
METHODS
published: 01 June 2022

doi: 10.3389/fams.2022.806549

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 June 2022 | Volume 8 | Article 806549

Edited by:

Edoardo Angelo Di Napoli,

Julich Research Center, Helmholtz

Association of German Research

Centres (HZ), Germany

Reviewed by:

Jutho Haegeman,

Ghent University, Belgium

Jiajia Li,

College of William & Mary,

United States

*Correspondence:

Glen Evenbly

glen.evenbly@gmail.com

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 31 October 2021

Accepted: 02 May 2022

Published: 01 June 2022

Citation:

Evenbly G (2022) A Practical Guide to

the Numerical Implementation of

Tensor Networks I: Contractions,

Decompositions, and Gauge

Freedom.

Front. Appl. Math. Stat. 8:806549.

doi: 10.3389/fams.2022.806549

A Practical Guide to the Numerical
Implementation of Tensor Networks
I: Contractions, Decompositions, and
Gauge Freedom
Glen Evenbly*

School of Physics, Georgia Institute of Technology, Atlanta, GA, United States

We present an overview of the key ideas and skills necessary to begin implementing

tensor network methods numerically, which is intended to facilitate the practical

application of tensor network methods for researchers that are already versed with their

theoretical foundations. These skills include an introduction to the contraction of tensor

networks, to optimal tensor decompositions, and to the manipulation of gauge degrees

of freedom in tensor networks. The topics presented are of key importance to many

common tensor network algorithms such as DMRG, TEBD, TRG, PEPS, and MERA.

Keywords: tensor network algorithm, MPS, tensor contraction, DMRG, quantum many body theory

1. INTRODUCTION

Tensor networks have been developed as a useful formalism for the theoretical understanding of
quantummany-body wavefunctions [1–10], especially in regards to entanglement [11–13], and are
also applied as powerful numeric tools and simulation algorithms. Although developed primarily
for the description of quantummany-body systems, they have since found use in a plethora of other
applications such as quantum chemistry [14–18], holography [19–24], machine learning [25–29]
and the simulation of quantum circuits [30–35].

There currently exist many useful references designed to introduce newcomers to the underlying
theory of tensor networks [1–10]. Similarly, for established tensor network methods, there often
exist instructional or review articles that address the particular method in great detail [36–40].
Nowadays, many research groups have also made available tensor network code libraries [41–48].
These libraries typically allow other researchers to make use of highly optimized tensor network
routines for practical purposes (such as for the numerical simulation of quantum many-body
systems).

Comparatively few are resources intended to help researchers that already possess a firm
theoretical grounding to begin writing their own numerical implementations of tensor network
codes. Yet such numerical skills are essential in many areas of tensor network research:
new algorithmic proposals typically require experimentation, testing and bench-marking using
numerics. Furthermore, even researchers solely interested in the application of tensor network
methods to a problem of interest may be required to program their own version of a method, as a
pre-built package may not contain the necessary features as to be suitable for the unique problem
under consideration. The purpose of our present work is to help fill this aforementioned gap: to
aid students and researchers, who are assumed to possess some prior theoretical understanding
of tensor networks, to learn the practical skills required to program their own tensor networks
codes and libraries. Indeed, our intent is to arm the interested reader with the key knowledge

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.806549
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.806549&domain=pdf&date_stamp=2022-06-01
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:glen.evenbly@gmail.com
https://doi.org/10.3389/fams.2022.806549
https://www.frontiersin.org/articles/10.3389/fams.2022.806549/full


Evenbly Numerical Implementation of Tensor Networks

FIGURE 1 | (A–C) Diagrammatic representations of a vector Ai (or order-1

tensor), a matrix Bij (or order-2 tensor) and an order-3 tensor Cijk . (D) A

contraction, or summation over an index, between two tensors is represented

by a line joining two tensors.

that would allow them to implement their own versions of
algorithms such as the density matrix renormalization group
(DMRG) [49–51], time-evolving block decimation (TEBD) [52,
53], projected entangled pair states (PEPS) [54–56], multi-
scale entanglement renormalization ansatz (MERA) [57], tensor
renormalization group (TRG) [58, 59], or tensor network
renormalization (TNR) [60]. Furthermore, this manuscript is
designed to compliment online tensor network tutorials [61],
which have a focus on code implementation, with more detailed
explanations on tensor network theory.

2. PRELIMINARIES

2.1. Prior Knowledge
As stated above, the goal of this manuscript is to help readers
that already possess some understanding of tensor network
theory to apply this knowledge toward numeric calculations.
Thus we assume that the reader has some basic knowledge
of tensor networks, specifically that they understand what a
tensor network is and have some familiarity with the standard
diagrammatic notation used to represent them. An overview
of these concepts is presented in Figure 1, otherwise more
comprehensive introductions to tensor network theory can be
found in [1–10].

Note that we shall not assume prior knowledge of quantum
many-body physics, which is the most common application
of tensor network algorithms. The skills and ideas that we
introduce in this manuscript are intended to be general for the
tensor network formalism, rather than for their use in a specific
application, thus can also carry over to other area in which
tensor networks have proven useful such as quantum chemistry
[14–18], holography [19–24], machine learning [25–29], and the
simulation of quantum circuits [30–35].

2.2. Software Libraries
Currently there exists a wide variety of tensor network code
libraries, which include [41–48]. Many of these libraries differ
greatly in not only their functioning but also their intended
applications, and may have their own specific strengths and
weaknesses (which we will not attempt to survey in the present
manuscript). Almost all of these libraries contain tools to assist
in the tasks described in this manuscript, such as contracting,
decomposing and re-gauging tensor networks. Additionally
many of these libraries also contain full featured versions of
complete tensor network algorithms, such as DMRG or TEBD.
For a serious numerical calculation involving tensor networks,
one where high performance is required, most researchers would
be well-advised to utilize an existing library.

However, even if ultimate intent is to use existing library, it
is still desirable that one should understand the fundamental
tensor network manipulations used in numerical calculations.
Indeed, this understanding is necessary to properly discern the
limitations of various tensor network tools, to ensure that they
are applied in an appropriate way, and to customize the existing
tools if necessary. Moreover, exploratory research into new
tensor network ansatz, algorithms and applications often requires
non-standard operations and tensor manipulations which may
not be present in any existing library, thus may require the
development of extensive new tensor code. In this setting it can
be advantageous to minimize or to forgo the usage of an existing
library (unless one was already intimately familiar with its inner
workings), given the inherent challenge of extending a library
beyond its intended function and the possibility of unintended
behavior that this entails.

In the remaining manuscript we aim to describe key tensor
network operations (namely contracting, decomposing and re-
gauging tensor networks) with sufficient detail that would allow
the interested reader to implement tasks numerically without the
need to rely on an existing code library.

2.3. Programming Language
Before attempting to implement tensor methods numerically one
must, of course, decide on which programming language to use.
High-level languages with a focus on scientific computation, such
as MATLAB, Julia, and Python (with Numpy) are well-suited
for implementing tensor network methods as they have native
support for multi-dimensional arrays (i.e., tensors), providing
simple and convenient syntax for common operations on these
arrays (indexing, slicing, scalar operations) as well as providing
a plethora of useful functions for manipulating these tensor
objects. Alternatively, some tensor network practitioners may
prefer to use lower-level languages such as Fortran or C++ when
implementing tensor network algorithms usually for the reason
of maximizing performance. However, in many tensor network
codes the bulk of the computation time is spent performing
large matrix-matrix multiplications, for which even interpreted
languages (like MATLAB) still have competitive performance
with compiled languages as they call the same underlying BLAS
routines. Nonetheless, there are some particular scenarios, such
as in dealing with tensor networks in the presence of global
symmetries [62–68], where a complied language may offer a

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

FIGURE 2 | (A) The internal indices (l,m, n) of the network {A,B,C} are

contracted to give tensor F. (B) The network is contracted via a sequence of

two pairwise tensor contractions, the first of which results in the intermediate

tensor D.

significant performance advantage. In this circumstance Julia,
which is a compiled language, or Python, in conjunction with
various frameworks which allow it to achieve some degree of
compilation, may be appealing options.

2.4. Terminology
Before proceeding, let us establish the terminology that we will
use when discussing tensor networks. We define the order of a
tensor as the number of indices it has, i.e., such that a vector is
order-1 and amatrix is order-2. The term rank (or decomposition
rank) of a tensor will refer to the number of non-zero singular
values with respect to a some bi-partition of the tensor indices.
Note that many researchers also use the term rank to describe the
number of tensor indices; here we use the alternative term order
specifically to avoid the confusion that arises from the double
usage of rank. The number of values a tensor index can take will
be referred to as the dimension of an index (or bond dimension),
which is most often denoted by χ but can also be denoted by
m, d, or D. In most cases, the use of d or D to denote a bond
dimension is less preferred, as this can be confused which the
spatial dimension of the problem under consideration (e.g., when
considering a model on a 1D or 2D lattice geometry).

3. TENSOR CONTRACTIONS

The foundation of all tensor networks routines is the contraction
of a network containing multiple tensors into a single tensor.
An example of the type problem that we consider is depicted
in Figure 2A, where we wish to contract the network of tensors

{A,B,C} to form an order-3 tensor F, which has components
defined

Fijk =
∑

l,m,n

AljmBilnCnmk. (1)

Note that a convention for tensor index ordering is required
for the figure to be unambiguously translated to an equation;
here we assumed that indices progress clock-wise on each
tensor starting from 6 o’clock. Perhaps the most obvious way
to evaluate Equation (1) numerically would be through a
direct summation over the indices (l,m, n), which could be
implemented using a set of nested “FOR” loops. While this
approach of summing over all internal indices of a network will
produce the correct answer, there are numerous reasons why this
is not the preferred approach for evaluating tensor networks. The
foremost reason is that it is not themost computationally efficient
approach (excluding, perhaps, certain contractions involving
sparse tensors, which we will not consider here). Let us analyse
the contraction cost for the example given in Equation (1),
assuming all tensor indices are χ-dimensional. A single element
of tensor F, which hasχ3 elements in total, is given through a sum
over indices (l,m, n), which requires O(χ3) operations. Thus the
total cost of evaluating tensor F through a direct summation over
all internal indices is O(χ6).

Now, let us instead consider the evaluation of tensor F broken
up into two steps, where we first compute an intermediate tensor
D as depicted in Figure 2B,

Dijmn =
∑

l

AljmBiln, (2)

before performing a second contraction to give the final tensor F,

Fijk =
∑

n,m

DijmnCnm. (3)

Through similar logic as before, one finds that the cost of
evaluating intermediate tensor D scales as O(χ5), whilst the
subsequent evaluation of F in Equation (3) is also O(χ5). Thus
breaking the network contraction down into a sequence of
smaller contractions each only involving a pair of tensors (which
we refer to as a pairwise tensor contraction) is as computationally
cheap or cheaper for any non-trivial bond dimension (χ > 1).
This is true in general: for any network of 3 or more (dense)
tensors it is always at least as efficient (and usually vastly more
efficient) to break network contraction into sequence of pairwise
contractions, as opposed to directly summing over all the internal
indices of the network.

Two natural questions arise at this point. (i) What is optimal
way to implement a single pairwise tensor contraction? (ii) Does
the chosen sequence of pairwise contractions affect the total
computational cost and, if so, how does one decide what sequence
to use? We begin by addressing the first question.

3.1. Pairwise Tensor Contractions
Let us consider the problem of evaluating a pairwise tensor
contraction, denoted (A × B), between tensors A and B that are

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

connected by one or more common indices. A straight-forward
method to evaluate such contractions, as in the examples of
Equations (2) and (3), is by using nested “FOR” loops to sum over
the shared indices. The computational cost of this evaluation, in
terms of the number of scalar multiplications required, can be
expressed concisely as

cost :(A× B) =

∣

∣dim(A)
∣

∣ ·
∣

∣dim(B)
∣

∣

∣

∣dim(A ∩ B)
∣

∣

, (4)

with
∣

∣dim(A)
∣

∣ as the total dimension of A (i.e., the product of its
index dimensions) and

∣

∣dim(A ∩ B)
∣

∣ as the total dimension of the
shared indices.

Alternatively, one can recast a pairwise contraction as a
matrix multiplication as follows: first reorder the free indices
and contracted indices on each of A and B such that they
appear sequentially (which can be achieved in MATLAB using
the “permute” function) and then group the free-indices and
the contracted indices each into a single index (which can be
achieved in MATLAB using the “reshape” function). After
these steps the contraction is evaluated using a single matrix-
matrix multiplication, although the final product may also
need to be reshaped back into a tensor. Recasting as a matrix
multiplication does not reduce the formal computational cost
from Equation (4). However, modern computers, leveraging
highly optimized BLAS routines, typically perform matrix
multiplications significantly more efficiently than the equivalent
“FOR” loop summations. Thus, especially in the limit of tensors
with large total dimension, recasting as a matrix multiplication
is most often the preferred approach to evaluate pairwise
tensor contractions, even though this requires some additional
computational overhead from the necessity of rearranging tensor
elements in memory when using “permute”. Note that the
“tensordot” function in the Numpy module for Python
conveniently evaluates a pairwise tensor contraction using this
matrix multiplication approach.

3.2. Contraction Sequence
It is straight-forward to establish that, when breaking a network
contraction into a sequence of binary contractions, the choice of
sequence can affect the total computational cost. As an example,
we consider the product of two matrices A, B with vector C,

Fi =
∑

j,k

AijBjkCk, (5)

where all indices are assumed to be dimension χ , see also
Figure 3. If we evaluate this expression by first performing the
matrix-matrix multiplication, i.e., as F = (A × B) × C, then the
leading order computational cost scales asO(χ3) by Equation (4).
Alternatively, if we evaluate the expression by first performing
the matrix-vector multiplication, i.e., as F = A × (B × C),
then the leading order computational cost scales as O(χ2). Thus
it is evident that the sequence of binary contractions needs
to be properly considered in order to minimize the overall
computational cost.

So how does one find the optimal contraction sequence for
some tensor network of interest? For the networks that arise
in common algorithms (such as DMRG, MERA, PEPS, TRG
and TNR) it is relatively easy, with some practice, to find the
optimal sequence through manual inspection or trial-and-error.
This follows as most networks one needs to evaluate contain
fewer than 10 tensors and the tensor index dimensions take a only
single or a few distinct values within a network, which limits the
number of viable contraction sequences that need be considered.
More generally, determination of optimal contraction sequences
is known to be an NP-hard problem [69], such that it is
very unlikely that an algorithm which scales polynomially with
the number of tensors in the network will ever be found
to exist. However, numerical methods based on exhaustive
searches and/or heuristics can typically find optimal sequences
for networks with fewer than 20 tensors in a reasonable amount
of time [69–72], and larger networks are seldom encountered in
practice.

Note thatmany tensor network optimization algorithms based
on an iterative sweep, where the same network diagrams are
contracted each iteration (although perhaps containing different
tensors and with different bond dimensions). The usual approach
in this setting is to determine the optimal sequences once, before
beginning the iterative sweeps, using the initial bond dimensions
and then cache the sequences for re-use in later iterations. The
contraction sequences are then only recomputed the if the bond
dimensions stray too far from the initial values.

3.3. Network Contraction Routines
Although certainly feasible, manually writing the code for
each tensor network contraction as a sequence of pairwise
contractions is not recommended. Not only is substantial
programming effort required, but this also results in code
which is error-prone and difficult to check. There is also a
more fundamental problem: contracting a network by manually
writing a sequence of binary contractions requires specifying a
particular contraction sequence at the time of coding. However,
in many cases the index dimensions within networks are variable,
and the optimal sequence can change depending on the relative
sizes of dimensions. For instance, one may have a network
which contains indices of dimensions χ1 and χ2, where the
optimal contraction sequence changes dependant of whether χ1

is larger or smaller than χ2. In order to have a program which
works efficiently in both regimes, one would have to write code
separately for both contraction sequences.

Given the considerations above, the use of an automated
contraction routine, such as the “ncon” (Network-CONtractor)
function [61, 73] or something similar from an existing tensor
network library [41–48], is highly recommended. Automated
contraction routines can evaluate any network contraction in
a single call by appropriately generating and evaluating a
sequence of binary contractions, hence greatly reducing both
the programming effort required and the risk of programming
errors occurring.Most contraction routines, such as “ncon”, also
remove the need to fix a contraction sequence at the time of
writing the code, as the sequence can be specified as an input
variable to the routine and thus can be changed without the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

FIGURE 3 | (A) A product of three tensors {A,B,C} is contracted to a tensor F, where all indices are assumed to be of dimension χ . (B,C) The total computational

cost of contracting the network depends on the sequence of pairwise contractions; the cost from following the sequence in (B) scales as (χ3 + χ
2 ) as compared to

the cost from (C) which scales as (2χ
2).

need to rewrite any code. This can also allow the contraction
sequence to be adjusted dynamically at run-time to ensure that
the sequence is optimal given the specific index dimensions
in use.

3.4. Summary: Contractions
In evaluating a network of multiple tensors, it is always more
efficient to break the contraction into a sequence of pairwise
tensor contractions, each of which should (usually) be recast
into a matrix-matrix multiplication in order to achieve optimal
computational performance. The total cost of evaluating a
network can depend on the particular sequence of pairwise
contractions chosen. While there is no known method for
determining an optimal contraction sequence that is efficiently
scalable in the size of the network, manual inference or brute-
force numeric searches are usually viable for the relatively small
networks encountered in common tensor network algorithms.
When coding a tensor network program it is useful to utilize
an automated network contraction routine which can evaluate
a tensor network in a single call by properly chaining together
a sequence of pairwise contractions. This not only reduces the
programming effort required, but also grants a program more
flexibility in allowing a contraction sequence to be easily changed.

4. MATRIX FACTORIZATIONS

Another key operation common in tensor network algorithms,
complimentary to the tensor contractions considered previously,
are factorizations. In this section, we will discuss some of the
various means by which a higher-order tensor can be split into
a product of fewer-order tensors. In particular, the means that
we consider involve applying standard matrix decompositions
[74, 75], to tensor unfoldings, such that this section may serve
as a review of the linear algebra necessary before consideration

of more sophisticated network decompositions. Specifically we
recount the spectral decomposition, QR decomposition and
singular value decomposition and outline their usefulness in the
context of tensor networks, particular in achieving optimal low-
rank tensor approximations. Before discussing decompositions,
we define some special types of tensor.

4.1. Special Tensor Types
A d-by-dmatrixU is said to be unitary if it has orthonormal rows
and columns, which implies that it annihilates to the identity
when multiplied with its conjugate,

U†U = UU† = I, (6)

where I is the d-by-d identity matrix. We define a tensor (whose
order is greater than 2) as unitary with respect to a particular bi-
partition of indices if the tensor can be reshaped into a unitary
matrix according to this partition. Similarly an d1-by-d2 matrix
W, with d1 > d2 is said to be an isometry if

W†W = I, (7)

with I the d2-by-d2 identity matrix. Likewise we say that a tensor
(order greater than 2) is isometric with respect to a particular bi-
partition of indices if the tensor can be reshaped into a isometric
matrix. Notice that, rather than equalling identity, the reverse
order product does now evaluate to a projector P,

WW† = P, (8)

where projectors are defined as Hermitianmatrices that square to
themselves,

P = P†, P2 = P. (9)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

FIGURE 4 | Depiction of some common matrix decompositions. All indices

are assumed to be of dimension d unless otherwise indicated. (Ai) The

spectral decomposition is applied to the order-4 Hermitian tensor H across the

partition indicated by the dashed line, yielding a diagonal matrix of eigenvalues

D and a unitary U. (Aii) The unitary tensor U annihilates to identity with its

conjugate, as per Equation (6). (Bi) The QR decomposition is applied to the

order-3 tensor A across the partition indicated, yielding an isometry Q and an

upper triangular matrix R. (Bii) The isometry Q annihilates to identity with its

conjugate as per Equation (7), while the R matrix is upper triangular. (Ci) The

singular value decomposition (SVD) is applied to the order-3 tensor A across

the partition indicated, yielding an isometry U, a diagonal matrix of singular

values S, and a unitary V. (Cii) Depiction of the constraints satisfied by the

isometry U and unitary V.

4.2. Useful Matrix Decompositions
A commonly used matrix decomposition is the spectral
decomposition (or eigen-decomposition). In the context of
tensor network codes it is most often used for Hermitian, positive
semi-definite matrices, such as for the density matrices used to
describe quantum states. If H is a d × d Hermitian matrix,
or tensor that can be reshaped into such, then the spectral
decomposition yields

H = UDU†, (10)

where U is d × d unitary matrix and D is diagonal matrix
of eigenvalues, see also Figure 4A. The numerical cost of
performing the decomposition scales as O(d3). In the context of
tensor network algorithms the spectral decomposition is often
applied to approximate a Hermitian tensor with one of smaller
rank, as will be discussed in Section 4.4.

Another useful decomposition is the QR decomposition. If A
be an arbitrary d1× d2 matrix with d1 > d2, or tensor that can be

reshaped into such, then the QR decomposition gives

A = QR, (11)

see also Figure 4B. HereQ is d1×d2 isometry, such thatQ†Q = I,
where I is the d2 × d2 identity matrix, and R is d2 × d2 upper
triangular matrix. Note that we are considering the so-called
economical decomposition (which is most often used in tensor
network algorithms); otherwise the full decomposition givesQ as
a d1 × d1 unitary and R is dimension d1 × d2. The numerical
cost of the economical QR decomposition scales as the larger
dimension times the square of the smaller dimension O(d1d2

2),
as opposed to cost O(d1

2d2) for the full decomposition. The QR
decomposition is one of the most computationally efficient ways
to obtain an orthonormal basis for the column space of a matrix,
thus a common application is in orthogonalizing tensors within
a network (i.e., transforming them into isometries), which will be
discussed further in Section 5.3.1.

The final decomposition that we consider is the singular value
decomposition (SVD), which is also widely used in many areas of
mathematics, statistics, physics and engineering. The SVD allows
an arbitrary d1×d2 matrixA, where we assume for simplicity that
d1 ≥ d2, to be decomposed as

A = USV† (12)

where U is d1 × d2 isometry (or unitary if d1 = d2), S is diagonal
d2 × d2 matrix of positive elements (called singular values),
and V is d2 × d2 unitary matrix, see also Figure 4C. Similar
to the economical QR decomposition, we have also considered
the economical form of the SVD; the full SVD would otherwise
produce U as a d1 × d1 unitary and S as a rectangular d1 × d2
matrix padded with zeros. The numerical cost of the economical
SVD scales as O(d1d2

2), identical to that of the economical
QR decomposition. The rank of a tensor (across a specified bi-
partition) is defined as the number of non-zero singular values
that appear in the SVD. A common application of the SVD is in
finding an approximation to a tensor by another of smaller rank,
which will be discussed further in Section 4.4.

Notice that for any matrix A the spectral decompositions
of AA† and A†A are related to the SVD of A; more precisely,
the eigenvectors of AA† and A†A are equivalent to the singular
vectors in U and V respectively of the SVD in Equation (12).
Furthermore the (non-zero) eigenvalues in AA† or A†A are the
squares of the singular values in S. It can also be seen that,
for a Hermitian positive semi-definite matrix H, the spectral
decomposition is equivalent to an SVD.

4.3. Tensor Norms
The primary use for matrix decompositions, such as the SVD, in
the context of tensor networks is in accurately approximating a
higher-order tensor as a product lower-order tensors. However,
before discussing tensor approximations, it is necessary to define
the tensor norm in use. A tensor norm that is particularly
convenient is the Frobenius norm (or Hilbert-Schmidt norm).
Given a tensor Aijk... the Frobenius norm for A, denoted as ‖A‖,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

FIGURE 5 | For any tensor A the tensor trace Ttr of A with its conjugate A†

(drawn with opposite vertical orientation) is obtained by contracting over all

matching indices. The Frobenius norm can be defined as the root of this

tensor trace, see Equation (14).

is defined as the square-root of the sum of the magnitude of each
element squared,

‖A‖ =

√

∑

ijk...

∣

∣Aijk...

∣

∣

2
. (13)

This can be equivalently expressed as the tensor trace of A
multiplied by its conjugate,

‖A‖ =

√

Ttr
(

A†,A
)

, (14)

where the tensor trace, Ttr(A†,A), represents the contraction
of tensor A with its conjugate over all matching indices, see
Figure 5. It also follows that Frobenius norm is related to the
singular values sk of A across any chosen bi-partition,

‖A‖ =

√

∑

k

(sk)
2. (15)

Notice that Equation (14) implies that the difference ε =

‖A− B‖ between two tensors A and B of equal dimension can
equivalently be expressed as

‖A− B‖2 = Ttr(A†,A)− 2
∣

∣

∣
Ttr(A†,B)

∣

∣

∣
+ Ttr(B†,B). (16)

4.4. Optimal Low-Rank Approximations
Given some matrix A, or higher-order tensor that viewed as a
matrix across a chosen bi-partition of its indices, we now focus
on the problem of finding the tensor B that best approximates A
according to the Frobenius norm (i.e., that which minimizes the
difference in Equation 16), assuming B has a fixed rank r. Let us
assume, without loss of generality, that tensor A is equivalent to
a d1 × d2 matrix (with d1 ≥ d2) under a specified bi-partition of
its indices, and that A has singular value decomposition,

Aij =

d2
∑

k=1

UikskV
∗
kj, (17)

where the singular values are assumed to be in descending order,
sk ≥ sk+1. Then the optimal rank r tensor B that approximates
A is known from the Eckart–Young–Mirsky theorem [76], which

FIGURE 6 | (A) The singular value decomposition is taken on tensor A across

a bi-partition between its top two and bottom three indices, and is assumed to

produce d non-zero singular values. (B) Tensor B is now defined by truncating

the matrix of singular values S → S̃ to retain only r < d of the largest singular

values, while similarly truncating the matrices of singular vectors, U → Ũ and

V → Ṽ, to retain only the corresponding singular vectors. By the

Eckart–Young–Mirsky theorem [76] it is known that B is the optimal rank-r

approximation to A (across the chosen bi-partition of tensor indices).

states that B is given by truncating to retain only the r largest
singular values and their corresponding singular vectors,

Bij =

r
∑

k=1

UikskV
∗
kj. (18)

see also Figure 6. It follows that the error of approximation ε =

‖A− B‖, as measured in the Frobenius norm, is related to the
discarded singular values as

ε =

√

∑

k>r

(sk)
2. (19)

If the spectrum of singular values is sharply decaying then the
error is well-approximated by the largest of the discarded singular
values, ε ≈ s(r+1).

Notice that, in the case that the tensor A under consideration
is Hermitian and positive definite across the chosen bi-
partition, that the spectral decomposition could instead be used
in Equation (17). The low-rank approximation obtained by
truncating the smallest eigenvalues would still be guaranteed
optimal, as the spectral decomposition is equivalent to the SVD
in this case.

4.5. Summary: Decompositions
In this section we have described how special types of matrices,
such as unitary matrices and projections, can be generalized to
the case of tensors (which can always be viewed as a matrix
across a chosen bi-partition of their indices). Similarly we have
shown how several concepts from matrices, such as the trace
and the norm, are also generalized to tensors. Finally, we have
described how the optimal low-rank approximation to a tensor
can be obtained via the SVD.

5. GAUGE FREEDOM

All tensor networks possess gauge degrees of freedom;
exploiting the gauge freedom allows one to change the
tensors within a network whilst leaving the final product of
the network unchanged. In this section, we describe methods

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

FIGURE 7 | (A) An example of a tree tensor network (TTN), here composed of

7 tensors. (B) The three (non-trivial) branches of the tree with respect to

choosing A as the root tensor.

for manipulating the gauge degrees of freedom and discuss the
utility of fixing the gauge in a specific manner.

5.1. Tree Tensor Networks
In this manuscript we shall restrict our considerations of gauge
manipulations to focus only on tensors networks that do not
possess closed loops (i.e., networks that correspond to acyclic
graphs), which are commonly referred to as tree tensor networks
(TTN) [77, 78]. Figure 7A presents an example of a tree tensor
network. If we select a single tensor to act as the center (or
root node) then we can understand the tree tensor network as
being composed of a set of distinct branches extending from this
chosen tensor. For instance, Figure 7B depicts the three branches
(excluding the single trivial branch) extending from the 4th-order
tensor A. It is important to note that connections between the
different branches are not possible in networks without closed
loops; this restriction is required for the re-gauging methods
considered in this manuscript. However these methods can
(mostly) be generalized to the case of networks containing closed
loops by using a more sophisticated formalism as shown in [79].

5.2. Gauge Transformations
Consider a tensor network of multiple tensors that, under
contraction of all internal indices, evaluates to some product
tensorH. We now pose the following question: is there a different
choice of tensors with the same network geometry that also
evaluates to H? Clearly the answer to this question is yes! As
shown below in Figure 8A, on any of the internal indices of the
network one can introduce a resolution of the identity (i.e., a
pair of matrices X and X−1) which, by construction, does not
change the final product that the network evaluates to. However,
absorbing one of these matrices into each adjoining tensor
changes the individual tensors, see Figure 8B, while leaving the
product of the network unchanged. It follows that there are
infinitely many choices of tensors such that the network product
evaluates to some fixed output tensor, since the gauge change
matrix X can be any invertible matrix. This ability to introduce
an arbitrary resolution of the identity on an internal index, while
leaving the product of the network unchanged, is referred to as
the gauge freedom of the network.

While in some respects the gauge freedom could be considered
bothersome, as it implies tensor decompositions are never
unique, it can also be exploited to simplify many types of

FIGURE 8 | (A) Given a network of three tensors {A,B,C}, one can introduce

gauge change matrices X and Y (together with their inverses) on the internal

indices of the network while leaving the final product D of the network

unchanged. (B) Definitions of the new tensors {Ã, B̃, C̃} after the change of

gauge.

operations on tensor networks. Indeed, most tensor network
algorithms require fixing the gauge in a prescribed manner
in order to function correctly. In the following sections we
discuss ways to fix the gauge degree of freedom as to create an
orthogonality center and the benefits of doing so.

5.3. Orthogonality Centers
A given tensor A within a network is said to be an orthogonality
center if every branch connected to tensor A annihilates to the
identity when contracted with its conjugate as shown in Figure 9.
Equivalently, each branch must (collectively) form an isometry
across the bi-partition between its open indices and the index
connected to tensor A. By properly manipulating the gauge
degrees of freedom, it is possible to turn any tensor with a tree
tensor network into an orthogonality center [80].We now discuss
two different methods for achieving this: a “pulling through”
approach, which was a key ingredient in the original formulation
of DMRG [49–51], and a “direct orthogonalization” approach,
which was an important part of the TEBD algorithm [52, 53].

5.3.1. Creating an Orthogonality Center via “Pulling

Through”
Here we describe a method for setting a tensor A within a
network as an orthogonality center through iterative use of the
QR decomposition. The idea behind his method is very simple:
if each individual tensor within a branch is transformed into a
(properly oriented) isometry, then the entire branch collectively
becomes an isometry and thus the tensor at center of the branches
becomes an orthogonality center. Let us begin by orienting each
index of the network by drawing an arrow pointing toward the
desired center A. Then, starting at the tip of each branch, we
should perform a QR decomposition on each tensor based on a
bi-partition between its incoming and outgoing indices. The R
part of the decomposition should then be absorbed into the next
tensor in the branch (i.e., closer to the root tensor A), and the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

FIGURE 9 | (A) An example of a tree tensor network. (B) A depiction of the constraints required for the tensor A to be an orthogonality center: each of the branches

must annihilate to the identity when contracted with its conjugate.

FIGURE 10 | A depiction of how the tensor A can be made into an orthogonality center of the network from Figure 7 via the “pulling-though” approach. (A,B) Tensors

D and E, which reside at the tips of a branch, are decomposed via the QR decomposition. (C) The R components of the previous QR decompositions are absorbed

into the B tensor higher on the branch, which is then itself decomposed via the QR decomposition. (D) Following this procedure, all tensors in the network are

orthogonalized (with respect to their incoming vs. outgoing indices) such that A′ becomes an orthogonality center of the network.

process repeated as depicted in Figures 10A–C. At the final step
an R part of the QR decomposition from each branch is absorbed
into the central tensor A and the process is complete, see also
Figure 10D.

Note that the SVD could be used as an alternative to the
QR decomposition: instead of absorbing the R part of the QR
decomposition into the next tensor in the branch one could
absorb the product of the S and V part of the SVD from Equation
(12). However, in practice, the QR decomposition is most often
preferable as it computationally cheaper than the SVD.

5.3.2. Creating an Orthogonality Center via “Direct

Orthogonalization”
Here we describe a method for setting a tensor A within a
network as an orthogonality center based on use of a single
decomposition for each branch, as depicted in Figure 11. (i)
We begin by computing the positive-definite matrix ρ for each

branch (with respect to the center tensor A) by contracting the
branch with its Hermitian conjugates. (ii) The principle square
root X of each of the matrices ρ is then computed, i.e., such
that ρ = XX†, which can be computed using the spectral
decomposition if necessary. (iii) Finally, a change of gauge is
made on each of the indices of tensor A using the appropriate
X matrix and its corresponding inverse X−1, with the X part
absorbed in tensor A and the X−1 absorbed in the leading
tensor of the branch such that the branch matrix transforms as
ρ → ρ̃ = X−1

ρ(X−1)†. It follows that the tensor A is now an
orthogonality center as each branch matrix ρ̃ of the transformed
network evaluates as the identity,

ρ̃ = X−1
ρ(X−1)† = X−1XX†(X−1)† = I. (20)

Note that, for simplicity, we have assumed that the branch
matrices ρ do not have zero eigenvalues, such that their inverses

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

exist. Otherwise, if zero eigenvalues are present, the current
method is not valid unless the index dimensions are first reduced
by truncating any zero eigenvalues.

5.3.3. Comparison of Methods for Creating

Orthogonality Centers
Each of the two methods discussed to create an orthogonality
center have their own advantages and disadvantages, such that
the preferred method may depend on the specific application
under consideration. In practice, the “direct orthogonalization”
is typically computationally cheaper and easier to execute,
since this method only requires changing the gauge on the
indices connected to the center tensor. In contrast the “pulling
through” method involves changing the gauge on all indices
of the network. Additionally, the “direct orthogonalization”

approach can easily be employed in networks of infinite extent,
such as infinite MPS [52, 53], if the matrix ρ associated to
a branch of infinite extent can be computed using by solving
for a dominant eigenvector. While “pulling through” can also
potentially be employed for networks of infinite extent, i.e.,
through successive decompositions until sufficient convergence
is achieved, this is likely to be more computationally expensive.
However the “pulling through” approach can be advantageous
if the branch matrices ρ are ill-conditioned as the errors due
to floating-point arithmetic are lesser. This follows since the
“direct orthogonalization” requires one to square the tensors
in each branch. The “pulling-through” approach also results in
transforming every tensor in the network (with the exception of
the center tensor) into an isometry, which may be desirable in
certain applications.

FIGURE 11 | A depiction of how the tensor A from the network of Figure 7 can be made into an orthogonality center via the “direct orthogonalization” approach.

(A) A change of gauge is made on every (non-trivial) branch connected to A, such that A becomes an orthogonality center. (B–D) The gauge change matrices

{X1,X2,X3} are obtained by contracting each branch with its Hermitian conjugate and then taking the principle root.

FIGURE 12 | (A) A network of 7 tensors {A,B,C,D,E, F,G} contracts to give a tensor H. (B) After replacing a single tensor A → A′ the network contracts to a

different tensor H′. (C) The tensor A′ is decomposed into a pair of tensors AL and AR, leaving the final tensor H′ unchanged.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

FIGURE 13 | (A) In the network from Figure 12A, if the tensor A is an orthogonality center then it follows that the norm of the network ‖H‖ is equal to the norm of the

center tensor ‖A‖. (B) Similarly it follows that, in changing only the center tensor A → A′, the global overlap between the networks H and H′ is equal to the local

overlap between the center tensors A and A′.

5.4. Decompositions of Tensors Within
Networks
In Section 4, it was described how the SVD could be applied to
find the optimal low-rank approximation to a tensor in terms
of minimizing the Frobenius norm between the original tensor
and the approximation. In the present section we extend this
concept further and detail how, by first creating an orthogonality
center, a tensor within a network can be optimally decomposed
as to minimize the global error coming from consideration of the
entire network.

Let us consider a tree tensor network of tensors
{A,B,C,D,E, F,G} that evaluates to a tensor H, as depicted
in Figure 12A. We now replace a single tensor A from this
network by a new tensor A′ such that the network now evaluates
to a tensor H′ as depicted in Figure 12B. Our goal is to address
the following question: how can we find the optimal low-rank
approximation A′ to tensor A such that the error from the full
network, ‖H − H′‖, is minimized? Notice that if we follow the
method from Section 4 and simple truncate the smallest singular
values of A, see Figure 12C, then this will only ensure that the

local error, ‖A − A′‖, is minimized. The key to resolving this
issue is through creation of an orthogonality center, which can
reduce the global norm of a network to the norm of a single
tensor. Specifically if tensor A is an orthogonality center of a
network that evaluates to a final tensor H then it follow from
the definition of an orthogonality center that ‖H‖ = ‖A‖, as
depicted in Figure 13A. Thus it also can be seen that under
replacement of the center tensor A with a new tensor A′, such
that the network now evaluates to a new tensor H′, that the
difference between the tensors ‖A − A′‖ is precisely equal to
the global difference between the networks ‖H − H′‖. This
follows as the overlap of H and H′ equals the overlap of A and

A′, as depicted in Figure 13B. In other words, by appropriately
manipulating the gauge degrees of freedom in a network, the

global difference resulting from changing a single tensor in a
network can become equivalent to the local difference between
the single tensors. The solution to the problem of finding the
optimal low-rank approximation A′ to a tensor A within a
network thus becomes clear; we should first adjust the gauge
such that A becomes an orthogonality center, after which we can

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 June 2022 | Volume 8 | Article 806549

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

follow the method from Section 4 and create the optimal global
approximation (i.e., that which minimizes the global error) by
truncating the smallest singular values of A. The importance of
this result in the context tensor network algorithms cannot be
overstated; this understanding for how to optimally truncate
a single tensor within a tensor network, see also [81], is a key
aspect of the DMRG algorithm [49–51], the TEBD algorithm
[52, 53] and many other tensor network algorithms.

5.5. Summary: Gauge Freedom
In the preceding section, we discussed manipulations of the
gauge degrees of freedom in a tensor network and described two
methods that can be used to create an orthogonality center. The
proper use of an orthogonality center was then demonstrated
to allow one to decompose a tensor within a network in
such a way as to minimize the global error. Note that while
the results in this section were described only for tree tensor
networks (i.e., networks based on acyclic graphs), they can be
generalized to arbitrary networks by using more sophisticated
methodology [79].

6. CONCLUSIONS

Network contractions and decompositions are the twin pillars
of all tensor network algorithms. In this manuscript we
have recounted the key theoretical considerations required for
performing these operations efficiently and also discussed aspects
of their implementation in numeric codes. We expect that

a proper understanding of these results could facilitate an
individuals effort to implement many common tensor network
algorithms, such as DMRG, TEBD, TRG, PEPS and MERA, and
also further aid researchers in the design and development of new
tensor network algorithms.

However, there are still a wide variety of additional
general ideas and methods, not covered in this manuscript,
that are necessary for the implementation of more advanced
tensor network algorithms. These include (i) strategies for
performing variational optimization, (ii) methods for dealing
with decompositions in networks containing closed loops, (iii)
the use of approximations in tensor network contractions. We
shall address several of these topics in a follow-up work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

GE was solely responsible for the preparation of this manuscript.

FUNDING

This work was funded by Institutional Startup Funds.

REFERENCES

1. Cirac JI, Verstraete F. Renormalization and tensor product states in

spin chains and lattices. J Phys A Math Theor. (2009) 42:504004.

doi: 10.1088/1751-8113/42/50/504004

2. Evenbly G, Vidal G. Tensor network states and geometry. J Stat Phys. (2011)

145:891–918. doi: 10.1007/s10955-011-0237-4

3. Orus R. A practical introduction to tensor networks: matrix product

states and projected entangled pair states. Ann Phys. (2014) 349:117.

doi: 10.1016/j.aop.2014.06.013

4. Bridgeman JC, Chubb CT. Hand-waving and interpretive dance: an

introductory course on tensor networks. J Phys A Math Theor. (2017)

50:223001. doi: 10.1088/1751-8121/aa6dc3

5. Montangero S. Introduction to tensor network methods. In: Numerical

Simulations of Low-Dimensional Many-body Quantum Systems. Berlin:

Springer (2018). doi: 10.1007/978-3-030-01409-4

6. Orus R. Tensor networks for complex quantum systems. Nat Rev Phys. (2019)

1:538–50. doi: 10.1038/s42254-019-0086-7

7. Silvi P, Tschirsich F, Gerster M, Junemann J, Jaschke D, Rizzi M, et al. The

tensor networks anthology: simulation techniques for many-body quantum

lattice systems. SciPost Phys. (2019) 8. doi: 10.21468/SciPostPhysLectNotes.8

8. Ran S-J, Tirrito E, Peng C, Chen X, Tagliacozzo L, Su G, et al.

Tensor Network Contractions Methods and Applications to Quantum

Many-Body Systems. Springer (2020). doi: 10.1007/978-3-030-34

489-4

9. Cirac JI, Perez-Garcia D, Schuch N, Verstraete F. Matrix product states

and projected entangled pair states: concepts, symmetries, theorems.

Rev Mod Phys. (2021) 93:045003. doi: 10.1103/RevModPhys.93.04

5003

10. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51:455–500. doi: 10.1137/07070111X

11. Vidal G, Latorre JI, Rico E, Kitaev A. Entanglement in

quantum critical phenomena. Phys Rev Lett. (2003) 90:227902.

doi: 10.1103/PhysRevLett.90.227902

12. Hastings MB. An area law for one-dimensional quantum systems. J Stat Mech.

(2007) 2007:P08024. doi: 10.1088/1742-5468/2007/08/P08024

13. Eisert J, Cramer M, Plenio M. Area laws for the entanglement entropy - a

review. Rev Mod Phys. (2010) 82:277–306. doi: 10.1103/RevModPhys.82.277

14. Chan GKL, Sharma S. The density matrix renormalization group

in quantum chemistry. Annu Rev Phys Chem. (2011) 62:465.

doi: 10.1146/annurev-physchem-032210-103338

15. Keller S, Dolfi M, Troyer M, Reiher M. An efficient matrix product operator

representation of the quantum chemical Hamiltonian. J Chem Phys. (2015)

143:244118. doi: 10.1063/1.4939000

16. Szalay S, Pfeffer M, Murg V, Barcza G, Verstraete F, Schneider R, et al.

Tensor product methods entanglement optimization for ab initio. quantum

chemistry. Int J Quant Chem. (2015) 115:1342. doi: 10.1002/qua.24898

17. Chan G K-L, Keselman A, Nakatani N, Li Z, White SR. Matrix product

operators, matrix product states, and ab initio. density matrix renormalization

group algorithms. J Chem Phys. (2016) 145:014102. doi: 10.1063/1.4955108

18. Zhai H, Chan GK-L. Low communication high performance ab initio. density

matrix renormalization group algorithms. J Chem Phys. (2021) 154:224116.

doi: 10.1063/5.0050902

19. Swingle B. Entanglement renormalization and holography. Phys Rev D. (2012)

86:065007. doi: 10.1103/PhysRevD.86.065007

20. Miyaji M, Numasawa T, Shiba N, Takayanagi T, Watanabe K. Continuous

multiscale entanglement renormalization ansatz as holographic

surface-state correspondence. Phys Rev Lett. (2015) 115:171602.

doi: 10.1103/PhysRevLett.115.171602

21. Pastawski F, Yoshida B, Harlow D, Preskill J. Holographic quantum error-

correcting codes: toy models for the bulk/boundary correspondence. J High

Energy Phys. (2015) 6:149. doi: 10.1007/JHEP06(2015)149

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 June 2022 | Volume 8 | Article 806549

https://doi.org/10.1088/1751-8113/42/50/504004
https://doi.org/10.1007/s10955-011-0237-4
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1007/978-3-030-01409-4
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.21468/SciPostPhysLectNotes.8
https://doi.org/10.1007/978-3-030-34489-4
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1137/07070111X
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1146/annurev-physchem-032210-103338
https://doi.org/10.1063/1.4939000
https://doi.org/10.1002/qua.24898
https://doi.org/10.1063/1.4955108
https://doi.org/10.1063/5.0050902
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevLett.115.171602
https://doi.org/10.1007/JHEP06(2015)149
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

22. Hayden P, Nezami S, Qi X-L, Thomas N, Walter M, Yang Z. Holographic

duality from random tensor networks. J High Energy Phys. (2016) 11:009.

doi: 10.1007/JHEP11(2016)009

23. Czech B, Lamprou L, McCandlish S, Sully J. Tensor networks from kinematic

space. J High Energy Phys. (2016) 07:100. doi: 10.1007/JHEP07(2016)100

24. Evenbly G. Hyperinvariant tensor networks and holography. Phys Rev Lett.

(2017) 119:141602. doi: 10.1103/PhysRevLett.119.141602

25. Stoudenmire EM, Schwab DJ. Supervised learning with tensor networks. Adv

Neural Inf Process Syst. (2016) 29:4799–807.

26. Martyn J, Vidal G, Roberts C, Leichenauer S. Entanglement and tensor

networks for supervised image classification. arXiv preprint arXiv:2007.06082.

(2020). doi: 10.48550/arXiv.2007.06082

27. Cheng S, Wang L, Zhang P. Supervised learning with projected entangled

pair states. Phys Rev B. (2021) 103:125117. doi: 10.1103/PhysRevB.103.

125117

28. Liu J, Li S, Zhang J, Zhang P. Tensor networks for unsupervised

machine learning. arXiv preprint arXiv:2106.12974. (2021).

doi: 10.48550/arXiv.2106.12974

29. Liu Y, Li W-J, Zhang X, Lewenstein M, Su G, Ran SJ. Entanglement-based

feature extraction by tensor network machine learning. Front Appl Math Stat.

(2021) 7:716044. doi: 10.3389/fams.2021.716044

30. Fried ES, Sawaya NPD, Cao Y, Kivlichan ID, Romero J, Aspuru-Guzik

A. qTorch: the quantum tensor contraction handler. PLoS ONE. (2018)

13:e0208510. doi: 10.1371/journal.pone.0208510

31. Villalonga B, Boixo S, Nelson B, Henze C, Rieffel E, Biswas R, et al.

A flexible high-performance simulator for verifying and benchmarking

quantum circuits implemented on real hardware. NPJ Quantum Inf. (2019)

5:86. doi: 10.1038/s41534-019-0196-1

32. Schutski R, Lykov D, Oseledets I. Adaptive algorithm for

quantum circuit simulation. Phys Rev A. (2020) 101:042335.

doi: 10.1103/PhysRevA.101.042335

33. Pan F, Zhang P. Simulation of quantum circuits using the big-

batch tensor network method. Phys Rev Lett. (2022) 128:030501.

doi: 10.1103/PhysRevLett.128.030501

34. Levental M. Tensor networks for simulating quantum circuits on

FPGAs. arXiv preprint arXiv preprint arXiv:2108.06831. (2021).

doi: 10.48550/arXiv.2108.06831

35. Vincent T, O’Riordan LJ, Andrenkov M, Brown J, Killoran N, Qi H, et al.

Jet: fast quantum circuit simulations with parallel task-based tensor-network

contraction. Quantum. (2022) 6:709. doi: 10.22331/q-2022-05-09-709

36. Evenbly G, Vidal G. Algorithms for entanglement renormalization. Phys Rev

B. (2009) 79:144108. doi: 10.1103/PhysRevB.79.144108

37. Zhao H-H, Xie Z-Y, Chen Q-N, Wei Z-C, Cai JW, Xiang T.

Renormalization of tensor-network states. Phys Rev B. (2010) 81:174411.

doi: 10.1103/PhysRevB.81.174411

38. Schollwoeck U. The density-matrix renormalization group in the age of

matrix product states.Ann Phys. (2011) 326:96. doi: 10.1016/j.aop.2010.09.012

39. Phien HN, Bengua JA, Tuan HD, Corboz P, Orus R. The iPEPS algorithm,

improved: fast full update and gauge fixing. Phys Rev B. (2015) 92, 035142.

doi: 10.1103/PhysRevB.92.035142

40. Evenbly G. Algorithms for tensor network renormalization. Phys Rev B. (2017)

95:045117. doi: 10.1103/PhysRevB.95.045117

41. Fishman M, White SR, Stoudenmire EM. The ITensor software

library for tensor network calculations. arXiv:2007.14822. (2020).

doi: 10.48550/arXiv.2007.14822

42. Kao Y-J, Hsieh Y-D, Chen P. Uni10: an open-source library for

tensor network algorithms. J Phys Conf Ser. (2015) 640:012040.

doi: 10.1088/1742-6596/640/1/012040

43. Haegeman J. TensorOperations. (2022). Available online at: https://github.

com/Jutho/TensorOperations.jl (accessed April 14, 2022).

44. Hauschild J, Pollmann F. Efficient numerical simulations with Tensor

Networks: Tensor Network Python (TeNPy). SciPost Phys. (2018).

doi: 10.21468/SciPostPhysLectNotes.5

45. Al-Assam S, Clark SR, Jaksch D. The tensor network theory library. J Stat

Mech. (2017) 2017:093102. doi: 10.1088/1742-5468/aa7df3

46. Olivares-Amaya R, HuW, Nakatani N, Sharma S, Yang J, Chan GK-L. The ab-

initio. density matrix renormalization group in practice. J Chem Phys. (2015)

142:034102. doi: 10.1063/1.4905329

47. Roberts C, Milsted A, Ganahl M, Zalcman A, Fontaine B, Zou Y, et al.

TensorNetwork: a library for physics and machine learning. arXiv preprint

arXiv:1905.01330. (2019). doi: 10.48550/arXiv.1905.01330

48. Oseledets V. TT Toolbox. (2014). Available online at: https://github.com/

oseledets/TT-Toolbox (accessed July 7, 2021).

49. White SR. Density matrix formulation for quantum renormalization groups.

Phys Rev Lett. (1992) 69:2863. doi: 10.1103/PhysRevLett.69.2863

50. White SR. Density-matrix algorithms for quantum renormalization groups.

Phys Rev B. (1993) 48:10345. doi: 10.1103/PhysRevB.48.10345

51. Schollwoeck U. The density-matrix renormalization group. Rev Mod Phys.

(2005) 77:259. doi: 10.1103/RevModPhys.77.259

52. Vidal G. Efficient classical simulation of slightly entangled

quantum computations. Phys Rev Lett. (2003) 91:147902.

doi: 10.1103/PhysRevLett.91.147902

53. Vidal G. Efficient simulation of one-dimensional quantum many-body

systems. Phys Rev Lett. (2004) 93:040502. doi: 10.1103/PhysRevLett.93.

040502

54. Verstraete F, Cirac JI. Renormalization algorithms for quantum-many-

body systems in two and higher dimensions. arXiv preprint arXiv:cond-

mat/0407066. doi: 10.48550/arXiv.cond-mat/0407066

55. Verstraete F, Cirac JI, Murg V. Matrix product states, projected entangled

pair states, and variational renormalization group methods for quantum

spin systems. Adv Phys. (2008) 57:143. doi: 10.1080/147899408019

12366

56. Jordan J, Orus R, Vidal G, Verstraete F, Cirac JI. Classical simulation

of infinite-size quantum lattice systems in two spatial dimensions.

Phys Rev Lett. (2008) 101:250602. doi: 10.1103/PhysRevLett.101.

250602

57. Vidal G. A class of quantum many-body states that can

be efficiently simulated. Phys Rev Lett. (2008) 101:110501.

doi: 10.1103/PhysRevLett.101.110501

58. Levin M, Nave CP. Tensor renormalization group approach to two-

dimensional classical lattice models. Phys Rev Lett. (2007) 99:120601.

doi: 10.1103/PhysRevLett.99.120601

59. Xie Z-Y, Chen J, Qin MP, Zhu JW, Yang LP, Xiang T. Coarse-graining

renormalization by higher-order singular value decomposition. Phys Rev B.

(2012) 86:045139. doi: 10.1103/PhysRevB.86.045139

60. Evenbly G, Vidal G. Tensor network renormalization. Phys Rev Lett. (2015)

115:180405. doi: 10.1103/PhysRevLett.115.180405

61. Evenbly G. Tensors.net Website. (2019). Available online at: https://www.

tensors.net (accessed May 10, 2022).

62. Singh S, Pfeifer RNC, Vidal G. Tensor network decompositions in

the presence of a global symmetry. Phys Rev A. (2010) 82:050301.

doi: 10.1103/PhysRevA.82.050301

63. Singh S, Pfeifer RNC, Vidal G. Tensor network states and algorithms in

the presence of a global U(1) symmetry. Phys Rev B. (2011) 83:115125.

doi: 10.1103/PhysRevB.83.115125

64. Weichselbaum A. Non-abelian symmetries in tensor networks: a

quantum symmetry space approach. Ann Phys. (2012) 327:2972–3047.

doi: 10.1016/j.aop.2012.07.009

65. Sharma S. A general non-Abelian density matrix renormalization group

algorithm with application to the C2 dimer. J Chem Phys. (2015) 142:024107.

doi: 10.1063/1.4905237

66. Keller S, Reiher M. Spin-adapted matrix product states and operators. J Chem

Phys. (2016) 144:134101. doi: 10.1063/1.4944921

67. Nataf P, Mila F. Density matrix renormalization group simulations of

SU(N) Heisenberg chains using standard Young tableaus: fundamental

representation and comparison with a finite-size Bethe ansatz. Phys Rev B.

(2018) 97:134420. doi: 10.1103/PhysRevB.97.134420

68. Schmoll P, Singh S, Rizzi M, Oras R. A programming guide for tensor

networks with global SU(2) symmetry. Ann Phys. (2020) 419:168232.

doi: 10.1016/j.aop.2020.168232

69. Pfeifer RNC, Haegeman J, Verstraete F. Faster identification of optimal

contraction sequences for tensor networks. Phys Rev E. (2014) 90:033315.

doi: 10.1103/PhysRevE.90.033315

70. Pfeifer RNC, Evenbly G. Improving the efficiency of variational

tensor network algorithms. Phys Rev B. (2014) 89, 245118.

doi: 10.1103/PhysRevB.89.245118

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 June 2022 | Volume 8 | Article 806549

https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP07(2016)100
https://doi.org/10.1103/PhysRevLett.119.141602
https://doi.org/10.48550/arXiv.2007.06082
https://doi.org/10.1103/PhysRevB.103.125117
https://doi.org/10.48550/arXiv.2106.12974
https://doi.org/10.3389/fams.2021.716044
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1103/PhysRevA.101.042335
https://doi.org/10.1103/PhysRevLett.128.030501
https://doi.org/10.48550/arXiv.2108.06831
https://doi.org/10.22331/q-2022-05-09-709
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.81.174411
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.92.035142
https://doi.org/10.1103/PhysRevB.95.045117
https://doi.org/10.48550/arXiv.2007.14822
https://doi.org/10.1088/1742-6596/640/1/012040
https://github.com/Jutho/TensorOperations.jl
https://github.com/Jutho/TensorOperations.jl
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1088/1742-5468/aa7df3
https://doi.org/10.1063/1.4905329
https://doi.org/10.48550/arXiv.1905.01330
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.48550/arXiv.cond-mat/0407066
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevLett.115.180405
https://www.tensors.net
https://www.tensors.net
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevB.83.115125
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1063/1.4905237
https://doi.org/10.1063/1.4944921
https://doi.org/10.1103/PhysRevB.97.134420
https://doi.org/10.1016/j.aop.2020.168232
https://doi.org/10.1103/PhysRevE.90.033315
https://doi.org/10.1103/PhysRevB.89.245118
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Evenbly Numerical Implementation of Tensor Networks

71. Dudek JM, Duenas-Osorio L, Vardi MY. Efficient contraction of large tensor

networks for weighted model counting through graph decompositions.

arXiv preprint arXiv:1908.04381v2. (2019). doi: 10.48550/arXiv.1908.

04381

72. Gray J, Kourtis S. Hyper-optimized tensor network contraction. Quantum.

(2021) 5:410. doi: 10.22331/q-2021-03-15-410

73. Pfeifer RNC, Evenbly G, Singh S, Vidal G. NCON: a tensor network

contractor for MATLAB. arXiv preprint arXiv:1402.0939. (2014).

doi: 10.48550/arXiv.1402.0939

74. Horn RA, Johnson CR. Matrix Analysis. Cambridge: Cambridge University

Press (1985). doi: 10.1017/CBO9780511810817

75. Horn RA, Johnson CR. Topics in Matrix Analysis. Cambridge: Cambridge

University Press (1991). doi: 10.1017/CBO9780511840371

76. Eckart C, Young G. The approximation of one matrix by another of lower

rank. Psychometrika. (1936) 1:211–8. doi: 10.1007/BF02288367

77. Shi Y, Duan L, Vidal G. Classical simulation of quantum many-body

systems with a tree tensor network. Phys Rev A. (2006) 74:022320.

doi: 10.1103/PhysRevA.74.022320

78. Tagliacozzo L, Evenbly G, Vidal G. Simulation of two-dimensional quantum

systems using a tree tensor network that exploits the entropic area law. Phys

Rev B. (2009) 80:235127. doi: 10.1103/PhysRevB.80.235127

79. Evenbly G, Gauge fixing, canonical forms and optimal truncations in

tensor networks with closed loops. Phys Rev B. (2018) 98:085155.

doi: 10.1103/PhysRevB.98.085155

80. Holtz S, Rohwedder T, Schneider R. The alternating linear scheme for

tensor optimization in the tensor train format. SIAM J Sci Comput. (2012)

34:A683–713. doi: 10.1137/100818893

81. Zhang Y, Solomonik E. On stability of tensor networks and canonical forms.

arXiv preprint arXiv:2001.01191. (2020). doi: 10.48550/arXiv.2001.01191

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Evenbly. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 June 2022 | Volume 8 | Article 806549

https://doi.org/10.48550/arXiv.1908.04381
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.48550/arXiv.1402.0939
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1007/BF02288367
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevB.80.235127
https://doi.org/10.1103/PhysRevB.98.085155
https://doi.org/10.1137/100818893
https://doi.org/10.48550/arXiv.2001.01191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	A Practical Guide to the Numerical Implementation of Tensor Networks I: Contractions, Decompositions, and Gauge Freedom
	1. Introduction
	2. Preliminaries
	2.1. Prior Knowledge
	2.2. Software Libraries
	2.3. Programming Language
	2.4. Terminology

	3. Tensor Contractions
	3.1. Pairwise Tensor Contractions
	3.2. Contraction Sequence
	3.3. Network Contraction Routines
	3.4. Summary: Contractions

	4. Matrix Factorizations
	4.1. Special Tensor Types
	4.2. Useful Matrix Decompositions
	4.3. Tensor Norms
	4.4. Optimal Low-Rank Approximations
	4.5. Summary: Decompositions

	5. Gauge Freedom
	5.1. Tree Tensor Networks
	5.2. Gauge Transformations
	5.3. Orthogonality Centers
	5.3.1. Creating an Orthogonality Center via ``Pulling Through''
	5.3.2. Creating an Orthogonality Center via ``Direct Orthogonalization''
	5.3.3. Comparison of Methods for Creating Orthogonality Centers

	5.4. Decompositions of Tensors Within Networks
	5.5. Summary: Gauge Freedom

	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References


