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The linear regression model becomes unsuitable when the response variable is

expressed as percentages, proportions, and rates. The beta regression (BR) model is

more appropriate for the variable of this form. The BR model uses the conventional

maximum likelihood estimator (BML), and this estimator may not be efficient when

the regressors are linearly dependent. The beta ridge estimator was suggested as an

alternative to BML in the literature. In this study, we developed the Dawoud–Kibria

estimator to handle multicollinearity in the BR model. The properties of the new estimator

are derived. We compared the performance of the estimator with the existing estimators

theoretically using the mean squared error criterion. A Monte Carlo simulation and a

real-life application were carried out to show the benefits of the proposed estimator.

The theoretical comparison, simulation, and real-life application results revealed the

superiority of the proposed estimator.

Keywords: beta Kibria–Lukman estimator, beta Özkale–Kaçiranlar estimator, beta ridge estimator, maximum

likelihood, mean square

INTRODUCTION

The linear regression (LR)model is used if the dependent variable follows a normal distribution.
The assumption of the normality of the dependent variable may be violated and then it will fit some
of the exponential family distributions as a negative binomial, Poisson, gamma, inverse Gaussian,
and beta, so in this case, we use the generalized linear (GL) model instead of the LR model. The
beta regression (BR)model is applied inmany different fields such as engineering, medical sciences,
physical sciences, social sciences, environment, and business if the dependent variable observations
are between (0, 1). To estimate the BR model parameters, we use the maximum likelihood (ML)
estimator which is more convenient than the ordinary least squares (OLS) estimator for describing
and investigating different phenomena.

In the LR model, the explanatory variables may be correlated and this causes a problem called
multicollinearity in which this problem may arise in the BR model. The ML estimator is the most
popular used method for estimating the unknown regression parameters in the BRmodel. But also,
in the existence of multicollinearity problems, the regression parameters’ variances and standard
errors are very large. To reduce the multicollinearity effect, different biased estimation methods
are proposed and the most popular method is the ordinary ridge regression (ORR) estimation
method which was proposed by Hoerl and Kennard [1, 2]. Another recent one parameter estimator
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proposed by Kibria and Lukman [3] to solve the multicollinearity
is the Kibria and Lukman estimator. Also, in the case of
an estimator with two parameters, Özkale and Kaçiranlar [4]
proposed a two-parameter estimator. Very recently, Dawoud
and Kibria [5] proposed a new kind of two-parameter estimator
called the Dawoud–Kibria (DK) estimator. There are other
recent studies regarding the one parameter and two-parameter
estimators in LR and GL models, such as Roozbeh et al. [6],
Lukman et al. [7], Arashi et al. [8], Farghali et al. [9], Lukman
et al. [10, 11], Algamal and Abonazel [12], Akram et al. [13],
and Abonazel et al. [14]. In this article, we drive the Dawoud–
Kibria estimator for the BR model in the presence of the
multicollinearity problem. Then, the properties of the Dawoud–
Kibria estimator for the BR model are investigated.

This article is organized as follows. The methodology and
the proposed estimator are given in section methodology. In
section the superiority of the proposed estimator, the theoretical
comparisons among the estimators are conducted. Section
selection of biasing parameters k and d gives the proposed
biasing parameters for the estimators. In sections Monte Carlo
simulation study and real data application, the Monte Carlo
simulation and the real-life dataset results are presented. Finally,
in section conclusion, some conclusions of this article are given.

METHODOLOGY

In this section, we discuss the BR model. Then, the ridge, Kibria–
Lukman, and Özkale–Kaçiranlar estimators are stated to the BR
model. After that, we introduce the Dawoud–Kibria estimator for
the BR model. Finally, the biasing parameters of the Dawoud–
Kibria estimator for the BR model are proposed.

The BR Model
The BR model is popularly used in many different fields such as
economics and medical studies. The BR model is used to show
the effect of explanatory variables on a non-normal response
variable as any generalized LR model. However, the response
variable for the BR model is restricted to the interval (0, 1) as
rates, proportions, and fractions. The BR model was given firstly
by the authors Ferrari and Cribari-Neto [15] with relating the
response variable mean function to linear predictors set through
a link function. The BR model has a precision parameter where
its reciprocal is determined as a dispersion measure [16, 17].

Let y be a continuous random variable having a beta
distribution, then the probability density function of y is given as:

f
(

y;µ,φ
)

=
Ŵ(φ)

Ŵ(µφ)Ŵ((1− µ) φ)
yµφ−1(1− y

)(1−µ)φ−1
;

0 < y < 1, 0 < µ < 1,φ > 0, (1)

where Ŵ(·) is called as the gamma function and φ is called as the
precision parameter. The beta probability distribution mean and
variance are as follows:

E
(

y
)

= µ, Var
(

y
)

=
Var (µ)

1+ φ
=
µ (1− µ)

1+ φ
.

Let y1, . . . , yn be independent random variables, where each
yi; i = 1, . . . , n follows the density in Equation (1) with mean µi

and unknown precision φ. The model is obtained by assuming
that the mean of yi can be written as:

g (µi) = log

(

µi

1− µi

)

= xi
′β = ηi, (2)

where g(·) is the used link function, β =
(

β1, . . . ,βp
)

′ is an
(

p× 1
)

unknown parameters vector, xi =
(

xi1, . . . , xip
)

′ is the
vector of p regressors, and ηi is the linear predictor.

Beta Maximum Likelihood Estimator
The BR parameters estimation is done using the beta maximum
likelihood (BML) method [18]. The BR log-likelihood function is
given as:

L (β) =

n
∑

i=1

{

logŴ(φ)− logŴ(µiφ)− logŴ((1− µi) φ)

+ (µiφ − 1) log
(

yi
)

+ ((1− µi) φ − 1) log
(

1− yi
)}

. (3)

Differentiating the log-likelihood given in Equation (3) with
respect to the parameter β provides us the score function of the
parameter β that is given as:

U (β) = φX′T
(

y∗ − µ∗
)

, (4)

where T = diag
(

1
g′(µ1)

, . . . , 1
g′(µn)

)

; with g′(·) is the first

derivative of g(·); with y∗i = log
(

yi
1−yi

)

, and µ∗ =
(

µ∗
1 , . . . µ

∗
n

)

′;

withµ∗
i = ψ (µiφ)−ψ ((1− µi) φ), such thatψ(·) denoting the

digamma function. The iterative reweighted least-squares (IRLS)
algorithm or the Fisher scoring algorithm are used for estimating
the parameter β [19, 20]. This algorithm form is given as:

β(r+1) = β(r) +

(

I
(r)
ββ

)−1
U
(r)
β (β) , (5)

where U
(r)
β is called the score function, and I

(r)
ββ is called the

information matrix for β , for more details, see Espinheira et al.
[20]. With the use of the IRLS algorithm with initial values of β
and φ as in Ferrari and Cribari-Neto [15] and Espinheira et al.
[20], the BML estimator of the parameter β is provided as:

β̂BML =

(

X′ŴX
)−1

X′Ŵz, (6)

where X is an
(

n× p
)

design matrix, z = η̂ + Ŵ−1T̂
(

y∗ − µ̂∗
)

,

and Ŵ = diag
(

ŵ1, . . . , ŵn

)

; with

ŵi = φ̂

{

ψ ′
(

µ̂iφ̂

)

+ ψ ′
(

(

1− µ̂i

)

φ̂

)} 1
[

g′
(

µ̂i

)]2 .

Here, Ŵ, T̂, µ̂i, and µ̂∗ are the estimates of W, T, µi, andµ∗,
respectively, evaluated at the ML estimator of β and φ [15].

Now, let Ŵ = diag
(

γ1, . . . , γp
)

= Q′X′ŴXQ, and α =
(

α1, . . . , αp
)

′ = Q′β; where γ1 ≥ . . . ≥ γp ≥ 0 and Q is

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 February 2022 | Volume 8 | Article 775068

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Abonazel et al. Dawoud–Kibria Beta Estimator

the matrix whose columns are the eigenvectors of the
(

X′ŴX
)

matrix. Then, the mean squared error matrix (MSEM) and the
mean squared error (MSE) of an estimator β̃ are defined as
follows:

MSEM(β̃) = Var (β̃)+
(

Bias (β̃)
) (

Bias (β̃)
)′

, (7)

MSE (β̃) = trace
(

MSEM(β̃)
)

. (8)

Then the MSEM and MSE of β̂BML are.

MSEM (β̂BML) =
1

φ
Ŵ−1, (9)

MSE (β̂BML) =
1

φ

p
∑

j=1

1

γj
. (10)

Beta Ridge Regression (BRR) Estimator
To reduce the effects of multicollinearity in the BR model,
Abonazel and Taha [21] and Qasim et al. [22] introduced the BRR
estimator as an alternative to the BML estimator and is given as:

β̂BRR = (X′ ŴX + k Ip)
−1

X′ Ŵz, . . . k > 0. (11)

The MSEM and MSE of β̂BRR are

MSEM(β̂BRR) =
1

φ
UL−1ŴL−1U ′

+ (UL−1ŴU ′ − Ip)αα
′(UL−1ŴU ′ − Ip)

′, (12)

MSE(β̂BRR) =
1

φ

p
∑

j=1

γj

L2j
+ k2

p
∑

j=1

α2j

L2j
(13)

where L = (Ŵ + k Ip) and Lj = (γj + k).

Beta Kibria–Lukman (BKL) Estimator
The BKL estimator is defined as follows:

β̂BKL = (X′ ŴX + k Ip)
−1

(X′ ŴX − k Ip) β̂BML, k > 0. (14)

The MSEM and MSE of β̂BKL are

MSEM(β̂BKL) =
1

φ
UL−1NŴ−1NL−1U ′

+ (UL−1NU ′ − Ip)αα
′(UL−1NU ′ − Ip)

′, (15)

MSE(β̂BKL) =
1

φ

p
∑

j=1

N2
j

γjL
2
j

+ 4k2
p

∑

j=1

α2j

L2j
(16)

where N = (Ŵ − k Ip) and Nj = (γj − k).

TABLE 1 | Simulated mean square error (SMSE) values of different estimators when p = 2 and φ = 2.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 6.053 5.233 5.202 4.891 3.394 3.677

0.85 7.303 6.118 6.069 5.503 3.395 3.838

0.90 13.692 11.901 11.848 10.107 4.656 6.070

0.95 31.207 26.815 26.691 19.919 4.923 8.081

0.99 67.136 47.857 46.909 24.971 15.684 7.492

75 0.80 5.348 4.832 4.816 4.652 3.656 3.785

0.85 7.008 6.210 6.185 5.792 3.933 4.325

0.90 10.863 9.611 9.577 8.573 4.808 5.736

0.95 18.291 14.916 14.788 11.584 3.846 5.274

0.99 68.451 53.912 53.360 31.408 8.463 5.586

100 0.80 3.933 3.621 3.609 3.566 3.152 3.153

0.85 9.107 8.289 8.271 7.700 5.047 5.730

0.90 9.991 8.846 8.815 8.019 4.732 5.544

0.95 15.744 13.466 13.396 11.168 4.514 6.142

0.99 115.376 102.758 102.521 65.853 5.542 14.038

150 0.80 6.437 6.100 6.095 5.940 4.889 5.030

0.85 6.972 6.518 6.510 6.286 4.929 5.129

0.90 10.034 9.210 9.195 8.569 5.607 6.456

0.95 18.945 17.151 17.119 14.781 6.782 9.339

0.99 115.789 106.225 106.100 73.332 8.145 23.265

200 0.80 5.511 5.243 5.239 5.150 4.441 4.421

0.85 6.501 6.162 6.157 5.999 4.966 5.051

0.90 8.751 8.133 8.123 7.712 5.521 6.094

0.95 16.097 14.810 14.791 13.240 7.235 9.253

0.99 146.696 138.772 138.709 102.489 19.521 45.366
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Beta Özkale–Kaçiranlar (BOK) Estimator
Recently, Abonazel et al. [14] proposed the BOK estimator as an
extension of the Özkale and Kaçiranlar [4] estimator in the BR
model and is defined as follows:

β̂BOK = (X′ ŴX + k Ip)
−1

(X′Ŵ X + kdIp) β̂BML,

k > 0, 0 < d < 1. (17)

The MSEM and MSE of β̂BOK are

MSEM(β̂BOK) =
1

φ
UL−1GŴ−1GL−1U ′

+ (UL−1GU ′ − Ip)αα
′(UL−1GU ′ − Ip)

′,(18)

MSE(β̂BOK) =
1

φ

p
∑

j=1

G2
j

γjL
2
j

+ (1− d)2k2
p

∑

j=1

α2j

L2j
(19)

where G = (Ŵ + kd Ip) and Gj = (γj + kd).

The Proposed Estimator
Extensions of the two-parameter estimators to the area of GLMs
have been recently developed; such as Qasim et al. [22], Farghali
et al. [9], Lukman et al. [23], Algamal and Abonazel [12], and
Abonazel et al. [14]. Following the previous works, we introduced

the beta version of the two-parameter estimator of Dawoud and
Kibria [5] (BDK) as follows:

β̂BDK = (X′ Ŵ X + k(1+ d)Ip)
−1

(X′ ŴX − k (1+ d)Ip)β̂BML,

k > 0, 0 < d < 1. (20)

We give the MSEM of the proposed β̂BDK as follows:

MSEM(β̂BDK) =
1

φ
UM−1RŴ−1RM−1U ′

+ (UM−1RU ′−Ip)αα
′(UM−1RU ′ − Ip)

′, (21)

MSE(β̂BDK) =
1

φ

p
∑

j=1

R2j

γjM
2
j

+ 4k2(1+ d)2
p

∑

j=1

α2j

M2
j

, (22)

where M = (Ŵ + k(1 + d) Ip), R = (Ŵ − k(1 + d) Ip), Mj =

(γj + k(1+ d)) and Rj = (γj − k(1+ d)).

THE SUPERIORITY OF THE PROPOSED
ESTIMATOR

Theorem 1: If 4k2(1+ d)2φ
p

∑

j=1
γjα

2
j <

p
∑

j=1

(

M2
j − R2j

)

,

thenMSE (β̂BDK) < MSE (β̂BML).

TABLE 2 | SMSE values of different estimators when p = 2 and φ = 6.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 11.491 10.645 10.627 9.735 7.130 6.903

0.85 13.247 12.228 12.206 11.035 7.716 7.654

0.90 18.158 16.463 16.425 14.042 7.790 8.644

0.95 35.625 32.457 32.400 25.909 10.109 13.399

0.99 192.874 168.676 168.149 93.746 17.848 12.119

75 0.80 15.037 14.280 14.271 13.177 9.543 9.539

0.85 17.553 16.759 16.751 15.364 10.642 11.255

0.90 27.598 26.653 26.646 24.351 16.533 18.294

0.95 59.231 56.845 56.829 47.709 21.969 30.398

0.99 214.373 186.262 185.683 103.517 16.966 10.659

100 0.80 11.001 10.576 10.571 10.034 8.496 7.578

0.85 14.828 14.055 14.046 13.017 9.301 9.558

0.90 19.577 18.642 18.633 17.090 11.662 12.394

0.95 43.621 41.238 41.215 34.604 15.749 21.251

0.99 265.201 252.353 252.261 175.379 22.736 61.884

150 0.80 10.789 10.545 10.544 10.227 9.133 8.370

0.85 12.325 11.800 11.794 11.136 8.899 8.413

0.90 17.602 16.783 16.775 15.534 10.948 11.554

0.95 46.605 45.329 45.324 40.763 25.761 31.100

0.99 252.047 245.921 245.900 195.177 67.404 114.900

200 0.80 9.358 9.133 9.131 8.897 8.099 7.276

0.85 15.565 15.263 15.262 14.763 12.608 12.707

0.90 21.999 21.571 21.569 20.598 16.733 17.630

0.95 28.486 27.156 27.146 24.343 14.704 17.431

0.99 213.727 207.448 207.422 163.383 53.122 92.802
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Proof: The MSE difference between the BML and the BDK
estimators is written as

11 = MSE (β̂BDK)−MSE (β̂BML)

= 1
φ

p
∑

j=1

[

R2j −M2
j +4k2(1+d)2γjφα2j

γjM
2
j

]

. (23)

In the case of R2j −M2
j + 4k2(1+ d)2γjφα2j < 0 in the equation

(23), it implies that 4k2(1+ d)2φ
p

∑

j=1
γjα

2
j <

p
∑

j=1

(

M2
j − R2j

)

, then

MSE (β̂BDK) < MSE (β̂BML). That means the BDK estimator

is better than the BML estimator if 4k2(1+ d)2φ
p

∑

j=1
γjα

2
j <

p
∑

j=1

(

M2
j − R2j

)

.

Theorem 2: If
p

∑

j=1

(

R2j L
2
j − γ

2
j M

2
j

)

<

k2φ
p

∑

j=1
γjα

2
j (M

2
j − 4(1+ d)2L2j ),

thenMSE (β̂BDK) < MSE (β̂BRR).

Proof: The MSE difference between the BRR and the BDK
estimators is written as

12 = MSE (β̂BDK)−MSE (β̂BRR)

= 1
φ

p
∑

j=1

[

R2j L
2
j −γ

2
j M

2
j −k2φγjα

2
j (M

2
j −4(1+d)2L2j )

γjL
2
j M

2
j

]

. (24)

In the case of R2j L
2
j − γ 2

j M
2
j − k2φγjα

2
j (M

2
j − 4(1+ d)2L2j ) < 0

in the Equation (24), it implies that
p

∑

j=1

(

R2j L
2
j − γ

2
j M

2
j

)

<

k2φ
p

∑

j=1
γjα

2
j (M

2
j − 4(1+ d)2L2j ), then MSE (β̂BDK) <

MSE (β̂BRR). That means the BDK estimator is better

than the BRR estimator if
p

∑

j=1

(

R2j L
2
j − γ

2
j M

2
j

)

<

k2φ
p

∑

j=1
γjα

2
j (M

2
j − 4(1+ d)2L2j ).

Theorem 3: If
p

∑

j=1

(

R2j L
2
j − N2

j M
2
j

)

<

4k2φ
p

∑

j=1
γjα

2
j (M

2
j − (1+ d)2L2j ).

thenMSE (β̂BDK) < MSE (β̂BKL).

TABLE 3 | SMSE values of different estimators when p = 4 and φ = 2.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 8.618 7.044 6.999 6.275 3.469 3.367

0.85 9.465 7.472 7.431 6.421 3.357 3.368

0.90 16.331 13.295 13.254 10.640 4.493 4.428

0.95 35.235 29.336 29.247 20.055 5.494 5.071

0.99 271.828 224.818 223.712 92.905 25.607 41.613

75 0.80 8.023 7.017 7.003 6.611 4.308 4.009

0.85 10.160 8.556 8.535 7.630 4.303 4.124

0.90 17.399 14.616 14.573 12.058 5.093 4.947

0.95 31.134 25.589 25.472 18.173 4.529 4.793

0.99 187.813 161.921 161.693 81.603 6.541 17.808

100 0.80 7.523 6.513 6.494 6.149 4.096 4.124

0.85 9.167 8.000 7.983 7.366 4.665 4.648

0.90 19.593 17.076 17.026 14.578 6.429 6.697

0.95 31.651 27.423 27.365 21.103 6.951 6.707

0.99 217.675 194.858 194.677 112.730 6.734 13.765

150 0.80 7.066 6.454 6.448 6.285 4.672 4.599

0.85 9.429 8.514 8.504 8.044 5.535 5.626

0.90 14.144 12.871 12.861 11.751 7.393 7.420

0.95 33.151 29.960 29.924 24.822 10.332 10.585

0.99 178.793 161.444 161.275 101.082 9.202 10.705

200 0.80 7.135 6.584 6.578 6.434 4.908 5.053

0.85 7.726 7.044 7.036 6.819 4.988 5.190

0.90 13.439 12.248 12.236 11.275 7.226 7.363

0.95 30.354 28.056 28.043 24.286 12.687 12.634

0.99 201.543 188.253 188.153 133.641 21.328 24.457
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Proof: The MSE difference between the BKL and the BDK
estimators is written as

13 = MSE (β̂BDK)−MSE (β̂BKL)

= 1
φ

p
∑

j=1

[

R2j L
2
j −N2

j M
2
j −4k2φγjα2j (M

2
j −(1+d)2L2j )

γjL
2
j M

2
j

]

. (25)

In the case of R2j L
2
j − N2

j M
2
j − 4k2φγjα2j (M

2
j − (1+ d)2L2j ) < 0

in the Equation (25), it implies that
p

∑

j=1

(

R2j L
2
j − N2

j M
2
j

)

<

4k2φ
p

∑

j=1
γjα

2
j (M

2
j − (1+ d)2L2j ), then MSE (β̂BDK) <

MSE (β̂BKL). That means the BDK estimator is better than
the BKL estimator

if
p

∑

j=1

(

R2j L
2
j − N2

j M
2
j

)

< 4k2φ
p

∑

j=1
γjα

2
j (M

2
j − (1+ d)2L2j ).

Theorem 4: If
p

∑

j=1

(

R2j L
2
j − G2

jM
2
j

)

< k2φ

p
∑

j=1
γjα

2
j ((1− d)2M2

j − 4(1+ d)2L2j ),

thenMSE (β̂BDK) < MSE (β̂BOK).

Proof: The MSE difference between the BOK and the BDK
estimators is written as

14 = MSE (β̂BDK)−MSE (β̂BOK)

= 1
φ

p
∑

j=1

[

R2j L
2
j −G2

j M
2
j −k2φγjα

2
j ((1−d)2M2

j −4(1+d)2L2j )

γjL
2
j M

2
j

]

. (26)

In the case of R2j L
2
j − G2

jM
2
j − k2φγjα

2
j ((1− d)2M2

j −

4(1+ d)2L2j ) < 0 in the Equation (26), it implies that
p

∑

j=1

(

R2j L
2
j − G2

jM
2
j

)

< k2φ
p

∑

j=1
γjα

2
j ((1− d)2M2

j − 4(1+ d)2L2j ),

thenMSE (β̂BDK) < MSE (β̂BOK). That means the BDK estimator

is better than the BOK estimator if
p

∑

j=1

(

R2j L
2
j − G2

jM
2
j

)

<

k2φ
p

∑

j=1
γjα

2
j ((1− d)2M2

j − 4(1+ d)2L2j ).

SELECTION OF BIASING PARAMETERS
k and d

We will suggest the following biasing parameters’ estimators for
the mentioned estimators.

TABLE 4 | SMSE values of different estimators when p = 4 and φ = 6.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 20.276 19.341 19.333 17.555 11.620 11.975

0.85 18.047 17.189 17.185 15.592 10.837 10.841

0.90 27.687 25.923 25.917 22.257 12.368 12.520

0.95 87.147 83.888 83.879 69.421 30.856 31.332

0.99 603.570 577.427 577.263 357.585 36.519 43.205

75 0.80 14.407 13.659 13.653 12.829 9.262 9.390

0.85 25.218 23.940 23.934 21.759 13.710 13.419

0.90 38.729 37.702 37.702 34.643 24.505 26.369

0.95 84.082 80.781 80.767 67.356 30.970 35.892

0.99 472.368 460.962 460.940 338.777 90.885 87.179

100 0.80 16.825 16.274 16.272 15.473 11.865 13.190

0.85 24.909 23.521 23.510 21.343 12.895 15.321

0.90 30.072 28.630 28.622 25.641 15.512 17.823

0.95 67.417 64.185 64.170 53.419 24.947 27.241

0.99 658.305 644.268 644.236 479.563 123.607 135.271

150 0.80 13.969 13.573 13.572 13.099 10.726 11.658

0.85 20.345 19.764 19.762 18.816 14.670 16.154

0.90 33.991 33.263 33.261 31.344 23.972 26.417

0.95 86.685 85.104 85.101 77.562 52.626 58.964

0.99 535.740 526.202 526.187 422.009 160.031 192.949

200 0.80 17.816 17.532 17.532 17.071 14.878 15.815

0.85 21.343 20.971 20.971 20.283 17.201 18.443

0.90 36.550 35.967 35.966 34.245 27.566 29.896

0.95 98.462 96.739 96.736 88.492 60.933 68.280

0.99 516.039 507.722 507.706 413.974 171.268 199.438
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Following Hoerl et al. [24] and Qasim et al. [22], k̂ of the BRR
estimator is written as

k̂BRR =
p

φ̂
p

∑

j=1
α̂2j

, (27)

where α̂j is the jth element of α̂ = Q′β̂BML vector and φ̂ is the ML
estimate of φ [15].

- Following Lukman et al. [25], k̂BKL of the BKL estimator is
written as

k̂BKL =
p

φ̂
p

∑

j=1

(

1
φ̂γj

+ 2α̂2j

)
(28)

- Following Özkale and Kaçiranlar [4] and Abonazel

et al. [14], k̂BOK and d̂BOK of the BOK estimator are
written as

d̂BOK = min





α̂2j
1
φ̂γj

+ α̂2j





p

j=1

(29)

k̂BOK =











p

φ̂
p

∑

j=1

(

α̂2j − d̂BOK

(

1
φ̂γj

+ α̂2j

))











1/2

(30)

- Following Dawoud and Kibria [5], we suggest two different k̂
of the proposed BDK estimator as follows:

k̂BDK(1) =

(

k̂BRR

)1/p
(31)

k̂BDK(2) =









1

p

p
∑

j=1

1

φ̂

(

1+ d̂BOK

)

(

1
φ̂γj

+ 2α̂2j

)









1/p

(32)

MONTE CARLO SIMULATION STUDY

In this section, a Monte Carlo simulation study has been
conducted to compare the performances of BML, BRR, BKL, and

TABLE 5 | SMSE values of different estimators when p = 6 and φ = 2.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 11.105 9.078 9.057 7.810 4.655 3.876

0.85 13.514 10.799 10.772 8.788 4.607 3.753

0.90 25.321 20.354 20.247 14.685 5.540 4.364

0.95 47.497 37.538 37.399 22.139 5.574 5.085

0.99 264.803 213.947 212.957 76.134 20.147 57.276

75 0.80 7.189 5.922 5.914 5.500 3.811 3.354

0.85 13.325 10.910 10.870 9.195 5.001 3.725

0.90 19.350 16.098 16.061 12.725 6.394 4.503

0.95 48.120 38.549 38.286 23.752 6.202 5.768

0.99 243.478 204.310 203.653 83.874 10.836 41.688

100 0.80 9.013 7.461 7.427 6.761 4.419 3.543

0.85 10.948 9.292 9.270 8.258 5.295 4.066

0.90 16.251 13.651 13.624 11.390 6.264 4.555

0.95 30.617 25.870 25.833 19.041 8.188 5.088

0.99 231.060 201.644 201.293 96.261 8.733 20.457

150 0.80 7.345 6.380 6.365 6.074 4.492 3.810

0.85 9.407 8.216 8.201 7.613 5.405 4.359

0.90 15.455 13.587 13.566 11.983 7.540 5.237

0.95 36.480 32.601 32.573 25.971 13.137 7.642

0.99 228.210 207.108 206.955 119.693 20.897 11.495

200 0.80 7.730 6.957 6.950 6.700 5.232 4.412

0.85 9.778 8.752 8.741 8.222 6.035 4.953

0.90 12.742 11.311 11.302 10.195 7.161 5.536

0.95 33.667 30.140 30.105 24.579 12.452 7.475

0.99 219.889 204.152 204.074 131.491 37.952 10.424
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BOK with the suggested estimator (BDK). The program of the
simulation study is written in R programming language based on
the betareg package.

The Design of the Experiment
We simulated the datasets with the following settings:

1) The response variable yi is generated from the
beta distribution as Beta (µi, φ), where µi =

exp
(

xi
′β

)

/
(

1+ exp
(

xi
′β

))

; i = 1, . . . , n, and xi is the
ith row of X. The precision parameter φ chosen in the
simulation is φ = 2 and 6.

2) Sample size: n= 50, 75, 100, 150, and 200.
3) Explanatory variables are generated with a degree of

multicollinearity as in Kibria [26]: xij = uij
√

1− ρ2 +

ρuip, where uij are the independent standard uniform
pseudorandom numbers, and ρ is defined as the correlation
between the explanatory variables, ρ = 0.80, 0.85, 0.90, 0.95,
and 0.99.

4) The number of explanatory variables is p = 2, 4, and 6;
with β′β = 1 and β1 = . . . = βp, as per Kaçiranlar and
Dawoud [27], Rady et al. [28], Abonazel and Farghali [29],
Farghali et al. [9], Dawoud and Abonazel [30], and Awwad
et al. [31].

5) We used the simulated MSE (SMSE) criterion for verification,
which are computed as

SMSE
(

β̂

)

=
1

5000

5000
∑

l=1

(

β̂l − β

)

′
(

β̂l − β

)

, (33)

where β̂l is the estimated value vector at the lth experiment of
the simulation, β is the true parameter vector. The number of
replications is 5,000.

Simulation Results
We have the following comments according to the simulation
results in Tables 1–6: Obviously, from Tables 1–6, the proposed
estimator possesses a smaller SMSE than the BML estimator and
other estimators understudy for all sample sizes. For instance,
from Table 3, when ρ = 0.9, n = 50, the SMSE of BML
is 16.331 while the SMSE for other estimators is as follows:
13.295 (BRR), 13.254 (BKL), 10.640 (BOK), 4.493 (BDK(1)),
and 4.428 (BDK(2)), respectively. Similarly, when the values
of φ increase the SMSE also increases: from Table 1, when
φ = 2, n = 100 and ρ = 0.99, and Table 2, when φ =

6, n = 100 and ρ = 0.99, the SMSE of BRR rises from
102.758 to 252.353. Also, it is evident that the SMSE values
of all the estimators increased as the number of explanatory p
increased. For the one-parameter shrinkage estimator, the BKL
estimator consistently dominates the BRR estimator. For two-
parameter shrinkage estimators, the BDK estimator dominates

TABLE 6 | SMSE values of different estimators when p = 6 and φ = 6.

n ρ BML BRR BKL BOK BDK(1) BDK(2)

50 0.80 24.308 23.396 23.396 21.226 16.249 12.890

0.85 32.188 30.588 30.577 26.475 17.289 12.522

0.90 49.485 46.799 46.789 38.084 21.315 13.021

0.95 101.291 97.077 97.075 76.197 39.597 22.003

0.99 693.505 670.736 670.667 410.533 90.039 37.843

75 0.80 24.844 23.949 23.944 21.907 16.472 13.086

0.85 34.987 33.539 33.532 29.804 20.256 16.453

0.90 47.139 44.266 44.241 36.283 19.387 12.870

0.95 93.080 89.724 89.717 73.289 41.415 24.254

0.99 754.197 735.126 735.082 496.580 123.219 36.798

100 0.80 17.825 17.177 17.175 16.127 12.728 11.537

0.85 21.441 20.510 20.506 18.863 13.433 11.505

0.90 49.162 47.478 47.473 42.140 27.865 22.938

0.95 103.039 99.905 99.896 85.178 47.090 35.859

0.99 634.956 619.106 619.078 444.692 140.691 59.963

150 0.80 17.301 16.801 16.800 16.101 13.051 13.019

0.85 32.077 31.463 31.463 30.007 24.389 23.897

0.90 42.623 41.614 41.612 38.705 28.606 27.190

0.95 98.059 95.272 95.263 83.046 49.071 42.380

0.99 724.422 714.279 714.269 583.521 270.776 188.774

200 0.80 19.214 18.795 18.794 18.181 15.345 15.624

0.85 26.161 25.717 25.716 24.805 21.034 21.107

0.90 47.018 46.298 46.297 44.058 35.750 35.533

0.95 108.860 107.407 107.405 99.800 75.129 71.876

0.99 652.981 645.213 645.206 547.813 293.726 233.134
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FIGURE 1 | Visualization of the correlation matrix.

the BOK estimator. Overall, the BDK dominates both the one-
parameter and the two-parameter estimators. However, the
performance of each estimator is a function of the employed
shrinkage parameter.

REAL DATA APPLICATION

The implementation of the proposed estimator is illustrated by a
study applied to the well-being index of Turkey in 2015 [32]. The
index involves the aspects of accommodation, jobs, income and
wealth, health, education, climate, protection, public engagement
and access to community resources and social life. As the life
satisfaction index is between 0 and 1. The values close to 1 refer

to a better standard of living. The data are obtained from the
Turkish Statistics Association. The original dataset consists of
some dimensions that are represented by 41 indicators. Here, we
are interested in only nine indicators used by Abonazel and Taha
[21] and the number of observations is 50. The response variable
is the level of happiness and eight explanatory variables are x1:
Number of rooms per person, x2: Average point of necessary
placement scores of the system for transition to secondary
education from basic education, x3: Satisfaction rate with public
education services, x4: Percentage of the population receiving
waste services, x5: Satisfaction rate with public safety services, x6:
The access rate of the population to sewerage and pipe system, x7:
Satisfaction rate with public health services, and x8: Percentage of
households declaring to fail on meeting basic needs.
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TABLE 7 | Estimation results for the used estimators.

BML BRR BKL BOK BDK(1) BDK(2)

x1 −0.4269 −0.4028 −0.4022 −0.3942 −0.3584 0.2425

x2 0.0014 0.0012 0.0012 0.0012 0.0010 −0.0022

x3 0.0017 0.0018 0.0018 0.0018 0.0020 0.0048

x4 −0.0019 −0.0019 −0.0019 −0.0019 −0.0019 −0.0021

x5 −0.0076 −0.0076 −0.0076 −0.0077 −0.0077 −0.0085

x6 −0.0044 −0.0044 −0.0044 −0.0044 −0.0044 −0.0038

x7 0.0270 0.0269 0.0269 0.0269 0.0266 0.0229

x8 −0.0095 −0.0093 −0.0093 −0.0092 −0.0088 −0.0033

k – 0.4997 0.2489 0.7182 0.7069 29.3690

d – – – 0.0308 0.0308 0.0308

MSE 0.00138 0.00123 0.00122 0.00117 0.00097 0.00047

R2 0.752 0.779 0.780 0.789 0.825 0.915

GCV – 74.714 74.707 74.617 73.795 73.250

To investigate the multicollinearity through correlation
coefficients between the explanatory variables, a visualization of
the correlation matrix of the variables is constructed with the
corresponding coefficients reported in Figure 1. The correlation
coefficients indicate that there are strong relationships (more
than 0.8) between some explanatory variables. This denotes
the severe multicollinearity presence. Moreover, this conclusion
is confirmed by the variance inflation factor (VIF) and the
condition number

(

CN =
√

max(γj)/min(γj)
)

[33]; where the
VIFs of the eight explanatory variables are 7.5, 6.1, 10.8, 10.1, 9.1,
9.8, 9.7, and 4.3, respectively, and the CN is 3,936.055.

Table 7 provides the regression parameter estimates for the BR
model using BML, BRR, BKL, BOK, and BDK. From Table 7,
it can note that the estimated regression parameters of all
estimators have the same signs (except x1 and x2 in BDK(2) only);
this means that the type of relationship between each explanatory
variable and the response variable is not changed from what
it was in the BML. The estimated MSE of the five estimators
were obtained by Equations (10), (13), (16), (19), and (22),
respectively. The results of Table 7 indicate that the estimated
MSE value of BML is greater than the estimated MSE values
of BRR, BKL, BOK, and BDK estimators. Moreover, the MSE
values of BDK(1) and BDK(2) estimators are lower than other
estimators, which means that the BDK estimator achieves the
best performance. Furthermore, in terms of the prediction, the
R2 value of the proposed estimator (BDK) is the greatest among
all the used estimators. To further highlight the performance of
the BDK estimator, generalized cross-validation (GCV) criterion
is used in comparison [8, 34, 35]. Regarding GCV values, it
can note that the BDK yielded the least value compared with
other estimators.

Through this application, we verify the theoretical results
as follows:

1. Since the condition

4k̂2
BDK(2)(1+ d̂BOK)

2
φ̂

p
∑

j=1
γjα̂

2
j = 7.26e + 7 <

p
∑

j=1

(

M̂2
j − R̂2j

)

= 1.58e + 10 is satisfied, then the BDK

estimator is better than the BML estimator.

2. Since the condition
p

∑

j=1

(

R̂2j L̂
2
j − γ

2
j M̂

2
j

)

= −1.35e + 26 <

k̂2
BDK(2)φ̂

p
∑

j=1
γjα̂

2
j (M̂

2
j − 4(1+ d̂BOK)

2
L̂2j ) = −7.83e + 23

is satisfied, then the BDK estimator is better than the
BRR estimator.

3. Since the condition
p

∑

j=1

(

R̂2j L̂
2
j − N̂2

j M̂
2
j

)

= −7.84e + 24 <

4 k̂2
BDK(2) φ̂

p
∑

j=1
γjα̂

2
j (M̂

2
j − (1+ d̂BOK)

2
L̂2j ) = −6.03e + 22

is satisfied, then the BDK estimator is better than the
BKL estimator.

4. Since the condition
p

∑

j=1

(

R̂2j L̂
2
j − Ĝ2

j M̂
2
j

)

= −1.39e + 26 <

k̂2
BDK(2)φ̂

p
∑

j=1
γjα̂

2
j ((1− d̂BOK)

2
M̂2

j − 4(1+ d̂BOK)
2
L̂2j ) =

−7.98e+ 23 is satisfied, then the BDK estimator is better than
the BOK estimator.

CONCLUSION

Regression modeling describes the relationship that exists
between a dependent variable and one or more explanatory
variables. Linear dependency, a situation called multicollinearity,
is a common problem with two or more explanatory variables.
Multicollinearity is a threat to the efficiency of the maximum
likelihood estimator in both the linear and generalized linear
models, such as the BR model. The ridge regression estimator
serves as an alternative to the maximum likelihood estimator for
parameter estimation in the beta regression model. In this article,
we developed the BDK estimator and compared its performance
theoretically with some other estimators. A simulation study has
been conducted to compare the performance of the estimators.
Real-life data have been analyzed to illustrate the findings of
the article. We concluded that the BDK estimator proposed in
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this articles generally preferred when there is multicollinearity
in the beta regression model. For future work, for example,
one can use new methods to select the shrinkage parameters
as an extension to Uslu et al. [36] and Inan et al. [37] in the
BR model, or provide robust biased estimators for handling
multicollinearity and outliers together in the beta regression
model as an extension to Awwad et al. [31] and Dawoud and
Abonazel [30].
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