
ORIGINAL RESEARCH
published: 13 April 2022

doi: 10.3389/fams.2022.645614

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 645614

Edited by:

Jun Ma,

Lanzhou University of Technology,

China

Reviewed by:

Dibakar Ghosh,

Indian Statistical Institute, India

Samuel Bowong,

University of Douala, Cameroon

*Correspondence:

Adriano A. Batista

adriano@df.ufcg.edu.br

Severino Horácio da Silva

horacio@mat.ufcg.edu.br

Specialty section:

This article was submitted to

Dynamical Systems,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 23 December 2020

Accepted: 09 February 2022

Published: 13 April 2022

Citation:

Batista AA and da Silva SH (2022) An

Epidemiological Compartmental

Model With Automated Parameter

Estimation and Forecasting of the

Spread of COVID-19 With Analysis of

Data From Germany and Brazil.

Front. Appl. Math. Stat. 8:645614.

doi: 10.3389/fams.2022.645614

An Epidemiological Compartmental
Model With Automated Parameter
Estimation and Forecasting of the
Spread of COVID-19 With Analysis of
Data From Germany and Brazil
Adriano A. Batista 1* and Severino Horácio da Silva 2*

1Departamento de Física, Universidade Federal de Campina Grande, Campina Grande, Brazil, 2Departamento de

Matemática, Universidade Federal de Campina Grande, Campina Grande, Brazil

In this work, we adapt the epidemiological SIR model to study the evolution of the

dissemination of COVID-19 in Germany and Brazil (nationally, in the State of Paraíba,

and in the City of Campina Grande). We prove the well posedness and the continuous

dependence of the model dynamics on its parameters. We also propose a simple

probabilistic method for the evolution of the active cases that is instrumental for the

automatic estimation of parameters of the epidemiological model. We obtained statistical

estimates of the active cases based on the probabilistic method and on the confirmed

cases data. From this estimated time series, we obtained a time-dependent contagion

rate, which reflects a lower or higher adherence to social distancing by the involved

populations. By also analyzing the data on daily deaths, we obtained the daily lethality

and recovery rates. We then integrate the equations of motion of the model using these

time-dependent parameters. We validate our epidemiological model by fitting the official

data of confirmed, recovered, death, and active cases due to the pandemic with the

theoretical predictions. We obtained very good fits of the data with this method. The

automated procedure developed here could be used for basically any population with

a minimum of adaptation. Finally, we also propose and validate a forecasting method

based on Markov chains for the evolution of the epidemiological data for up to 2 weeks.

Keywords: epidemiological model, COVID-19, parameter estimation, forecasting, compartmental model

1. INTRODUCTION

The COVID-19 pandemic already has reached practically the whole planet. According to theWorld
Health Organization (WHO, Situation Report-41 [1]), although around 80% of the infected people
present mild symptoms (equivalent to the common flu), older people and those with a history of
other diseases like diabetes, cardiovascular, and chronic respiratory syndrome can develop serious
problems after being infected by the SARS-CoV-2 virus. It was first identified in December 2019 in
the City of Wuhan, Province of Hubei, China. From there it spread across Asia, Europe, and the
other continents [2]. On March 11th, the WHO declared it to be a pandemic [3].

In this work, we investigate the spread of the pandemic in 4 different scenarios: Germany, Brazil,
the Brazilian State of Paraíba, and the City of Campina Grande. We use the data from Germany
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mostly as a benchmark test for our model, since very likely
their COVID-19 data is one of the most accurate in the
world, which is due to the widespread testing of its population.
Furthermore, the social distancing, isolation, and use of personal
protection equipment (PPE) there has been far more efficient
than the measures taken in Brazil in containing the spread of
COVID-19 infections.

The first confirmed case in Brazil occurred in February
25th of 2020, when a 61-year-old man who had returned from
Italy tested positive and the first death due to the pandemic
occurred on March 12. It is very unlikely all cases of COVID-19
contaminations evolved from this patient. As reported in other
countries, there were multiple imported infections, which usually
drive the contagion rate to very high values in the initial stages of
the epidemic. In Brazil and in the majority of countries around
the world social distancing policies have been adopted in order to
decrease the rate of contagion and thus allow that health systems
do not collapse and have conditions to treat the gravest cases of
the disease.

In the State of Paraíba, according to the Paraíba Department
of Health, the first confirmed case of COVID-19 was registered
onMarch 18th of 2020. It was a man who lived in the City of João
Pessoa that had returned from a trip to Europe on February 29th.
On March 31st the first death due to the pandemic was recorded
in the State.

Campina Grande is the second largest city in the State of
Paraíba. The social distancing policy was implanted in this city
on March 20th of 2020, with the closure of universities, schools,
and non-essential stores. The social distancing was implemented
in a preventive form since the first case of infection by the SARS-
CoV-2 virus only came to be registered 1 week afterwards, on
March 27th. The first death due to COVID-19 in this city was
only registered on April 19th.

In this work, we adapted the simple and well-known SIR
epidemiological model, developed by Kermack and Mckendrick
[4], to study the evolution of the dissemination of COVID-
19. The SIR model is a well-known and tested epidemiological
compartmental model that has been applied to very diverse
epidemics (see for example [5–10]). The model receives its name
for dividing the population in three groups: susceptible, infected,
and removed. Although, SIR and SIR-like models, such as the
SIRD and SEIR(D), are simple models compared with far more
detailed alternatives, such as proposed by Ndairu et al. [11], Tang
et al. [12], or Gatto et al. [13], the simplicity of SIR-like models is
a strength when it comes to parameter estimation. More complex
models have more parameters to be determined, and, hence,
more uncertainties that may render them non-viable for large
scale applications to many populations. Usually, the available
epidemiological data is not complete enough to provide estimates
for all the parameters of more complex models. The model we
propose here has three independent parameters that need to be
estimated from the epidemiological data: contagion rate, average
time duration of infection, and lethality rate. We validated the
proposed theoretical model with comparisons of official data of
the numbers of confirmed, recovered, death, and active cases due
to COVID-19 infections in Germany, Brazil, the Brazilian State
of Paraíba, and the City of Campina Grande, located in Paraíba.

We used a compartmental model called SIRD, which replaces the
removed by the recovered and the deceased cases. Furthermore,
in the present work we use a time-dependent contagion rate and
time-dependent lethality and recovery rates.

SIR(D) or SEIR(D) models with time-dependent contagion
rates are not new [14], even for the COVID-19 pandemic there
are already several SIR and SIR-like models with time-dependent
parameters. The most difficult part of this approach is the
design of a parameter estimation method that is automated and
renders the model accurate. The early work by Fang et al. [15]
used a SEIR model in which they estimated the parameters
based on the epidemiological data using statistical methods,
but at the time of publication there were only about 40 data
points and scant comparison of data with theoretical model
time series. Zhong et al. [16] used a time-dependent SIR model
in which they estimate the parameters from the data of active
and recovered cases. The authors obtained big fluctuations in
the contagion rate and in the removal rate (1/τ ). This likely
occurred because they approximated the time derivative of the
infected (dI/dt) on a daily basis and also, perhaps, because
recovered cases data is often less reliable than the confirmed
cases data. Chen et al. [17] also used a parameter estimation
technique of the contagion and the removal rates, but they did
not provide information on the parameters obtained in their
results explicitly. Dehning et al. [18] estimated parameters based
on a Bayesian inference with the Markov chain Monte Carlo
technique, but not many data points were available at the time
of publication and no estimates for active cases were provided.
Linka et al. [19] also used a Bayesian parameter estimate in a
SEIR model. None of the above articles provide information
on estimates for death cases. A comparison of models (SIR,
SEIR, and a branching point process) highlighting the strengths
and difficulties of each model, and stressing the importance
of nonpharmaceutical public health interventions was made by
Bertozzi et al. [20].

The present work introduces a simple method for estimating
the parameters of the epidemiological model dynamical system.
The proposed method combines dynamical systems, probability
theory, and statistical analysis of data. In addition to the adapted
SIRD model used, we develop a probabilistic model to obtain
the recovery and the lethality probabilities. Based on this model,
we make estimates for the active, death, and recovered cases
based only on data of the confirmed cases. The best fit for
the active cases provides us with the average time duration of
infection, which is held fixed in our model. With the help of
this probabilistic model and the epidemiological data, we also
obtain the time-dependent parameters of the model: contagion,
recovery, and lethality rates. The estimate of the time-dependent
contagion rate is based on a fairly simple statistical analysis
of the statistical estimate of the active cases. We estimate the
time-dependent lethality and recovery rates based on a statistical
analysis of the real death cases data. In this way, one avoids
the time-consuming task, for the programmer, of obtaining the
contagion rate function that leads to the best fit of the data. In
this work, the best fit of the data is done automatically in one pass
of integration. Thus, this greatly reduces the time taken to fit the
available data with the theoretical curve. Furthermore, we present
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and validate a forecasting method based on Markov chains and
on the parameter estimation method we use to make short-term
predictions of the evolution of the epidemiological variables. This
allows for short-time forecasting from 1 to 2 weeks in advance.
In order to measure the error made when fitting the parameters
to the real data, we used the Root Mean Square Error (RMSE).
More precisely, in this work, we use the normalized RMSE, which
allows comparisons between the fittings of different datasets and
also comparisons between the fittings of different time intervals
of the same dataset. Moreover, we also take into account the
fact that the counting of new epidemiological cases is usually
corrupted by delays in the reporting and by missed detection of
infections, deaths, and recoveries. To account for that, we add
to the daily epidemiological data variation zero-mean Gaussian
deviates with standard deviation of 5% of the daily number
of cases variation. We run this many times to verify if the
curve-fitting ability of our theoretical model is robust to such
random perturbations.

Additionally, we prove the well posedness of this model
(existence, uniqueness, and continuous dependence on initial
data). Also, an important theoretical issue we investigate is the
dependence of the solutions on the parameters present in the
model. Although the continuous dependence of solutions on
parameters is a classic result in abstract dynamical systems (see,
for example, [21], Theorem 3.2), as far as we know, this has
not been proved yet for SIR-type models. Hence, we prove
the continuous dependence of the solutions on the system
parameters. Here, we use techniques similar to those used in
da Silva [22] and Diekmann and Getto [23] to accomplish
this result.

We hope that this study of epidemiological dynamics be useful
in stressing the importance of public health policies about the
application, maintenance, and reinforcement of social distancing
measures with the objective of avoiding the collapse of the
health system.

This work is organized in the following way: In Section
2, we propose our epidemiological model and we prove
results on existence and uniqueness of solution and on the
continuous dependence of the solution with respect to the initial
data and the parameters present in the model. We develop,
in Section 3, the probabilistic model with estimates of the
probabilities of recovery and death. We also describe how to
make statistical estimates for the various parameters used in
our epidemiological model. In Section 4, we investigate the
evolution of COVID-19 in Germany as a benchmark test for
our model. Afterwards, we present our results and discuss
about the evolution of the disease in Brazil, in the State of
Paraíba, and in the City of Campina Grande. We also present
a method of forecasting for short terms the evolution of the
pandemic based on Markov chains. We validate the predictions
of our theoretical model by fitting the epidemiological data.
In Section 5, we use the root mean square error (RMSE) to
measure how well our time-dependent compartmental model
fits the epidemiological data. In Section 6, we add noise to
the epidemiological data to see if our model is robust enough
to this sort of perturbation. Finally, in Section 7 we draw
our conclusions.

2. EPIDEMIOLOGICAL MODEL

The evolution of the epidemiological model we propose is
determined by the following ordinary differential equations
(ODE) system

dS

dt
= ν(S+ I + R)− µS− κ(t)SI,

dI

dt
= −

(

µ +
1

τ

)

I + κ(t)SI,

dR

dt
= ρ(t)I − µR,

dM

dt
= λ(t)I,

(1)

where S(t), I(t), R(t) are, respectively, the normalized susceptible,
infected, and recovered populations at time t. We define M(t)
as the normalized number of accumulated deaths due to the
epidemic. The introduction of M(t) is mostly for convenience,
so that we do not have to perform a separate integration from
the numerical routine used to integrate the differential equations
of our model. The normalization of the variables was achieved
by dividing them by P0, the total initial population of the
region considered. For the sake of simplification, we assume
that the population is homogeneous such that all the susceptible
individuals have the same probability of being contaminated and
the infected individuals have the same probability of recovery or
death due to the infection. We also suppose that the population
evolves in such a way that the newborn babies are all susceptible
and the recovered are all immune. The parameter ν is the
population birth rate, µ is the death rate before the onset of the
pandemic, κ(t) is the contagion rate function, ρ(t) is the recovery
rate, and λ(t) is the lethality rate due to the epidemic. Although
ρ(t) and λ(t) are changing over time, τ−1 = ρ(t) + λ(t) is
held constant.

It is important to point out further differences between the
original model (1) and the proposed SIR model [4]. This could
become relevant if the pandemic lasts for over a year. This is
relevant also as a source of comparison with the death rates
due to the COVID-19. One important difference we introduced
is that we now allow for time variation in the contagion rate
κ(t), which reflects changes in confinement, social distancing,
and mask use adopted by the population. In addition, we allow
for time variation in the recovered and lethality rates, which
might reflect possible improvements in the treatment efficacy of
COVID-19 and/or changes in the demographics of the infected.
Here, we also allow variations in the total population, taking
into account the contributions of birth and death rates to the
population evolution.

2.1. Well Posedness
For a given time T > 0, for each initial value (S0, I0,R0,M0), with
κ(t), ρ(t) and λ(t) varying continuously in the bounded interval
[0,T] and with the other parameters fixed, one can show that the
ODE system of Equation (1) admits existence and uniqueness of
solution in the time interval [0,T]. Furthermore, it is possible to
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prove that the solutions are continuously dependent on the initial
data and on the parameters κ , ρ and λ.

To prove the existence and uniqueness of solution of
Equation (1), in the Euclidean space R4, it is sufficient to verify
that the function given by the right hand side of Equation (1) is
Lipschitz continuous with respect to spatial variable (see [21]).

For this, let ξ (t) = (S(t), I(t),R(t),M(t)) be and define g :R×
R
4 → R

4 as

g(t, ξ ) = (g1(t, ξ ), g2(t, ξ ), g3(t, ξ ), g4(t, ξ )), (2)

where the gj :R×R
4 → R are the coordinate functions of g given

by

g1(t, ξ ) = ν(S+ I + R)− µS− κ(t)SI,

g2(t, ξ ) = −
(

µ +
1

τ

)

I + κ(t)SI,

g3(t, ξ ) = ρ(t)I − µR,

and

g4(t, ξ ) = λ(t)I,

with κ , ρ, λ :[0,T] → R+ continuous functions.
Therefore, the existence and uniqueness of solution of

Equation (1) follows from the proposition below, whose proof is
given in the Appendix A.

Proposition 2.1. The function given in (2) is Lipschitz continuous
with respect to the second variable.

Remark 2.2. From Proposition 2.1 and Picard-Lindelöf Theorem
[21], it follows that for each initial value ξ0 = (S0, I0,R0,M0),
with κ(t), ρ(t) and λ(t) varying continuously in the bounded
intervals [0,T], the ODE system of Equation (1) admits existence
and uniqueness of solution in the time interval [0,T], which is
given, for t ∈ [0,T], by

ξ (t) = ξ0 +
∫ t

0
g(s, ξ (s))ds. (3)

Furthermore, using (3) and Gronwall inequality [21], we obtain
the sensitivity with respect to the initial data.

Indeed, denoting by ξ (t, ξ0) the solution of Equation (1) that at
t = 0 is ξ0, we have

‖ξ (t, ξ 10 )− ξ (t, ξ 20 )‖ ≤ ‖ξ 10 − ξ 20 ‖

+
∫ t

0
‖g(s, ξ (s, ξ 10 ))− g(s, ξ (s, ξ 20 ))‖ds

≤ ‖ξ 10 − ξ 20 ‖ +
∫ t

0
L‖ξ (s, ξ 10 )− ξ (s, ξ 20 )‖ds.

Hence, from Gronwall inequality

‖ξ (t, ξ 10 )− ξ (t, ξ 20 )‖ ≤ ‖ξ 10 − ξ 20 ‖e
∫ t
0 Lds

≤ eT‖ξ 10 − ξ 20 ‖ → 0, as ‖ξ 10 − ξ 20 ‖ → 0.

The continuous dependence of the solutions of (1) with respect to
the variation of its main parameters is obtained in the proposition
below and its proof is given in the Appendix B.

Proposition 2.3. Under the same assumptions and notation from
Proposition 2.1, the solution (S(t), I(t),R(t),M(t)) is continuous
with respect to parameters κ(t), ρ(t) and λ(t) present in
Equation (1).

Remark 2.4. It is easy to verify the positivity and the boundedness
of the state variables along the trajectoriesof the ODE System
defined in Equation (1). See the proofs in the Appendices C,D.

3. ESTIMATES FOR THE PARAMETERS

In this section, we explain the derivation of the reproduction
number and develop the estimation procedures for the
parameters present in the model. In addition, we describe our
forecasting method.

3.1. Reproduction Number
It is of paramount importance to know if a contagious disease
will become epidemic or not in a population. It is also important
to know when it will be possible to control an epidemic, that is,
when it will be possible to block its growth. This will happen

when dI
dt

≤ 0. From Equation (1), we obtain that this condition is
equivalent to

−
(

µ +
1

τ

)

+ κ(t)S(t) ≤ 0 H⇒
κS(t)

µ + 1
τ

≤ 1. (4)

In the beginning of the epidemic, we obtain that the value of the
basic reproduction number [24]

R0 =
κ(0)S(0)

µ + 1/τ
. (5)

This is the result for our model that one obtains from the value
of the spectral radius of the matrix of the linearized system at
the disease free equilibrium (see [25, 26] for more details). If
one knows more details about the subpopulations of the infected,
such as the numbers of exposed, transmitters, and hospitalized,
one could devise a more precise measure of the reproduction
number as was proposed by Ghosh et al. [27]. Unfortunately,
in most places this detailed epidemiological information is not
publicly available. The data on the exposed is very hard or
impossible to obtain, unless a very intensive, fast, and widespread
program of contact tracing and testing is put in place. When
R0 > 1, the disease will start spreading, whereas when R0 < 1 the
contagion loses strength and the dissemination of the virus will
be controlled. In our case S0 = 1 and S(t) ≤ 1, thus at any time
after the onset of the epidemic the disease will enter remission if
the dynamic reproduction number

R0(t) =
κ(t)S(t)

µ + 1/τ
(6)
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remains less than 1. Although, we are over 9 months into the
current epidemic in Brazil at the time of writing, M(t) << 1,
S(t) ≈ 1, the critical value of κ(t) is κ∗ = µ+1/τ . If the contagion
rate stays below this value, the pandemic will decrease.

As there is no efficacious treatment against COVID-19 at the
time of writing this paper to the authors’ knowledge, it is not yet
possible to easily alter the average time of infection τ . As 1/τ >>

µ, thus the only viable manner of decreasing R0(t) ≈ κ(t)τ is
by reducing the value of κ(t), which can be obtained with social
distancing measures and the use of PPE.

3.2. Probabilistic Model
It is fundamental that we have good estimates for the recovery
and the lethality rates. In order to obtain these estimates we will
use a very simple probabilistic model. Suppose that a person
is infected at a given instant n (which may be a day, an hour,
or a minute for example), then the probability that the infected
remains sick until the following instant n+ 1 is q, the probability
that the infected recovers in the next instant is p, and the
probability that the infected dies is s, in such a way that p +
q + s = 1. Here, we suppose that q and p + s remain constant
during the course of the disease. Hence, we have the following
probability table

Note that the normalization

∞
∑

n=0

qnp+
∞
∑

n=0

qns =
p+ s

1− q
= 1,

implies that this probabilistic model is well defined.
If n is sufficiently large, only two outcomes are possible: either

the infected individual recovers or dies. Hence, based on the
Table 1 we find that the probability of recovery and of death are,
respectively,

Pρ =
∞
∑

n=0

pqn = p/(1− q),

Pλ =
∞
∑

n=0

sqn = s/(1− q).

(7)

Using these probabilities we find that the average number of
instants (minutes, hours, days, etc.) of the infection is given by

n̄ =
∞
∑

n=1

(p+ s)nqn = (p+ s)F1(q) = (1− q)

∞
∑

n=1

nqn, (8)

TABLE 1 | Probabilistic model.

Situation \ Instant 0 1 2 … n …

Recovered p qp q2p … qnp …

Death s qs q2s … qns …

in which the summation F1(q) =
∑∞

n=1 nq
n can be calculated in

the following form

qF1(q) =
∞
∑

n=1

nqn+1 =
∞
∑

n=2

(n− 1)qn =
∞
∑

n=2

nqn −
∞
∑

n=2

qn

= F1(q)−
∞
∑

n=1

qn = F1(q)−
q

1− q
.

Hence, we obtain

F1(q) =
q

(1− q)2
. (9)

Therefore, we find that the average number of instants of the
infection is

n̄ =
q

1− q
, (10)

from where we obtain that q = n̄/(1 + n̄). We can also find that
the average number of time intervals until recovery is given by

n̄ρ = pF1(q) =
pq

(1− q)2
= Pρ n̄

and the average number of time intervals until death is

n̄λ = sF1(q) =
sq

(1− q)2
= Pλn̄.

Note that n̄ = n̄ρ + n̄λ, that is, the average infection time span
is the sum of the average time span for recovery and the average
time span until death. If only these two processes were present,
it would lead to the following difference equation for the number
of infected

I(n+ 1) = I(n)− (p+ s)I(n) = I(n)− (1− q)I(n) = I(n)−
1

1+ n̄
I(n).

If we take n to indicate the n-th time interval, such as a minute,
in which there is not much variation in the quantities S, I, R, and
M, hence, we can approximate

dI

dt
≈

1I

1t
= −

1

(1+ n̄)1t
I(tn),

in which tn = n1t. In this work, we take 1t = 1 h = 1 day/24.
The average time span of infection can be obtained from the
following equation

1

τ
= λ + ρ =

1

(1+ n̄)1t
. (11)

Hence, we obtain the following expressions for the rates of
lethality and recovery

λ =
n̄λ

n̄τ
=

Pλ

τ
,

ρ =
n̄ρ

n̄τ
=

Pρ

τ
=

1− Pλ

τ
.

(12)
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3.2.1. Standard Deviation
Here, we calculate the standard deviation for this probabilistic
process in the number of time intervals n of infection, from the
contamination until recovery or death. In order to achieve that,
we have first to calculate the sum

F2(q) =
∞
∑

n=1

n2qn. (13)

We can calculate this sum by noting that

q2F2(q) =
∞
∑

n=2

(n− 2)2qn = F2(q)+ 4

∞
∑

n=1

(1− n)qn

= F2(q)+
4q

1− q
− q− 4F1(q).

Hence, we find

F2(q) =
q(1+ q)

(1− q)3
. (14)

We then obtain

n2 = (1− q)F2(q) =
q(1+ q)

(1− q)2

and

n2 =
q2

(1− q)2
.

We can now write the standard deviation of n as

σ =
√

n2 − n2 =
√
q

1− q
. (15)

This shows that the statistical fluctuations in the time duration of
the infection as q grows to 1. By reducing q one not only decreases
n but also σ .

3.3. Statistical Prediction of Active,
Recovery, and Death Cases
It is very important for government officials to have estimates
of the number of active (infected) cases in a given population,
since these people are the ones who spread the disease. Based on
knowledge of new daily infections (new confirmed cases), which
we can obtain fromCOVID-19 databases that are updated at least
every day with data from across the globe, we can make several
estimates. One simple estimate of the number of active cases at
time tk is

A(tk) = C(tk)−R(tk)− D(tk) ≈ C(tk)− C(tk − τ ), (16)

where C(tk) is the number confirmed cases, R(tk) is the number
of recovered cases, D(tk) represents the accumulated number
of death cases at time tk. Another approach is to make a
statistical estimate for the number of active cases at time tk that

follows the probabilistic process described in Section 3.2, which is
the following

A(tk) = −
k
∑

i=−1

qiP01S(tk−i) =
k
∑

i=0

qi1C(tk−i), (17)

where A(tk) = P0I(tk), 1S(tn) = S(tn) − S(tn−1) and, likewise,
1C(tn) = C(tn) − C(tn−1). The index k starts at 0. We also
have the following probabilistic estimates for the daily increase
of recovered and death cases at the k-th day

1R(tk) =
k−1
∑

i=0

qip1C(tk−1−i), (18)

1D(tk) =
k−1
∑

i=0

qis1C(tk−1−i), (19)

These probabilistic estimates complement the predictions from
the epidemiological dynamical system model. The probabilistic
aspect of the pandemic evolution can be most clearly seen when
one considers short time variations, such as daily data on the
number of new confirmed, recovered, or death cases. Also this
allows us to make estimates of the evolution of the active,
recovered, and death cases solely from the confirmed cases time
series. This is most important where the recovered cases are not
available or are less reliable, specially when one is counting the
recovery of outpatients, since they may not take a second test to
show they are actually free of the infection.

3.4. Estimates of the Parameters Used in
the Model
We now make some estimates for the parameters ν, µ, ρ, and λ

present in the dynamical system given in Equation (1).

3.4.1. Birth and Death Rates
In order tomake ourmodel more precise, we obtained the annual
birth rate (ABR) and the annual mortality rate (AMR) from the
most recently published data from Germany and from Brazil
before the spread of the pandemic.

We also converted these annual rates into daily rates using the
geometrical progression formulas

(1+ ν)365 = 1+ ABR,

(1− µ)365 = 1− AMR.

Hence, we find the daily birth and mortality rates

ν = (1+ ABR)1/365 − 1 = e
1
365 ln(1+ABR) − 1

µ = 1− (1− AMR)1/365 = 1− e
1
365 ln(1−AMR)

(20)

The German data on birth and death rates were obtained from
the Federal Statistical Office [28, 29]. The Brazilian data was
obtained from the Brazilian Institute of Geography and Statistics
(IBGE), which are from 2018. For the birth rate we divided the
number of born alive infants by the population estimate for

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2022 | Volume 8 | Article 645614

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Batista and da Silva Compartmental Model With Parameter Estimation

2018 and, likewise, the number of deaths by the 2018 population
estimate. The data on the born alive was collected from the site
https://sidra.ibge.gov.br/tabela/2609, the number of deaths from
the site https://sidra.ibge.gov.br/tabela/2654, and the population
estimate from the site https://www.ibge.gov.br/estatisticas/
sociais/populacao/9103-estimativas-de-populacao.html?edicao=
22367&t=resultados. The birth and death rates used are shown
in the Table 2 below. We provide Table 3 with information on
the average total daily deaths (without the born dead) before the
pandemic based on annual death rates from 2018. This should
be compared with the average daily deaths due to COVID-19 as
another way of assessing the severity of this pandemic.

3.4.2. Contagion Rate
We use the following method to estimate the time-dependent
contagion rate from the epidemiological data. From Equation (1),
we can write

κ(t) =
1

S(t)

[

1

I(t)

dI(t)

dt
+ µ +

1

τ

]

. (21)

We would like to point out though, that this is not a definition
of κ(t). It cannot depend on I(t), otherwise the ODE system
of Equation (1) could not be integrated. This formal equation
inspired us to write the following expression for the contagion
rate as function of time

κk = κ(tk) ≈
1

S(tk)

[

1

A(tk)

1A(tk)

1t
+ µ +

1

τ

]

, (22)

where 1t = 1day. The daily approximation has too much
fluctuation. A better approach is to replace the daily derivative
by the slope of a linear regression of 7 consecutive active cases
data points {Ak,Ak+1, ...,Ak+6}. One rolls this week-long window
over the entire set of data points calculating κk. For the last 6
days of data, we use a backwards window with the data points
{Ak,Ak−1, ...,Ak−6}. We chose the week interval, because all
epidemiological data we have seen present weekly modulations.

TABLE 2 | Birth and death rates.

Population ABR (year−1) ν (day−1) AMR (year−1) µ(day −1)

Germany 0.0095 2.591× 10−5 0.0115 3.169× 10−5

Brazil 0.0139 3.7844× 10−5 6.1560× 10−3 1.6918× 10−5

Paraíba 0.0148 4.0139× 10−5 6.5325× 10−3 1.7956× 10−5

Campina

Grande

0.0158 4.2943× 10−5 7.1342× 10−3 1.9616× 10−5

TABLE 3 | Pre-pandemic populations and average daily deaths.

Location P0 µ(day −1) average deaths (day−1)

Germany 83,149,360 3.169× 10−5 2635

Brazil 211,049,527 1.6918× 10−5 3570

Paraíba 4,018,127 1.7956× 10−5 72

Campina Grande 409,731 1.9616× 10−5 8

The most difficult part of this estimating method of κ(t) occurs at
the beginning of the data sets, when the number of active cases is
very small. From Equation (22), one can see that for small values

of A(tk), any errors in the derivative approximation
1A(tk)

1t are
amplified. Therefore, in most cases we discard the first days or
weeks of epidemiological data, usually up to the day the first death
occurred. In some cases, we also had to apply a cutoff to eliminate
the highest values of κ(t) right at the beginning of the time series.
Apart from the numerical errors described above, notice that any
new imported infected case contributes strongly to the spread
of the disease near the outbreak of the epidemic. Hence, at the
beginning κ(t) tends to be very high. This also reflects the fact
that at the start of the pandemic most populations did not keep
social distancing nor used PPE such as masks.

3.4.3. Lethality and Recovery Rates
We use the following method to estimate the time-dependent
lethality rate. Based on Equation (19), we can write the
probability of dying for those infected with COVID-19 in a 1 day
time interval as

sk =
1D(tk)

∑k−1
i=0 qi1C(tk−1−i)

. (23)

From this we obtain the daily lethality probability Pλ(k) from
Equation (7). Afterwards, from Equation (12), we find the
lethality rate λk for the k-th day. Consequently, from ρk + λk =
1/τ , we also find the recovery rate ρk at the k-th day. The
simpler approach of estimating sk with 1Dk/Ak−1 introduces far
more fluctuations.

3.5. Forecasting
We use a list with the last 3 weeks of κ(t) data to calculate the
transition probabilities of a simple two-state Markov chain as
shown in Figure 1. From this list, we obtain a list of differences
1κi = κ(ti) − κ(ti−1). Based one this, we make two probability
distributions, one for increments in κ(t) and the other for
decrements. If 1κi < 0, in the differences list, we replace it with
0, otherwise we replace it with 1. From this list of 0’s and 1’s, we
obtain a list of lengths of the continuous sequences of 0’s and 1’s.
We then obtain the average length of continuous stretches of 0’s
and 1’s. We call the average length of increments of the contagion

FIGURE 1 | Markov chain diagram with transition probabilities given in

Equation (24). In the − state κ (t) is decreasing in time, while in the + state, it is

increasing.
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rate n̄+ and of decrements n̄−. Based on this we find the following
transition probabilities

q++ =
n̄+

1+ n̄+
, p+− = 1− q++,

q−− =
n̄−

1+ n̄−
, p−+ = 1− q−−.

(24)

Now we use the Markov chain to decide between increasing
or decreasing κ(t). The values of the increments or decrements
are taken from the two probability distributions obtained as
described above. We then randomly obtain predicted values
of κ for 2 weeks based on a 3-week history of data. We
repeat this process for 1,000 times and make an average of all
these trajectories. From these trajectories we also obtain a 95%
confidence interval. In the implementation of the forecasting
method, we compare actual data with our predictions for the two
most recent weeks. Using this same approach, we can forecast the
lethality rate based on a list of daily variation of λ(t).

4. RESULTS AND DISCUSSION

We used the Odeint function of the Python’s scientific library
package SciPy [30] to integrate the ODE system of Equation (1)
with the integration time-step dt = 1.0/24, which corresponds to
an hour when the time unit is a day. In the cases investigated, we
took τ 14 days. We chose the value that provided the best fit of
the active cases with the delay estimate given in Equation (16)
when the active cases data was available, such as in the cases
of Germany and Brazil. When the active cases data was not
available, we chose τ that would give the best fit between the
theoretical prediction for the active cases and the corresponding
estimate of Equation (16). We suppose this parameter does not
change appreciably during the time scale of the outbreak of the
pandemic until now, or at least until more efficient treatments
are discovered. The initial values used are: S(0) = 1 − C0/P0,
I(0) = A0/P0, R(0) = R0/P0, andM(0) = D0/P0, with P0 being
the population just before the outbreak of the pandemic, C0 is
the initial number of confirmed cases, A0 is the initial number of
active cases, R0 is the initial number of recovered cases, and D0

is the initial number of death cases, usually either 0 or 1. We now
apply our model to the four cases of COVID-19 dissemination:
in Germany, in Brazil, in the State of Paraíba, and in the City of
Campina Grande.

In Figure 2, we show results of numerical simulation for a
range of values of κ . Unlike the other results, κ is held constant
during each time integration of the equations of motion given in
Equation (1). This result is important in conveying themessage of
the paramount importance of the contagion rate on the possible
outcomes of the pandemic. Not only we observe an increase in
the number of deaths when the contagion rates increase, but
we also see a sharp transition. When there is a growth in the
contagion rate from 0.1 to 0.15, this gives rise to an extremely
sharp increase in the number of deaths. This implies that there is
a critical value of κ , around which there is a rapid increase in the
total number of deaths due to the pandemic. Beyond the critical
value, we see a saturation in the total number of deaths. The value
of κ that corresponds to R0 = 1 in our model is κ = µ + 1/τ =

FIGURE 2 | Total number of accumulated deaths due to the epidemic as a

function of the contagion rate κ. The total time duration for each value of κ is

365 days. This result shows the high sensitivity of the model time evolution on

the contagion rate. The used parameters in this simulation are indicated above

the figure. In each case, it is assumed that κ remains constant during the time

span of the simulation. The value of κ that corresponds to R0 = 1 is

κ∗ = µ + 1/τ = 0.0714.

0.0714. We believe, this reinforces the great relevance of social
distancing, since increasing the average distance between people,
we will be decreasing the rate of contagion and, consequently,
decreasing also the number of deaths due to COVID-19.

4.1. Evolution of COVID-19 in Germany
We consider the case of Germany as a benchmark test for
our epidemiological model. This is so because it is widely
believed that the cases from Germany are better accounted for
than in most other countries, with widespread testing of the
population (https://www.labmate-online.com/news/laboratory-
products/3/breaking-news/how-germany-has-led-the-way-on-
covid-19-testing/52141). The initial population considered is
P0 = 83.14936 millions. The first contagion was registered on
01/27/2020 and the first death due to COVID-19 was registered
on 03/09/2020. We chose this latter date as the initial point of
our numerical integration.

In Figure 3A, we show the graph with the parameter
estimation for the contagion rate function κ(t). At the beginning
of the time series, the contagion rate is very high. To achieve the
best fit between theory and the data in Figure 4, we had a cutoff
at κ = 0.41, otherwise we used the estimation method described
in Section 3.4.2 to obtain this time series. Note that we observe
weekly modulations, likely reflecting the fact that in weekdays the
contamination is higher than in weekends. The rapid decrease
of κ(t) intensifies approximately around 03/22/2020, when strict
social distancing rules were imposed by the German Government
[18, 31]. This shows that these measures were very efficient in
containing the spread of the epidemic. In Figure 4B, we show
the corresponding reproduction number time series. Around
April/09, the R0(t) becomes below 1 and stays there until about
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FIGURE 3 | Estimation of parameters of the epidemiological model applied to

Germany. The initial date of the time series is the date in which the first death

due to COVID-19 occurred in Germany. (A) the time variation of the contagion

rate. The initial rate was very high, possibly due to exogenous cases in the

early stages of the pandemic. To better fit the data with the predictions of our

model we had to truncate κ (t) with values above 0.43 at the beginning of the

series. (B) the reproduction number. (C) the lethality and recovery rates.

June/13, when for a period of roughly 10 days it rose slightly
above 1. In Figure 4C we show the time-dependent lethality
and recovery probabilities, Pλ(t) and Pρ(t), respectively. These
estimates were obtained using the method described in Section
3.4.3. From early December/2020 to late March/2021, there was
an increase in lethality, this might be due to the spread of
COVID-19 variants, such as the alpha variant across Germany in
that period. The decrease inR0(t) fromApril/2021 to June/2021 is
very likely due to the increased vaccination of the population. The
subsequent increase in R0(t) may be due to relaxing of preventive

measures by the population and also due to spread of the
delta variant.

In Figure 4A, we show the official data on the confirmed
cases of COVID-19 plotted alongside the theoretical prediction,
in which a very good agreement with the epidemiological data
was obtained. The contagion rate function used is given in
Figure 3. In frame Figure 4B, we plot the recovered cases data
along with the theoretical predictions based on our model.
In frame Figure 4C, we plot the death cases with respective
theoretical curve. In frame Figure 4D, we plot the active cases
data along with the theoretical predictions based on our model.
The theoretical fit is not as good as in the previous figures, but
it is still quite reasonable. We see a slow decline in the number
of infected. Once the total number of confirmed cases basically
saturates, the evolution of the active cases can be traced with a
purely statistical model as the one we developed in Section 3.2.
From the statistical point of view the slow decay of the active
cases has to do with the large value of the dispersion in the
duration of the infection, as shown in Section 3.2.1. We also
plot two estimates of the active cases obtained solely from an
analysis of the confirmed cases data. The delay estimate of
active cases at a given time t is based on Equation 16. The
statistical estimate is obtained from the probabilistic process
given in Equation 17. This estimate came closer to the theoretical
dynamical system model, what shows its consistency with the
probabilistic model of Section 3.2. Both estimates came fairly
close to the real data. Note also, that at the last 2 weeks of
the time series we validate the forecasting model based on the
Markov chain. Here, we show a 95% confidence band along
2 weeks. In this case the all epidemiological data fell within
the predictions.

4.2. Evolution of COVID-19 in Brazil
We consider the initial time the day of the first death case in
Brazil. We take Brazil’s population to be approximately P0 =
211.050 × 106. The initial date of the time series of the data
sets used is 03/20/2020, 1 day after the first official death due
to COVID-19 was recorded. We used the pre-pandemic birth
and death rates shown in Table 2. The estimates of contagion,
lethality and recovery rates are obtained according to the
methods described in Sections 3.4.2 and 3.4.3, respectively. The
time variation of the contagion rate reflects the fact that the
population slowly took heed of the gravity of the pandemic and
started adopting social distancing measures and using PPE.

In Figure 5A, we show the time evolution of the contagion
rate κ(t). The sharp drop of this rate is likely due to the increase
of isolation and social distancing that grew at the second half
of March in Brazil. This is certainly due to better precautions
by the population (isolation, social distancing, hand washing,
and the increased use of PPE). In frame Figure 5B, we plot the
reproduction number as a function of time. It is basically a scaled
version of κ(t). In frame Figure 5C, we show the time evolution
of the lethality and recovery probabilities, Pλ(t) and Pρ(t),
respectively. One sees more fluctuations near the beginning of
the time series likely because there were less active cases then.
Also, one sees that the lethality probability was very high on
average in the early stages of the pandemic. This might be related
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FIGURE 4 | Comparison of epidemiological data from Germany with the best fit based on our theoretical model. Also shown near the end of the time series are the

statistical forecasting 95% confidence intervals, as described in Section 3.5. The theoretical fit is obtained with τ = 14 and the parameters estimated in Figure 3. (A)

Confirmed cases data from Germany compared with the theoretical prediction. (B) Recovered cases data in comparison with the theoretical prediction. (C) Death

cases data compared with the theoretical prediction. (D) Active cases compared with delay estimate, statistical estimate, and the predicted theoretical curve. In all

cases the functions κ (t), λ(t), and ρ(t) vary in time according to Figure 3.

with the small amount of testing in Brazil, specially in the early
stages of the pandemic. Another possibility is that the medical
treatment and procedures for the more severe cases of COVID-
19 are being better treated since May/2020. In March/2021,
there was an increase in lethality, this might be due to the
gamma variants that spread from the city of Manaus across Brazil
in that period.

In Figure 6A, we compare the official data (black dotted line)
of confirmed cases with the corresponding time series obtained
from our proposedmodel (red line). In frame Figure 6B, we show
a comparison between the number of recovered cases and the
predicted number of recovered cases predicted by the theoretical
model. The discrepancies in the fittingmay have to do with delays
in the confirmation of the recovered cases, as we can see in the
jumps that occurred from around October/2020. One possible
source of systematic error, toward sub-notification of recovered
cases, could occur in mild cases, as recovered outpatients may

fail to take another test to confirm their recoveries. In frame
Figure 6C, we show a comparison between the number of death
cases due to COVID-19 and the number of deaths predicted by
the theoretical model. In frame Figure 6D, we plot the active
cases data along with the theoretical predictions based on our
model. The theoretical fit is not as good as in the previous figures,
but it is still quite reasonable. We again validate our forecasting
model with a 95% confidence interval based on Markov chain. In
all cases the epidemiological data fell within the prediction range.

4.3. Evolution of COVID-19 in Paraíba
The initial population of Paraíba is P0 = 4, 018, 127. The first
case of COVID-19 contamination was registered on 03/18/2020
and the first recorded death on 04/06/2020. We did not plot the
number of recovered cases because we have not been able, so far,
to obtain this data for Paraíba.
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FIGURE 5 | Estimation of the parameters of the epidemiological model

applied to Brazil. (A) Time variation of the contagion rate in Brazil. This function

was obtained from the statistically estimated active cases as described in

Section 3.4.2. The oscillations reflect weekly variations that can be seen in the

number of daily new cases. To better fit the data with the predictions of our

model we had to truncate κ (t) with values above 0.29 at the beginning of the

series. (B) Corresponding reproduction number evolution. (C) The lethality and

recovery rates obtained with the method described in Section 3.4.3.

In Figure 7A, we show the time evolution of the contagion
rate κ(t). Initially, the contagion rate is not as high as in Brazil’s
case. From about 04/06/20, the rate of contagion starts decreasing
on average, although with a higher amplitude of modulation as
in the case of Brazil. One sees also a decrease in the amplitude
of the modulations from February to May 2021. The weekly
modulations may be due to the use of public transportation
during the work days of the week. In frame Figure 7B, we plot
the reproduction number as a function of time. It is basically
a scaled version of κ(t). In frame Figure 7C, we show the time
evolution of the lethality and recovery probabilities, Pλ(t) and

Pρ(t), respectively. Again, one sees more fluctuations near the
beginning of the time series likely because there were very few
active cases then. Also, one sees that the lethality rate started
decreasing on average after the first week of April. This might
be related with the increased amount of testing in Paraíba after 2
months after the onset of the pandemic. The increase in lethality
around March and April of 2021 may also be due to the spread
of the gamma variants. The decreased lethality from June/2021 is
likely due the vaccinations, specially of the older population.

In Figure 8A, we compare the official data (black dotted
line) of confirmed cases with the corresponding time series
obtained from our model (red line). In frame Figure 8B, we
show a comparison between the number of death cases due
to COVID-19 and the number of deaths predicted by the
theoretical model. In frame Figure 8C, we show the estimated
active cases. One result is based on delay and the other
on the statistical method. Both methods are described in
Section 3.3. We also show epidemiological model estimate
(solid red line). Note also, that at the last 2 weeks of the
time series we validate the forecasting model based on the
Markov chain. Here, we show a 95% confidence band along 2
weeks. In this case the all epidemiological data fell well within
the predictions.

4.4. Evolution of COVID-19 in Campina
Grande
The first case of COVID-19 contamination was registered on
03/27/20 and the first recorded death on 04/16/2020. We did not
plot the number of recovered cases because we have not been able,
so far, to obtain this data for Campina Grande.

In Figure 9A, we show the time evolution of the contagion
rate κ(t). Initially, the contagion rate is not as high as in Brazil’s
case, but takes longer to drop. Only from about 06/07/20, the
rate of contagion starts decreasing on average, although with
a higher amplitude of modulation as in the case of Brazil or
Paraíba. As time passes, one sees also a decrease in the amplitude
of the modulations. This is certainly due to better precautions
by the population (isolation, social distancing, hand washing,
and the increased use of PPE). In frame Figure 9B, we plot the
reproduction number as a function of time. It is basically a scaled
version of κ(t). Since about the beginning of July, R0(t) has been
modulating around 1. Although, this is not enough to end the
pandemic since the number of estimated active cases is still very
high. In frame Figure 9C, we show the time evolution of the
lethality and recovery probabilities, Pλ(t) and Pρ(t), respectively.
Again, one sees more fluctuations near the beginning of the
time series likely because there were very few active cases then.
Also, one sees that the lethality probability started decreasing on
average after the first week of April. This might be related with the
increased amount of testing in Campina Grande. The decreased
lethality from June/2021 is also likely due the vaccinations,
specially of the older population.

In Figure 10A, we compare the epidemiological data (black
dotted line) of confirmed cases with the corresponding time
series obtained from our model (red line). In frame Figure 10B,
we show a comparison between the number of death cases due to
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FIGURE 6 | Comparison of epidemiological data from Brazil with the best fit based on our theoretical model. Also shown near the end of the time series are the

statistical forecasting 95% confidence intervals, as described in Section 3.5. The theoretical fit is obtained with τ = 14 and the parameters estimated in Figure 5. (A)

The number of official confirmed cases in Brazil compared with the theoretical prediction. (B) Time evolution of the official number of recovered cases in comparison

with the theoretical prediction. (C) The number of official deaths compared with the theoretical prediction. (D) The time evolution of the official number of active cases

in Brazil compared with the theoretical prediction. In all cases the functions κ (t), λ(t), and ρ(t) vary in time according to Figure 5.

COVID-19 and the number of deaths predicted by the theoretical
model. In frame Figure 10C, we show the estimated active cases.
One result is based on delay (black x) and the other on the
statistical method (green +). Both methods are described in
Section 3.3. We also show the epidemiological model estimate
(solid red line). Note also, that at the last 2 weeks of the time
series we again validate the forecasting model based on the
Markov chain. Here, we show a 95% confidence band along 2
weeks. In this case the all epidemiological data fell well within
the predictions.

5. ANALYSIS OF CURVE FITTING OF THE
EPIDEMIOLOGICAL DATA

Although there are several papers that use root-mean-square
error (RMSE) and RMSE-like measures of goodness-of-fit such

as Fernandes [32], Kırbaş et al. [33], Uba et al. [34], Al-qaness
et al. [35], and Gupta et al. [36], the populations are different
to the ones we investigated or, as in the case of Germany, the
datasets are very short compared with our datasets. The closest
reference we found for comparison with our results is the work
of Uba et al. [34] that only uses statistical fitting of confirmed
cases data for the first 120 days of the Covid-19 epidemic in
Brazil. And even then, our model is on par or better than their
best fits for this time period. We also found that better measures
of goodness-of-fit than RMSE are the normalized RMSE. The
normalized RMSE allows comparisons of fits of different datasets
and also different periods along the same dataset.

Below we provide results for the normalized RMSE, defined as

NRMSE =
RMSE

ȳ
,
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FIGURE 7 | (A) Time variation of the contagion rate in Paraíba. This function

was obtained from the statistically estimated active cases described in

Section 3.3 and the method of Section 3.4.2. The initial cutoff value of κ (t) is

0.38. (B) Corresponding reproduction number evolution. (C) Estimates for the

lethality and recovery rates based on Section 3.4.3.

where

RMSE =

√

√

√

√

∑Np

n=1(f (tn)− y(tn))2

Np
,

where Np is the number of data points, f (tn) is the estimate from
the model, y(tn) represents the data, and ȳ is the average of y
on the same time interval of the measurement of RMSE. We
show results for both the confirmed and the death cases. We used
two ways to calculate the NRMSE, one is the running window
NRMSE with a window length ofNw days. In the cases shown, we
useNw = 90. As a comparison, we also calculated the cumulative

NRMSE starting from the first 90 days of pandemic data until a
recent date.

In Figure 11, we show two different ways of measuring
the NRMSE of our epidemiological data. Both the running-
window and the cumulative NRMSE showed very similar results.
Overall, the cumulative NRMSE values are slightly smaller for
the cumulative case than the running-window case, assuming the
window size of the running-window case is the initial length of
the cumulative case dataset. We also notice that the cumulative
case results are smoother (with broader peaks) than the running-
window case. The best fitting was obtained with the data from
Germany. We also notice a strong correlation between the
Paraíba and Campina Grande data. This is to be unexpected
because nearly the same non-farmaceutical measures were taken
in both populations. In addition to that, Campina Grande is the
second-largest city in Paraíba.

6. NOISE IN THE EPIDEMIOLOGICAL DATA

Here, we add noise to the epidemiological data to see if
our model estimates are robust enough to the presence of
uncertainties in the recording of epidemiological data. These
uncertainties can arise from delays in reporting cases and also
missed detection due to insufficient testing of the populations.
One way to reproduce these uncertainties is to add a Gaussian
noise to the epidemiological data. At each day, we add a random
value obtained from a normal distribution with zero mean and
standard deviation of 5% of the day’s cases, which could be
confirmed, death, and recovered cases. We add these statistically
independent deviates to each one of these datasets, noticing
that for the case of confirmed, death, and recovered cases the
Gaussian deviate with zero mean and standard deviation of 5%
of the day’s confirmed, death, and recovered cases, respectively.
From these modified epidemiological data, we obtain new time-
dependent contagion, lethality, and recovery rates and integrate
the equations of motion of the corresponding model. From
Equation (22), we estimate that the noise effect on the contagion
rate should be small. This is confirmed by our numerical results
as one can see in Figure 12A, specifically in the inset.

What is not usually small is the effect on the populations as can
be seen in Figure 12B. In this figure, we generated 100 datasets
(not plotted) with added Gaussian noise with zero mean and
standard deviation on the n-th day given by σn = 0.051C(tn).
To each of these datasets we plot the corresponding theoretical
estimate (colored solid lines) For comparison, we also plot the
confirmed cases data without noise (black dots).

In Figure 12C, we investigate the effect of added Gaussian
noise to the curve fitting of the epidemiological data by ourmodel
via the cumulative normalized for confirmed cases. Observe that
a large fraction of the time-series of the NRMSE have higher
values than the the NRMSE without added noise. This likely
reflects the fact that the contagion process of COVID-19 is
not really random and requires contact between infected and
susceptible people as assumed by compartmental epidemiological
models such as the one we use. Nevertheless, even in the worst
cases, the curve fitting of the data with noise is still very good,
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FIGURE 8 | Comparison of epidemiological data from Paraíba with the best fit based on our theoretical model. Also shown near the end of the time series are the

statistical forecasting 95% confidence intervals, as described in Section 3.5. The theoretical fit is obtained with τ = 13 and the parameters estimated in Figure 7. (A)

Comparison of the number of official confirmed cases with the theoretical prediction. (B) Comparison of the number of official deaths due to COVID-19 infection with

the theoretical prediction. (C) Comparison of the number of the estimated number of active cases with the theoretical prediction.

since the cumulative NRMSE is small, demonstrating that our
model is robust to this sort of perturbation.

7. CONCLUSION

Here we summarize the main contributions of our
epidemiological study of the evolution of the COVID-19
pandemic in four populations. The proposed model is an
adaptation of the SIR model [4], a SIRD model [37], with some
notable differences. In the SIRD model we replace the removed

population by the recovered and the deceased. We allow that
the contagion rate varies in time so that it reflects the fact that
social distancing and isolation changes over time. We developed
two ways to obtain the active population from the data on
confirmed cases only. In the first approach, the number of active
cases at time t is estimated simply by the difference between the
confirmed population at time t minus the confirmed population
at time t− τ , where τ denotes the average time span of infection.
In the second approach, the number of active cases is estimated
by the probabilistic model proposed here. Both approaches result
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FIGURE 9 | Parameter estimation of the theoretical model based on

epidemiological data from Campina Grande. (A) Time variation of the

contagion rate. This function was obtained from the statistically estimated

active cases described in Section 3.3 and the method of Section 3.4.2. The

initial cutoff value of κ (t) is 0.3. (B) Corresponding dynamic reproduction

number evolution. (C) Estimates for the lethality and recovery rates based on

Section 3.4.3.

in fairly accurate predictions of the active cases when the official
data is available. In cases in which the data on recovered cases
is not available, this approach could be the only way to estimate
the number of active cases. Furthermore, we propose a simple
method to track automatically the contagion rate based on the
statistical estimate of active cases. We divided this data in weekly
intervals and for each interval we made a linear regression to
obtain the slope, and based on the equation in our model for the
infected, we could obtain a daily contagion rate. This contagion
rate was fed back into the equations of motion and we were able
to fit the data with a minimum of or no ad hoc interventions. We
noticed that the contagion rate could reach very high values at

the initial stages of the spread of the epidemic in all populations
investigated. This likely happens because of inherent numerical
errors, as described in Section 3.4.2, and multiple infections that
are imported from contaminated visitors or people returning
from trips abroad. This type of dynamics is more relevant
at the beginning, when the local contaminated population is
small and before barriers on traveling were imposed by the
governments. Here, we also take into account the contribution
from the pre-pandemic birth and death rates to the evolution
of the populations investigated. This could become relevant if
the pandemic lasts for over a year and also it is important as
a comparison for the lethality of the pandemic. According to
the results exposed in the previous section, with our model we
could fit the official case data from Germany, Brazil, the State of
Paraíba, and city of Campina Grande quite well.

The modeling of the spread of the pandemic in Germany
is very emblematic, since it clearly shows that the strict social
distancing measures imposed by the government on 03/22/2020
were very effective in containing the disease, reducing the R0(t)
from 2.8 down to roughly 1 about 2 weeks later, and further
down to approximately 0.5 in more 2 weeks, according to our
model. The increase in lethality from December/2020 through
March/2021 was probably due to the spread of COVID-19
variants, such as the alpha variant. The decrease in R0(t) from
April/2021 to June/2021 is very likely due to the increased
vaccination of the population. The subsequent increase in R0(t)
may be due to relaxing of preventive measures by the population
and also due to spread of the delta variant.

In the case of Brazil, we conclude that, based on the fit of the
proposed model, the decrease of the reproduction number has
been far more difficult and bumpier. This means the implanted
social distancing measures are having an effect in thwarting the
spread of the disease, but it has not been enough, since to control
the pandemic R0(t) has to remain consistently below 1 for several
weeks, whereas in reality it has been oscillating around 1 for most
of the time and the number of active cases is still very high. The
increase in lethality after March/2021 has likely to do with the
spread of gamma variants across the country.

The evolution of COVID-19 in the State of Paraíba has
been similar to the national case. The amplitude of the weekly
modulations of the contagion rate is considerably higher than
in Brazil. This may be due to the smaller population involved.
The higher lethality from February/2021 through May/2021 is
probably due to the spread of the gamma variants, while the
lower lethality after the last week of June/2021 is likely due to
the increased anti-COVID-19 vaccination of the population. The
decrease in the effective reproduction number after June/2021
may also be due to the vaccination.

As was commented in the Introduction, Campina Grande
adopted a social distancing policy 1 week earlier than the
report of the first confirmed case. Despite of this, the rate of
contagion did not decrease as fast as it did in Germany, Brazil
or Paraíba. It presents two major peaks in κ(t) spaced apart
by a week since the outbreak of the disease here. Probably
these could be linked to agglomeration events such as in-branch
governmental relief payments to unemployed people. Also, one
sees higher amplitude of the modulation of the contagion rate
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FIGURE 10 | Comparison of epidemiological data from Campina Grande with the theoretical fit based on our model. Also shown near the end of the time series are

the statistical forecasting 95% confidence intervals, as described in Section 3.5. In all cases, we used τ = 14 day and the parameters estimated in Figure 9. (A)

Comparison of the number of official confirmed cases with the theoretical fit. (B) Comparison of the number of official deaths due to COVID-19 infection with the

theoretical fit. (C) Comparison of the number of the estimated number of active cases with the theoretical fit.

than in the other populations studied, this might be linked to
the smaller size of the population involved. In a similar way
to Paraíba, from mid June/2021 onward there is a substantial
decrease in the lethality probably caused by the anti-COVID-19
vaccination campaign.

We also proposed and validated a simple forecasting method
based on Markov chains and on our parameter estimation
method for the evolution of the epidemiological data for up to 2
weeks. For the populations we investigated, the epidemiological

data fell well within the 95% confidence interval of
our predictions.

Furthermore, we calculated the NRMSE, which measures the
fitting error of the differences between the epidemiological data
and the estimates obtained from the evolution provided by our
compartmental model with the time-dependent parameters. We
use the NRMSE since it allows comparisons between curve
fittings to data points at different time intervals or even between
different datasets. In addition to that, we also analyzed the
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FIGURE 11 | Running window and cumulative NRMSE data for: (A) Germany, (B) Brazil, (C) Paraíba, and (D) Campina Grande.
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FIGURE 12 | (A) Contagion rate estimation of the theoretical model based on

epidemiological data from Germany with added noise. (B) Comparison of our

theoretical model estimates with the epidemiological data from Germany.

Here, the epidemiological data reporting uncertainties are accounted for by the

added Gaussian noise with zero mean and a daily standard deviation of 5% on

the data. All curves without labels are estimates for the epidemiological data

with added Gaussian deviates. (C) Cumulative normalized NRMSE of

confirmed cases with added Gaussian noise. The minimum time interval used

was 90 days.

robusteness of our model when one introduces random errors in
the epidemiological data. This mimics the fact that in real life, a
fraction of the new cases of confirmed, deceased, and recovered,
are reported with delays or are missed entirely.

Based on the results shown here, we conclude that the public
health officials should look into the local dynamics of the spread
of the disease as they compare with the theoretical predictions
of models such as the one developed here. In this way, they
will know where the social distancing and isolation is being
more efficiently implemented. The models will be more relevant

and accurate if there is more testing of the population. Even
random testing should be considered, as one gains statistical
information on the spread of the disease and discovers where
there is more under-notification. Also, cellphone data of the
motion of the population, as used by Peixoto et al. [38] and
Linka et al. [19], should be considered as a means of predicting
the contagion and of identifying hot spots of COVID-19. This
could help identify where there are more contagions: bars,
churches, supermarkets, offices, pharmacies, hospitals, bakeries,
restaurants, public transportation, delivery services, or family
visits, etc. Furthermore, by comparing different local strategies
one could gain insight on what works better for slowing the
spread of the disease. It would be interesting to see the amount of
correlation in population mobility and contagion rate, this could
be specially relevant at the city level. In a more refined work, one
could couple several nearby cities into a network of populations.
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APPENDIX

Here we summarize the proofs of proposition II.1, Proposition
II.3 and Remark II.4.

A. Proof of Proposition II.1
Proof: Initially we will denote

κmax = sup
t∈[0,T]

κ(t) and ρmax = sup
t∈[0, T]

ρ(t)

and we will consider R4 with the sum norm, that is, for ξ =
(S, I,R,M),

‖ξ‖ = |S| + |I| + |R| + |M|,

where |S| ≤ Smax, |I| ≤ Imax, |R| ≤ Rmax and |M| ≤ Mmax.
Hence, it is easy to see that

|g1(t, ξ1)− g1(t, ξ2)| ≤ |ν − µ||S1 − S2| + ν|I1 − I2| + ν|R1 − R2| + κ(t)|S1I1 − S2I2|

≤ |ν − µ||S1 − S2| + ν|I1 − I2| + ν|R1 − R2| + κ(t)|S1||I1 − I2|

+ κ(t)|I2||S2 − S1|

≤ |ν − µ||S1 − S2| + ν|I1 − I2| + ν|R1 − R2| + κmaxSmax|I1 − I2|

+ κmax Imax|S1 − S2|

≤ (|ν − µ| + κmaxImax) |S1 − S2| + (ν + κmaxSmax)|I1 − I2|

+ ν|R1 − R2|.

Hence, by writing L1 = sup{|ν −µ| + κmaxImax, ν + κmaxSmax},
we obtain

|g1(t, ξ1)− g1(t, ξ2)| ≤ L1 (|S1 − S2| + |I1 − I2| + |R1 − R2|)
≤ L1‖ξ1 − ξ2‖.

Similarly,

|g2(t, ξ1)− g2(t, ξ2)| ≤
(

µ +
1

τ

)

|I2 − I1| + κ(t)|S1I1 − S2I2|

≤
(

µ +
1

τ

)

|I2 − I1| + κ(t)|S1||I2 − I1| + κ(t)|I2||S1 − S2|

≤ κmax Imax|S1 − S2| + κmax Smax|I1 − I2| + (µ +
1

τ
)|I2 − I1|;

thus, writing L2 = max{κmaxImax, κmax Smax + µ + 1
τ
} we have

|g2(t, ξ1)− g2(t, ξ2)| ≤ L2 (|S1 − S2| + |I1 − I2|)
≤ L2‖ξ1 − ξ2‖;

|g3(t, ξ1)− g3(t, ξ2)| ≤ ρ(t)|I1 − I2| + µ|R2 − R1|
≤ ρmax|I1 − I2| + µ|R1 − R2|
≤ L3 (|I1 − I2| + |R1 − R2|)
≤ L3‖ξ1 − ξ2‖,

where L3 = max{ρmax, µ} and

|g4(t, ξ1)− g4(t, ξ2)| ≤ λ(t)|I1 − I2|.

Since 1
τ
= ρ(t)+ λ(t), it follows that λ(t) = 1

τ
− ρ(t). Thus

λmax = sup
t∈[0, T]

(

1

τ
− ρ(t)

)

< τ−1.

Hence,

|g4(t, ξ1)− g4(t, ξ2)| ≤
1

τ
|I1 − I2| ≤

1

τ
‖ξ1 − ξ2‖.

Therefore,

‖g(t, ξ1)− g(t, ξ2)‖ ≤ L‖ξ1 − ξ2‖,

where L = max{L1, L2, L3, 1
τ
}. This concludes the proof.

B. Proof of Proposition II.3
Proof: Define θ :[0,T] → R

3 by

θ(t) = (κ(t), ρ(t), λ(t)).

Consider the metric defined on space of the continuous functions
of [0, T] in R

3, C([0,T],R3), given by

dist(θ , θ0) = sup
t∈[0, T]

|κ(t)− κ0(t)| + sup
t∈[0, T]

|ρ(t)− ρ0(t)| + sup
t∈[0, T]

|λ(t)− λ0(t)|.

Now, we denote by ξθ (t) the solutions of Equation (1) with
respect to parameter θ(t) = (κ(t), ρ(t), λ(t)) such that ξθ (0) = ξ0
and we denote by ξθ0 (t) the solutions with respect to parameter
θ0(t) = (κ0(t), ρ0(t), λ0(t)) such that ξθ0 (0) = ξ0.

We need to show that

‖ξθ (t)− ξθ0 (t)‖ → 0, as dist(θ , θ0) → 0.

For this, note that

‖ξθ (t)− ξθ0 (t)‖ ≤
∫ t

0
‖g(s, ξθ (s))− g(s, ξθ0 (s))‖ds. (25)

Now

|g1(s, ξθ (s))− g1(s, ξθ0 (s))| = |ν[S(s)− S0(s)]+ ν[I(s)− I0(s)]+ ν[R(s)− R0(s)]

+ µ[S0(s)− S(s)]+ κ(s)S(s)I(s)− κ0(s)S0(s)I0(s)|

≤ (ν + µ)|S(s)− S0(s)| + ν|I(s)− I0(s)| + ν|R(s)− R0(s)|

+ |κ(s)S(s)I(s)− κ0(s)S(s)I(s)|

+ |κ0(s)S(s)I(s)− κ0(s)S0(s)I0(s)|.

But

|κ(s)S(s)I(s)− κ0(s)S(s)I(s)| = |S(s)I(s)||κ(s)− κ0(s)|

and
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|κ0(s)S(s)I(s)− κ0(s)S0(s)I0(s)| = |κ0(s)||S(s)I(s)− S0(s)I0(s)|

≤ |κ0(s)|
(

|S(s)||I(s)− I0(s)| + |I0(s)||S(s)− S0(s)|
)

.

Hence,

|g1(s, ξθ (s))− g1(s, ξθ0 (s))| ≤ (ν + µ)|S(s)− S0(s)| + ν|I(s)− I0(s)| + ν|R(s)− R0(s)|

+ Smax Imax sup
s∈[0,T]

|κ(s)− κ0(s)|

+ κ0max

(

Smax |I(s)− I0(s)| + I0max||S(s)− S0(s)|
)

≤ (ν + µ + κ0max I0max)|S(s)− S0(s)|

+ (ν + κ0max Smax)|I(s)− I0(s)| + ν|R(s)− R0(s)|

+ SmaxImax dist(θ , θ0).

Thus, by writing G1 = {ν + µ + κ0max I0max, ν + κ0max Smax},
we obtain

|g1(s, ξθ (s))− g1(s, ξθ0 (s))| ≤ G1‖ξθ (s)− ξθ0 (s)‖ + SmaxImax dist(θ , θ0). (26)

|g2(s, ξθ (s))− g2(s, ξθ0 (s))| =
∣

∣

∣

∣

(

µ +
1

τ

)

(I0 − I)+ κ(s)S(s)I(s)− κ0(s)S0(s)I0(s)

∣

∣

∣

∣

≤
(

µ +
1

τ

)

|I0 − I| + |S(s)I(s)||κ(s)− κ0(s)|

+ |κ0(s)||S(s)I(s)− S0(s)I0(s)|

≤
(

µ +
1

τ

)

|I0 − I| + Smax Imax |κ(s)− κ0(s)|

+ κ0max

(

|S(s)||I(s)− I0(s)| + |I0(s)||S(s)− S0(s)|
)

≤ κ0max I0max |S(s)− S0(s)| +
(

µ +
1

τ
+ κ0max Smax

)

|I0 − I|

+ Smax Imax dist(θ , θ0)

≤ G2‖ξθ − ξθ0 ‖ + Smax Imax dist(θ , θ0), (27)

where G2 = max{κ0max I0max, µ + 1
τ
+ κ0max Smax}.

|g3(s, ξθ (s))− g3(s, ξθ0 (s))| = |ρ(s)I(s)− ρ0(s)I0(s)+ µ[R0(s)− R(s)]|

≤ |I(s)||ρ(s)− ρ0(s)| + |ρ0(s)||I(s)− I0(s)|

+ µ[R0(s)− R(s)]|

≤ Imax sup
s∈[0, T]

|ρ(s)− ρ0(s)| +

(

sup
s∈[0, T]

ρ0(s)

)

|I(s)− I0(s)|

+ µ|R0(s)− R(s)|

≤ Imaxdist(θ , θ0)+ ρ0max |I(s)− I0(s)|

+ µ|R0(s)− R(s)|

≤ G3‖ξθ (s)− ξθ0 (s)‖ + Imax dist(θ , θ0), (28)

where G3 = max{ρ0max, µ}. Now,

|g4(s, ξθ (s))− g4(s, ξθ0 (s))| = |λ(s)I(s)− λ0(s)I0(s)|

≤ |I(s)||λ(s)− λ0(s)| + λ0(s)|I(s)− I0(s)|

≤ Imax

(

sup
s∈[0,T]

|λ(s)− λ0(s)|

)

+
(

1

τ
− ρ0(s)

)

|I(s)− I0(s)|

≤
1

τ
‖ξθ (s)− ξθ0 (s)‖ + Imax dist(θ , θ0). (29)

Thus, by using Equations (26), (27), (28) and (29) in (25), we find

‖ξθ (t)− ξθ0 (t)‖ ≤
∫ t

0

{

2(SmaxImax + Imax)dist(θ , θ0)+ (G1 + G2 + G3 +
1

τ
)‖ξθ (s)− ξθ0 (s)‖

}

ds

≤ 2T(SmaxImax + Imax)dist(θ , θ0)+
∫ t

0

(

G1 + G2 + G3 +
1

τ

)

‖ξθ (s)− ξθ0 (s)‖ds.

Therefore, from Gronwall Lemma, it follows that

‖ξθ (t)− ξθ0 (t)‖ ≤ 2T(SmaxImax + Imax)dist(θ , θ0)e
(G1+G2+G3+ 1

τ )T → 0,

as dist(θ , θ0) → 0.

C. Positivity of Solutions
Here we develop a constructive proof. For a more abstract
alternative proof, see the supplementary material. Notice that,
in the system of Equation (1), κ , ρ, and λ are non-negative
continuous functions and µ and ν are positive constants.
Furthermore, we have the following initial data S(0) = 1− 1

P0
>

0, I(0) = 1
P0

> 0, R(0) = 0 andM(0) = 0.
From the second line of the ODE system of Equation (1), we

have

I′(t) = [−
(

µ +
1

τ

)

+ κ(t)S(t)]I(t).

Then

I′(t)

I(t)
= −

(

µ +
1

τ

)

+ κ(t)S(t).

Integrating from 0 to t, we obtain

ln
I(t)

I(t0)
=
∫ t

t0

[−
(

µ +
1

τ

)

+ κ(s)S(s)]ds

Thus, since I0 > 0, we have

I(t) = I0e
∫ t
t0
[−(µ+ 1

τ
)+κ(s)S(s)]ds

> 0. (30)

From third equation in (1), we have

R′(t)+ µR(t) = ρ(t)I(t).

Multiplying both members of the last equation by eµt , it follows
that

eµtR′(t)+ µeµtR(t) = eµtρ(t)I(t)

or equivalently

d

dt
(eµtR(t)) = eµtρ(t)I(t)

Integrating from 0 to t, we obtain

eµtR(t)− eµtR(t0) =
∫ t

0
eµsρ(s)I(s)ds.
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Hence

R(t) = e−µ(t−t0)R0 +
∫ t

0
eµsρ(s)I(s)ds.

Since R(t0) = R0 = 0

R(t) =
∫ t

0
eµsρ(s)I(s)ds > 0, (31)

because ρ(s) > 0 and, from (30), I > 0.
Now, from fourth equation in (1), we have

M′(t) = λ(t)I(t)

Thus

M(t) = M(t0)+
∫ t

t0

λ(s)I(s)ds

Since M(t0) = 0, λ > 0 and from (30), I > 0, it follows that
M(t) > 0 for all t ∈ [0,T].

Finally, from first equation in (1), it follows that

S′(t)+ (κ(t)I(t)+ µ − ν)S(t) = νI(t)+ νR(t)

Let w(t) =
∫ t
t0

κ(s)I(s)ds be. Then, multiplying both members by

ew(t)+(µ−ν)t , we obtain

d

dt

[

ew(t)+(µ−ν)tS(t)
]

= ν(I(t)+ R(t))ew(t)+(µ−ν)t .

Integrating from 0 to t, we obtain

ew(t)+(µ−ν)tS(t)− ew(t0)+(µ−ν)t0S(t0) =
∫ t

t0

ew(s)+(µ−ν)sν(I(s)+ R(s))ds.

Since w(t0) = 0, it follows that

S(t) = e−w(t)e−(µ−ν)(t−t0)S(t0)+
∫ t

t0

e−(w(t)−w(s))−(µ−ν)(t−s)ν(I(s)+ R(s))ds.

As S(t0) = 1
P0

> 0, ν > 0 and from (30) and (31) we have that
I > 0 and R > 0, it follows that S(t) > 0 for all t ∈ [0,T].

D. Boundedness of Trajectories
If µ = ν, then, from Equation (1),

d

dt
(S+ I + R+M) = 0. (32)

Hence, S(t) + I(t) + R(t) + M(t) = S0 + I0 + R0 + M0 = 1.
As the initial condition is S0 = 1 − 1/P0 and I0 = 1/P0,
R0 = M0 = 0 and state variables are all non-negative, as shown
above, we obtain that 0 ≤ S(t), I(t),R(t),M(t) ≤ 1. In the case of
µ 6= ν, from Equation (1), we can write

d

dt
(S+ I+R+M) = (ν−µ)(S+ I+R) ≤ (ν−µ)(S+ I+R+M),

(33)
assuming ν > µ. Hence, we obtain S(t) + I(t) + R(t) +M(t) ≤
e(ν−µ)t . Therefore, as S(t), I(t), R(t), and M(t) are positive, they
are all bounded in any given finite time interval. If µ > ν, we
obtain S(t)+ I(t)+ R(t)+M(t) ≤ 1.
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