance of σ 2

rep. The MCMC process produces samples of
the true number of cases Ctrue from the SEIR model output, and
samples of the reporting error variance σ 2

rep from the likelihood
Equation (3). Under these assumptions, if we knew the exact
value of σrep, then the probability density function fCrep (x) =
(

fCtrue ∗ 80,σrep

)

(x) could be calculated as the convolution of
fCtrue (x) with the normal probability density function 80,σrep (x).
However, because we do not know the exact value of σrep, we have
to integrate over all possible values of σrep

fCrep (x) =

∫ ∞

0

[

(fCtrue ∗ 80,σrep)(x)
]

fσrep (σrep) dσrep (4)

Due to the complexity of directly calculating (4), we chose instead
to estimate the distribution by generating samples of Crep from
the samples of Ctrue and σrep that were stored while running
Algorithm 1. To do so, we first randomly select a set {ci ∈ Ctrue}

from the set of true values and a set {σi ∈ σrep} from the set
of reporting error variances. We can then draw samples of the
reporting error {εi ∼ N (0, σ 2

i)}, let Crep be the set {ci + εi}, and
estimate frep directly from those samples.

Prediction intervals were estimated from the samples by
first applying a Box-Cox power transformation yλ(Crep) to the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 March 2022 | Volume 8 | Article 818016

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Suchoski et al. GPU Acceleration for MCMC Analysis

chain samples Crep so that yλ would be approximately normally
distributed in the transformed domain [24]. From the normally
distributed samples we could then calculate quantiles of interest
from the inverse normal CDF 8−1

yλ
(p), and apply a reverse

transform to get those points in the original domain. Those
points were then used to estimate the prediction intervals PI(p)
from the inverse CDF points as

PI(p) =
[

y−1
λ (8−1

yλ
(.5− p/2)), y−1

λ (8−1
yλ

(.5+ p/2))
]

(5)

Each point in Figure 1 shows the prediction interval vs. coverage
rate calculated on the set of 439 test jurisdictions. This value was
calculated on the 29 different time windows and 50 prediction
interval percentages for 1,450 points total.

FIGURE 1 | Prediction intervals of incident cases vs. coverage of reported data. Subfigures show this calculated on day 10 and day 20 of each 20-day window Wi .

We can see that while we have good agreement on day 10 near the middle of each window, day 20 at the end of each window predicts too large of an interval

resulting in a higher than expected coverage.

FIGURE 2 | Synthetically generated test case illustrating why calculated confidence near the beginning and end of a window may tend to overpredict their range.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 March 2022 | Volume 8 | Article 818016

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Suchoski et al. GPU Acceleration for MCMC Analysis

4. DISCUSSION

We can see that although there is good agreement between
the prediction interval and measured coverage for the middle
of each window, the final day tends to over-predict the range.
We hypothesize that the reason for this is at least in part that
the likelihood Equation (3) does not take into account the

autocorrelation of the residual ε(k) = C(k) − C
(k)
true from day to

day. The real world reported case data does contain some time-
dependent correlations in the reporting error. For instance, cases
reported over the weekend tend to be lower than on weekdays
when reporting staff are more likely to be working and processing
the data. Similarly, Mondays and Tuesdays tend to report higher
numbers as the backlog of cases not reported over the weekend is
processed. On long enough time scales we expect this error to be
nearly a stationary process, meaning that there should be almost
no correlation in the values for days i 6= j.

To illustrate the concept we ran the MCMC algorithm with
the same loss Equation (3), but using a set of synthetically
generated, time independent data, and also a simple linear model
instead of an SEIR model. Figure 2 shows the timeseries plots
of the samples selected from the MCMC algorithm along with
the true values and reported data provided as input to the
MCMC algorithm. The samples selected by the algorithm can be
categorized as follows

1. The model output ci begins much lower than the true value for
days near the beginning of the window, crosses over the true
value somewhere near the middle, and ends up much higher
than the true value for days near the end

2. The model output ci begins much higher than the true value
for days near the beginning of the window, crosses over the
true value somewhere near the middle, and ends up much
lower than the true value for days near the end

3. Everything else

Because the samples from categories 1 and 2 overlap and both
cross the true value near the middle of the window, the sample
density closer to the middle of the window tends to be slightly
higher than it is near the ends. Some preliminary testing of
adding a Box Pierce Q test [25] term into the loss Equation
(3) to test for the independence of the residual timeseries has
shown to effectively reduce the severity of this over estimation
in some synthetic test cases. At this time however, more research
and testing would need to be done before any conclusions
could be made about the correctness, general applicability, and
effectiveness of such a method.

We presented a Multiple-Try Metropolis MCMC algorithm
that can be parallelized and optimized to run on GPU and
accelerate solving problems where the likelihood function

involves running complex physics-based simulations. Examples
of such problems include the original inspiration for our model,
the plume reconstruction problem, the epidemiological model
presented in this paper, problems from computational chemistry,
and many more.

We presented as an example a simple SEIRmodel solved using
IEM’s BioSim simulator. The BioSim simulator itself features
the capability to add additional compartments, aged transitions,
and resource constraints to build a model that more closely
matches real-world scenarios providing more accurate estimates
of resource needs, such as hospital beds, ventilators, medication
requirements, etc. Any of these features could be added to
the underlying epidemiological model while maintaining the
parallelization and acceleration provided by the GPUs.

In our testing, using a single GPU to execute the simulations
resulted in more than a 13x speedup in wall clock time compared
to a fully parallelized CPU implementation. The algorithm is also
able to scale up to run on multiple GPUs. Using 4 Nvidia RTX
2080 Ti GPUs in a high-end developer’s workstation resulted
in a 36.3x speedup in wall clock time compared to running
fully parallelized on the single Intel Core-i9-10920X CPU with
12 physical cores using 24 hyperthreads. The same tests on an
AWSHPC server consisting of 8 Nvidia Tesla A100-SMX4-40GB
GPUs resulted in a 56.5x speedup in wall clock time compared to
running on the dual socket Intel Xeon Platinum 8275CL CPUs
with a combined 48 physical cores and 96 hyperthreads.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

BS developed the initial model idea and implemented the
CPU and GPU optimized code to run the SEIR models
and MCMC algorithm. BS and SS designed the main
algorithms and developed the theoretical model formalism.
PB supervised the project and provided oversight. All authors
contributed to developing tests and analysis of the results and
contributed to developing the manuscript and approved of
its publication.

REFERENCES

1. Andrieu C, Freitas N, Doucet A, Jordan M. An introduction

to MCMC for machine learning. Mach Learn. (2003) 50:5–43.

doi: 10.1023/A:1020281327116

2. Dunkley J, Bucher M, Ferreira PG, Moodley K, Skordis C. Fast

and reliable markov chain monte carlo technique for cosmological

parameter estimation. Mon Not R Astron Soc. (2005) 356:925–36.

doi: 10.1111/j.1365-2966.2004.08464.x

3. Valderrama-Bahamóndez GI, Fröhlich H. MCMC techniques for parameter

estimation of ODE based models in systems biology. Front Appl Math Stat.

(2019) 5:55. doi: 10.3389/fams.2019.00055

4. Craiu RV, Lemieux C. Acceleration of the multiple-try metropolis algorithm

using antithetic and stratified sampling. Stat Comput. (2007) 17:109.

doi: 10.1007/s11222-006-9009-4

5. Robert CP, Elvira V, Tawn N, Wu C. Accelerating MCMC algorithms.

Wiley Interdiscip Rev Comput Stat. (2018) 10:e1435. doi: 10.1002/wic

s.1435

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 March 2022 | Volume 8 | Article 818016

https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1111/j.1365-2966.2004.08464.x
https://doi.org/10.3389/fams.2019.00055
https://doi.org/10.1007/s11222-006-9009-4
https://doi.org/10.1002/wics.1435
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Suchoski et al. GPU Acceleration for MCMC Analysis

6. Corander J, Gyllenberg M, Koski T. Bayesian model learning based

on a parallel MCMC strategy. Stat Comput. (2006) 16:355–362.

doi: 10.1007/s11222-006-9391-y

7. Martino L, Elvira V, Luengo D, Corander J, Louzada F. Orthogonal parallel

MCMC methods for sampling and optimization. Digit Signal Process. (2016)

58:64–84. doi: 10.1016/j.dsp.2016.07.013

8. Bédard M, Douc R, Moulines E. Scaling analysis of multiple-try

MCMC methods. Stochastic Process Appl. (2012) 03;122:758–786.

doi: 10.1016/j.spa.2011.11.004

9. Cotter SL, Roberts GO, Stuart AM, White D. MCMC methods for functions:

modifying old algorithms to make them faster. Stat Sci. (2013) 28:424–46.

doi: 10.1214/13-STS421

10. Girolami M, Calderhead B. Riemann manifold langevin and

hamiltonian monte carlo methods. J R Stat Soc B. (2011) 73:123–214.

doi: 10.1111/j.1467-9868.2010.00765.x

11. Neal RM.MCMC Using Hamiltonian Dynamics. Boca Raton, FL: Chapman &

Hall/CRC. (2012).

12. Liu JS, Liang F, Wong WH. The multiple-try method and local

optimization in metropolis sampling. J Am Stat Assoc. (2000) 95:121–34.

doi: 10.1080/01621459.2000.10473908

13. Bartz-Beielstein T, Stork J, Zaefferer M, Rebolledo M, Lasarczyk C, Rehbach

F. CRAN SPOT plotSIRModel. Plot of Continuous Time Markov Chains

SIR Models. (2020). Available online at: https://rdrr.io/cran/SPOT/man/

plotSIRModel.html.

14. team B. SEIR 0.2.3. Python Package for Modeling Epidemics Using the SEIR

Model. (2020). Availablable online at: https://pypi.org/project/SEIR/.

15. Mori JCM, Barbour W, Gui D, Piccoli B, Work D, Samaranayake S. A Multi-

Region SEIR Model With Mobility. (2020). Available online at: https://seir.cee.

cornell.edu/index.html.

16. Hall C, Ji W, Blaisten-Barojas E. The metropolis monte carlo method with

CUDA enabled graphic processing units. J Comput Phys. (2014) 258:871–9.

doi: 10.1016/j.jcp.2013.11.012

17. Anderson RM, Anderson B, May RM. Infectious Diseases of Humans:

Dynamics and Control. Oxford: Oxford University Press (1992).

18. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early

transmission dynamics in wuhan, china, of novel coronavirus-infected

pneumonia. N Engl J Med. (2020) 382:1199–207. doi: 10.1056/NEJMoa20

01316

19. Martino L. A review of multiple try MCMC algorithms for signal

processing. Digit Signal Process. (2018) 75:134–52. doi: 10.1016/j.dsp.2018.0

1.004

20. Calderhead B. A general construction for parallelizing

metropolis-hastings algorithms. Proc Natl Acad Sci

USA. (2014) 111:17408–13. doi: 10.1073/pnas.140818

4111

21. Ensheng Dong HD, Gardner L. An interactive web-based dashboard

to track COVID-19 in real time. Lancet Infect Dis. (2020) 20:533–4.

doi: 10.1016/S1473-3099(20)30120-1

22. Besard T, Foket C, De Sutter B. Effective extensible programming: unleashing

julia on GPUs. IEEE Trans Parallel Distribut Syst. (2018) 30: 827–41.

doi: 10.1109/TPDS.2018.2872064

23. Besard T, Churavy V, Edelman A, De Sutter B. Rapid software prototyping for

heterogeneous and distributed platforms. Adv Eng Softw. (2019) 132:29–46.

doi: 10.1016/j.advengsoft.2019.02.002

24. Box GEP, Cox DR. An analysis of transformations. J R Stat Soc B. (1964)

26:211–52. doi: 10.1111/j.2517-6161.1964.tb00553.x

25. Box GEP, Pierce DA. Distribution of residual autocorrelations in

autoregressive-integrated moving average time series models. J Am Stat

Assoc. (1970) 65:1509–26. doi: 10.1080/01621459.1970.10481180

Conflict of Interest: BS, SS, HG, and PB are employed by IEM, Inc.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Suchoski, Stage, Gurung and Baccam. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 March 2022 | Volume 8 | Article 818016

https://doi.org/10.1007/s11222-006-9391-y
https://doi.org/10.1016/j.dsp.2016.07.013
https://doi.org/10.1016/j.spa.2011.11.004
https://doi.org/10.1214/13-STS421
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://doi.org/10.1080/01621459.2000.10473908
https://rdrr.io/cran/SPOT/man/plotSIRModel.html
https://rdrr.io/cran/SPOT/man/plotSIRModel.html
https://pypi.org/project/SEIR/
https://seir.cee.cornell.edu/index.html
https://seir.cee.cornell.edu/index.html
https://doi.org/10.1016/j.jcp.2013.11.012
https://doi.org/10.1056/NEJMoa2001316
https://doi.org/10.1016/j.dsp.2018.01.004
https://doi.org/10.1073/pnas.1408184111
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1016/j.advengsoft.2019.02.002
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1080/01621459.1970.10481180
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	GPU Accelerated Parallel Processing for Large-Scale Monte Carlo Analysis: COVID-19 Parameter Estimation and New Case Forecasting
	1. Introduction
	2. Materials and Methods
	2.1. Background
	2.1.1. SEIR Applications
	2.1.2. GPU Accelerated MCMC Applications

	2.2. Methods
	2.2.1. Epidemiological Model
	2.2.2. Multiple-Try Metropolis Markov Chain Monte Carlo Method
	2.2.3. Time Varying SEIR Model Parameters
	2.2.4. Application of Optimization and Parallelization to the SEIR Model for R(t) Value and New Case Projections

	3. Results
	3.1. Software Configuration
	3.2. Hardware Configuration
	3.3. Accuracy of the Results

	4. Discussion
	Data Availability Statement
	Author Contributions
	References

