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Recently, many image encryption algorithms based on hybrid DNA and

chaos have been developed. Most of these algorithms utilize chaotic

systems exhibiting dissipative dynamics and periodic windows/patterns in the

bifurcation diagrams along with co-existing attractors in the neighborhoods

of parameter space. Therefore, such algorithms generate several weak keys,

thereby making them prone to various chaos- specific attacks. In this paper,

we propose a novel conservative chaotic standard map-driven dynamic DNA

coding (encoding, addition, subtraction and decoding) for image encryption. It

is the first hybrid DNA and conservative chaos-based image encryption

algorithm having e�ectively infinite key space. The proposed image encryption

algorithm is a dynamic DNA coding algorithm i.e., for the encryption of

each pixel di�erent rules for encoding, addition/subtraction, decoding etc.

are randomly selected based on the pseudorandom sequences generated

with the help of the conservative chaotic standard map. We propose a novel

way to generate pseudo-random sequences through the conservative chaotic

standard map and also test them rigorously through the most stringent

test suite of pseudo-randomness, the NIST test suite, before using them in

the proposed image encryption algorithm. Our image encryption algorithm

incorporates unique feed-forward and feedback mechanisms to generate and

modify the dynamic one-time pixels that are further used for the encryption of

each pixel of the plain image, therefore, bringing in the desired sensitivity on

plaintext as well as ciphertext. All the controlling pseudorandom sequences

used in the algorithm are generated for a di�erent value of the parameter (part

of the secret key) with inter-dependency through the iterates of the chaotic

map (in the generation process) and therefore possess extreme key sensitivity

too. The performance and security analysis has been executed extensively

through histogram analysis, correlation analysis, information entropy analysis,

DNA sequence-based analysis, perceptual quality analysis, key sensitivity

analysis, plaintext sensitivity analysis, classical attack analysis, etc. The results

are promising and prove the robustness of the algorithm against various

common cryptanalytic attacks.
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images encryption, conservative chaos, chaotic standard map, DNA coding, chaos-

based image encryption, DNA encryption
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1. Introduction

Due to advancements in network and communication

technologies, the exchange of digital multimedia content has

become one of the frequent tasks. It has consequently posed

a requirement to protect such digital multimedia information

from eavesdropping. Amongst various digital multimedia

contents, images (and hence videos too) require special attention

due to some of the inherent properties of digital images like the

bulk of information, high spatial correlation and redundancies.

Consequently, over the years, the encryption of images has been

one of the active areas of research in image processing and

allied fields and therefore a variety of technologies like optical

image encryption, chaos-based image encryption, DNA based

encryption, and a suitable combination of these technologies

have emerged as alternative means to encrypt the images.

Shanon [1] in his masterpiece “Communication theory of

secrecy systems,” suggested that good mixing transformations

governed by simple repeating and non-commuting nonlinear

operations involving the secret key in a complex way are the

key ingredients for developing an ideal encryption system.

Such transformations may be comfortably realized through

the confusion (substitution) and diffusion (permutation)

mechanisms. Here the confusion means a complex and involved

relationship between the cipher image pixels and key whereas

diffusion refers to spreading the plain image pixels information

over the entire cipher image.

The optical image encryption systems utilize optical

setups (lenses, spatial lens modulators, etc.) [2–4], double

random phase encoding (DRPE) with optically or electronically

generated random phase masks [4–8], and mathematical

modeling with integral transforms [4, 9, 10]. Such systems have

the advantage of sending complex data in parallel and are also

capable of carrying out usually time-consuming operations in

a faster way, therefore are found suitable in image encryption.

Besides having above mentioned clear advantages, the optical

processes governed by the integral transforms possess the

linearity and symmetry properties which make the optical

encryption system vulnerable to various cryptanalytic attacks

[4, 11–13]. On the other hand, DNA computing, since its

advent in 1994 [14], has attracted the attention of researchers

due to some of its peculiar features like huge information-

carrying capacity, parallelism, ultra-low energy consumption

etc. DNA computing mainly requires the biochemical reaction

environment, expensive laboratory equipment, and restricted

laboratory conditions like precise control of concentration,

temperature and pH of biochemical reactants etc., which make

it difficult to realize in a wet lab. Rather than implementing it

at a molecular level, researchers have preferred DNA coding to

carry the information in digital form and manipulate it using

the corresponding feasible DNA operations. It has induced a

new way of concealing the information through DNAmicrodots

[15] and subsequently following this development, Gehani et al.

[16], Xiao et al. [17], and Kang [18] too presented the new

perspectives of information hiding using the DNA concepts.

Optical transforms and DNA encoding/operations do not offer

non-linearity therefore solely are not suitable to develop secure

encryption systems as per Shanon’s criterion. Contemporary to

the above-mentioned developments of optical and DNA-based

image encryption, dynamical chaos has also been extensively

used to develop secure image encryption systems owing to

the fact that chaotic systems are essentially non-linear systems

(having sensitivity on initial conditions/parameters, ergodicity,

mixing property etc.) and have been found most suitable to

introduce the substitution and permutation of image pixels

as recommended in Shannon’s confusion-diffusion framework

[19–24]. Chaos-based image encryption systems, have also been

preferred due to their fast-processing time which is one of the

essential requirements in real-time transmission. However, there

are some limitations associated with chaos-based encryption

systems like smaller key space, floating-point representation,

dynamic degradation, periodic windows and patterns in the

bifurcation diagram, coexisting attractors in the neighborhoods

of parameter space etc. [25, 26]. Interestingly, a very recent study

proves that chaotic systems resist dynamic degradation through

an anti-dynamic degradation theorem [27].

Since each of the technologies, mentioned above has

its inherent advantages as well as disadvantages, therefore,

researchers find it worthwhile to hybridize various techniques in

order to either incorporate each of their pros or eliminate any

of their cons. In such hybrid methods, the chaotic dynamical

systems have been mainly utilized to introduce the non-linear

effects in the substitution and permutation of pixels in a variety

of ways. On the other hand, the optical transforms, DNA

operations have been utilized to do encoding/decoding of image

pixels that too sometimes under the control of chaotic systems

[4]. As the present manuscript deals with hybrid chaos and DNA

based image encryption, therefore we are elaborating more on

this category in our further discussion.

In hybrid DNA and chaos-based image encryption systems,

the images are firstly encoded into the DNA sequences

followed by scrambling of these sequences using chaotic systems

(one dimensional, combination of multiple chaotic maps,

hyperchaotic maps, combination of hyperchaotic maps). The

DNA bases of scrambled sequences are then changed by the

application of DNA operations (addition, subtraction, XOR,

XNOR, DNA complements, or combinations of some of these

operations etc.) under the control of chaotic systems and then

the resultant sequences are decoded into the digital format to

produce the encrypted image. Broadly the DNA and chaos-

based image encryption can be classified into the following

categories [28]: (i) fixed DNA coding, (ii) dynamic DNA coding,

(iii) DNA base complement operations, (iv) DNA sequence

algebraic operations, and (v) combinations of multiple DNA

operations. In the fixed DNA coding schemes, a particular rule

is used for encoding followed by some DNA operations and
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decoding using the same rule [29–33], however in the dynamic

DNA coding schemes, different rules are used for the encoding

and decoding (either row-wise, column-wise, block-wise, pixel-

wise or sometimes at the base-wise too) under the control of

chaotic system [34–37]. In DNA base compliment operations

schemes, one of the three types of complement methods (single

base direct complement method, static regular base complement

method, dynamic regular base complement method) are used

[30, 37–39]. However, in DNA sequence algebraic operations-

based schemes, addition, subtraction, XOR, XNOR operations on

DNA sequences are used [40–43] under the control of chaotic

systems to change the pixel values. In the last category, combined

DNA coding and multiple/different DNA operations are used to

scramble and change the pixel values [38, 41] and therefore are

the most complex scenario. We are reviewing some of the very

important and recent research works which have paved the way

and led to the advancements in this field of hybrid DNA and

chaos-based image encryption algorithms.

Zhang et al. [30] proposed an image encryption scheme

based on DNA addition operation in which a DNA encoded

image is divided into blocks and DNA addition is used to

add these blocks followed by a complement operation with

the help of the chaotic logistic map. A 4D hyperchaotic map

is used to generate pseudo-random number sequences and a

circular permutation along with classical diffusion is used for

the encryption [44]. Liu et al. [32] also used DNA addition and

complement to develop the image encryption of RGB images.

Wei et al. [31] used Chen’s hyperchaotic system to scramble

the pixels of RGB layers and then divide them into some

equal blocks followed by the addition of these blocks under the

influence of Chen’s hyperchaotic system. A confusion-diffusion

based image encryption based on a piecewise linear chaotic

map and Chebyshev map and DNA complementary rules has

been proposed by Liu et al. [45]. Enayatifar et al. [46] proposed

a hybrid genetic algorithm which is used for determining

the best DNA mask out of several such masks generated

through the chaotic system and then further used for image

encryption. Wu et al. [47] proposed a new robust color image

encryption scheme based on dynamic DNA sequence operations

and multiple improved/compound 1D chaotic systems which

utilizes a division shuffling process and the key streams are

dependent on the secret key and plaintext. Kalpana and Murali

[34] introduced the concept of using more than one DNA

rule and more than one operation (subtraction/addition) in the

algorithm which is randomly chosen for each pixel with the

help of multiple chaotic systems such as Chen’s hyperchaotic

map, sine map, cubic map, logistic map and Arnold’s chaotic

maps have been used. A chaotic logistic map and spatiotemporal

system (coupled map lattices) are used in combination with

the DNA rules to achieve the image encryption system through

a permutation-substitution architecture [35]. Chai et al. [48]

proposed an image encryption algorithm using the 2D logistic

map to execute the row and column circular permutations where

SHA256 is used to generate the initial conditions for chaotic

maps. A new DNA coding of images along with two rounds of

DNA-based confusion and diffusion, where a piecewise linear

chaotic map is used to generate the key stream, is proposed

by Zhang [49]. A combined Block-based permutation, pixel-

based substitution, DNA encoding, bit-level substitution (i.e.,

DNA complementing), DNA decoding, and bit-level diffusion

are used for image encryption where the logistic-Chebyshev

map, sine-Chebyshev map produces the key-streams at various

stages given above [50]. Chai et al. [51] proposed a novel

diffusion mechanism based on random numbers related to

plaintext (DMRNRP) is used along with DNA operations under

the control of a four wings hyperchaotic system. A one-time

pad color image encryption based on a 3D skew tent map

utilizing the secret keys and Hamming distance is proposed

in which DNA XOR, addition and subtraction are used [52].

Wang et al. [37] proposed a one-time pad image encryption

algorithm based on the coupled map lattices (CML system)

and DNA diffusion sequences. The initial values and control

parameters of the CML system and logistics map serve as

keys for a one-time pad and are calculated by utilizing the

SHA256 hash algorithm. DNA encoding along with other

operations is used at the base level under the influence of

chaos. A new scheme was proposed by combining the optimal

coding mechanism with the optimal DNA coding operation

[28]. Another one-time pad DNA-chaos image encryption

algorithm, based on multiple keys and utilizing the chaotic

logistic and sine maps, is proposed by Zhou [53] in which

plaintext sensitivity is integrated by having dependence of four

of the keys on the original image. A robust medical image

encryption based on a combined DNA-chaos approach for

secure telemedicine utilizing the logistic map, piecewise linear

chaotic map (PWLCM), DNA encoding and various DNA

algebraic operations like XOR, addition, subtraction etc. for the

diffusion [54]. Wang et al. [55] proposed an image encryption

strategy based on random number embedding in the plaintext

andDNA-level self-adaptive permutation and diffusion based on

a 4D memristive hyperchaotic system. A new four-dimensional

hyperchaotic system is proposed by Hui et al. [56] and used

further to encrypt the original image through pixel scrambling

and pixel diffusion based on DNA encoding. A chaotic logistic

map-based image encryption algorithm utilizing the arithmetic

sequence model scrambling method and DNA operations is

proposed by Yan et al. [57]. An efficient DNA-inspired image

encryption algorithm based on the fusion of hyper-chaotic

diffusion and wavelet-based confusion is proposed by El-Khamy

and Mohamed [58]. In Table 1, we have summarized the

recent algorithm that are most relevant to present work along

with their characteristic components and performance metrics.

Particularly, Table 1 summarizes the details of the chaotic

system(s) used in various recent hybrid DNA chaos-based image

encryption algorithms and their performance characteristic like:

key space, correlation coefficients of cipher images produced by
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TABLE 1 Comparison of recent hybrid DNA chaos-based image encryption algorithms.

References Chaotic system Use of Key Correlation coe�cients NPCR UACI

hash space (encrypted image)

H V D

Zhang et al. [30] Logistic – 1072 0.0036 0.0023 0.0039 99.61 0.38

Liu et al. [32] Logistic – 1056 0.0059 −0.0042 0.0180 – –

Wei et al. [31] Chen’s – 1070 0.0054 0.0016 0.0017 99.58 33.48

Liu et al. [45] PWLCM, Chebyshev MD5 10126 0.0004 0.0021 −0.0038 99.53 32.57

Enayatifar et al. [46] Logistic – 0.0017 0.0007 0.0001 99.71 33.62

Wu et al. [47] Logistic-tent and logistic-sine – 1090 −0.0084 0.0004 −0.0015 99.60 33.48

Kalpana and Murali [34] Lorenz, Chen’s hyperchaos, logistic, sine, cubic, Arnold’s – 10230 0.0144 0.0083 −0.0467 99.65 33.11

Zhen et al. [35] Logistic (coupled map lattice) – 1089 0.0214 0.0465 −0.0090 99.60 33.44

Chai et al. [48] Logistic SHA256 >2100 −0.0045 −1.62× 10−4 0.0053 99.59 33.41

Zhang [49] PWLCM – 216d

(d=28/64)

−0.0052 0.0221 −0.0103 99.61 33.47

Belazi et al. [50] Logistic-Chebyshev SHA256 2716 0.0013 −0.0049 0.0057 99.65 33.41

Chai et al. [51] 4-wing hyperchaos SHA384 10185 −0.0029 0.0013 0.0004 99.61 33.50

Zhang and Ye [52] Skew tent map, coupled map lattice – >10150 −0.0085 −0.0008 0.0033 99.60 33.43

Zhou [53] Sine, Chebyshev – 10112×2256
8

0.0105 −0.0025 0.0003 99.60 33.36

Wang et al. [55] Memristor hyperchaos – 2186 0.0084 −0.0039 −0.0013 99.62 30.64

Hui et al. [56] Lorentz based hyperchaos SHA512 1060 −0.0073 −0.0042 0.0049 99.64 33.38

Yan et al. [57] Logistic SHA512 2592 × 1084 0.0023 −0.0018 0.0013 99.61 33.54

El-Khamy and Mohamed [58] Chen’s hyperchaos – – 0.0009 0.0021 0.0003 99.61 33.43

Proposed Conservative chaotic standard map – Infinite 0.0003 −0.0083 0.0007 99.61 33.51
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these algorithms and plain text sensitivity metrics (NPCR and

UACI; all the results quoted here are for the image “Lena”) to

clearly contrasting the proposed image encryption with these

recent algorithms and emphasizing that it is the first hybrid

DNA and conservative chaos-based image encryption algorithm

having infinite key space and ideal correlation and plaintext

sensitivity properties.

It is evident from the review of hybrid DNA chaos-based

image encryption algorithms and the summary described in

Table 1 that almost all of them are based on the chaotic logistic

maps, sine map, cubic map, Arnold map, piecewise linear

chaotic maps, their compound higher dimensional versions,

Lorenz system, Rossler systems, 4D hyperchaotic systems like

Chen’s system and some of the newly developed hyperchaotic

systems. In all such hybrid algorithms, chaotic systems are either

used to control the substitution and permutation (DNA coding,

encoding and algebraic operations) through the pseudo-random

sequences generated by chaotic systems and/or to generate the

one-time pads for further DNA based coding and operations

to be used in the encryption. The chaotic systems used in all

these algorithms are dissipative chaotic systems and exhibit

several periodic windows and patterns in bifurcation diagrams

and co-existing attractors in the neighborhoods of parameter

space and therefore possess several weak keys. Moreover, the

processes of generating pseudorandom sequences, which are

mainly controlling these algorithms and responsible for the non-

linearity in the algorithms, have not been rigorously tested for

their pseudo-randomness. Consequently, such algorithms may

be prone to chaos-based analysis/attacks.

To counter such possibilities, we propose a novel

combination of conservative chaotic standard map-

driven dynamic DNA encoding/decoding and operations

(addition/subtractions) for image encryption. The conservative

chaos map used in the proposed image encryption algorithm

is a 2D map which exhibits robust chaos for all parameter

values above a threshold (critical) value, and there exists no

co-existing attractor too therefore, the chaotic orbit visits

the entire phase space ergodically. Such ergodic orbits are

highly recommended and proven best for the generation of

pseudo-random sequence generations [59, 60]. We also propose

a novel way to generate pseudo-random sequences (to be used

in the proposed image encryption algorithm) through the

conservative chaotic standard map and also test them rigorously

through the most stringent test suite of pseudo randomness,

the NIST test suite [61], by following all the recommendations

of the test suite before using them in the proposed algorithm.

Our image encryption algorithm incorporates a unique feed-

forward and feedback mechanisms to generate and modify

the dynamic one-time pixels that are further used for the

encryption of each pixel of the plain image, thereby bringing in

the desired extreme sensitivity on plaintext as well ciphertext.

All the pseudo-random sequences used in the proposed image

encryption algorithm are generated for an independent value of

the parameter (part of the secret key) of the chaotic map and

also have inter-dependency through the iterates of the chaotic

map (in the generation process) therefore, the entire proposed

algorithm possesses the extreme key sensitivity too. The

proposed algorithm is the first hybrid DNA and conservative

chaos-based image encryption algorithm having effectively

infinite key space and possessing all the desired properties of

an ideal image encryption system. The complete details of the

proposed image encryption algorithm have been described, in

detail, in the next section.

2. The proposed image encryption
algorithm

In this section, we describe the DNA coding/encoding and

corresponding addition and subtraction operations being used

in the proposed image encryption algorithm, the novel way of

generating pseudorandom sequences based on a conservative

chaotic standard map and their testing with the NIST pseudo-

randomness test suite, and the finer algorithmic step-by-step

details of the proposed image encryption algorithm and the

entire flow of the encryption process.

2.1. The DNA encoding/decoding and
corresponding operations

The DNA sequences are comprised of four nucleic acid

bases: Adenine (A), Thymine (T), Cytosine (C), and Guanine

(G), here A and T are complements of each other and G

and C are complements of each other. In DNA computing,

these four nucleic bases are represented by 00, 01, 10, and

11. A total of 24 different combinations are possible for such

representations out of which only eight are allowed according

to the complementarity rules of binary numbers (00 and 11

are complements, 01 and 10 are complements) and consistent

with the DNA complement rule too. In Table 2, all eight allowed

representations or DNA encoding/decoding rules for binary

numbers 00, 01, 10, and 11 have been depicted. In 8-bit image

representation, each pixel value lies between 0 and 255 i.e.,

its binary representation is an 8-bit code therefore a pixel is

represented by a combination of four nucleic bases. Therefore,

a pixel can be encoded in eight different ways by following the

DNA encoding rules given in Table 2 [37].

For each DNA encoding rule, the operations like addition,

subtraction, XOR, XNOR, etc. can be defined by following

the corresponding binary operation rules. Therefore, there are

different rules for these operations corresponding to each DNA

encoding rule. In the present algorithm, we are using addition

and subtraction operations along with DNA coding/encoding.

For brevity, only addition and subtraction tables (Tables 3, 4)

corresponding to one of the DNA encoding/decoding rules (for
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TABLE 2 DNA encoding/decoding rules.

Rule 1 2 3 4 5 6 7 8

00 A A T T C C G G

01 G C G C A T A T

10 C G C G T A T A

11 T T A A G G C C

TABLE 3 DNA addition rules (corresponding to DNA

encoding/decoding rule no. 4).

+ A T C G

A G A T C

T A T C G

C T C G A

G C G A T

TABLE 4 DNA subtraction rules (corresponding to DNA

encoding/decoding rule no. 4).

– A T C G

A T A G C

T C T A G

C G C T A

G A G C T

rule no. 4) are provided here. Similarly, the addition/ subtraction

tables for the remaining rules can also be developed.

In the proposed image encryption, we use any one of all eight

DNA encoding/decoding rules, any one of all eight addition

rules and any one of all eight subtraction rules randomly for each

pixel under the control of pseudorandom sequences generated

through the conservative chaotic standard map.

2.2. The generation of pseudorandom
sequences based on conservative chaos
and their testing

In the proposed image encryption algorithm, the

conservative chaotic standard map is used in a novel way

for the generation of pseudo-random number sequences which

drives the entire process of DNA encryption. The following

form of the 2D conservative chaotic standard map is used for

this purpose.

Xn+1 = f (Xn, Yn) = (Xn + KsinYn)mod 2π , (1)

Yn+1 = g(Xn, Yn) = (Xn+1 + Yn)mod 2π , (2)

FIGURE 1

Divisions of the phase space of the conservative chaotic

standard map.

Here X and Y are the state variables and K is the parameter.

The chaotic region in the phase space increases with the

increase in parameter K and chaos becomes completely global

for K > 18 and the chaotic orbit visits the entire phase

space ergodically. For more details on the bifurcations and

dynamics of the chaotic standardmap, Patidar and Sud [59] may

be referred.

The iterates of the abovementioned map are used for

the generation of pseudo-random number sequences. For this

purpose, we divide the entire phase space (0 < X < 2π , 0 <

Y < 2π) of the conservative chaotic map into eight equal

parts as depicted in Figure 1 and assign numbers 1–8 to these

parts. After each iteration, we observe the pair of values of

X and Y, depending on which region of the phase space this

belongs to, we record the corresponding region number in

the sequence. In this way, we generate a sequence comprising

numbers 1–8 of the desired length using the iterates of the

above-mentioned map.

We have also tested the randomness of pseudorandom

sequences generated in the above-mentioned manner using

the NIST test suite [61]. For the testing purpose, we have

generated 1,000 sequences of 106 bits each starting with

random choices of initial conditions and parameter values of

the conservative chaotic standard map and run the entire test

suite comprising 15 different parametric and non-parametric

tests (in total there are 188 tests which include all variants

of different tests in the suite). For each sequence, using each

test statistic, a p-value is generated. If the p-value is >0.01

(determined by the chosen significance level) then the test is

labeled as passed. A certain number of sequences, out of the

total tested, are expected to fail the test depending on the

level of significance chosen. The NIST test suite also predicts

how many sequences out of the total sequences have passed

the test, it is defined as the proportion (no. of sequences
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FIGURE 2

Testing of pseudorandom sequences using NIST test suite: (A)

Proportions and (B) p− valueT .

passing the test/total no. of sequences) of the sequences passing

the test. For a significance level of 0.01, the allowed range

of proportions is (0.9833245, 0.9966745). In Figure 2A we

have depicted the proportions for all 188 different tests for

the testing set of 1,000 sequences. It is observed that the

proportion for all the tests falls within the allowed range of

proportions. To check the uniformity of the distribution of

all p-values (1,000 in number) for a particular test, we obtain

a p− valueT using χ2 test (i.e., p-value of the p-values). If

the p− valueT is >0.0001, it is declared that the sequences

have uniformly distributed p-values for that test and the test

is termed as passed. We have depicted the p− valueT for the

distribution of p-values for all 188 statistical tests in Figure 2B

which indicates that uniformity is observed for all the tests

included in the NIST test suite. For more details on various

test statistics and testing procedures, readers are referred to

[61]. With these testing results, we may conclude that the

pseudorandom sequences generated in the above manner are

cryptographically secure and hence these sequences may be used

in any encryption algorithm.

2.3. The encryption process

The DNA operations are capable of shuffling as well as

altering the pixel values therefore if implemented in a specific

and strategic manner these operations may produce the desired

permutation-substitution effect as recommended by Shanon [1].

For this purpose, in the proposed image encryption algorithm,

we use a conservative chaos-driven dynamic DNA coding

procedure. We use DNA encoding, addition/subtraction and

decoding of pixels in the encryption (the procedure of DNA

addition is replaced with DNA subtraction in the decryption

process). We use all eight possible DNA encoding rules and

corresponding addition, subtraction and decoding rules in the

proposed image encryption algorithm which are dynamically

chosen for each pixel at various stages of encryption. All

these processes are executed pixel-wise and the DNA encoding,

addition, and decoding rules for each pixel are selected

randomly with the help of pseudorandom number sequences

generated through the conservative chaotic standardmap.While

executing the two-step DNA addition, we bring in the ciphertext

dependence through the feedback mechanism wherein the last

cipher pixel is also used in the second step of DNA addition

(see Step 12 below). Before executing the DNA operations as

explained above, we also use the conservative chaotic standard

map to generate a dynamic one-time pixel (DOTP) value for

the encryption of each pixel of the plain image. The DOTP

is generated in such a way that it also possesses the sensitive

dependence on all the plain image pixels ahead of the pixel

being encrypted (feed-forward mechanism) as well as on all

the cipher image pixels generated before the encryption of that

pixel (feedback mechanism) (see Steps 7 and 8 below). Before

introducing this plain image and cipher image sensitivity, we

also use DNA encoding of the DOTP using the randomly

selected DNA encoding rule controlled by a pseudo-random

sequence generated through the conservative chaotic standard

map. Below we give the process flow and finer details of the

entire image encryption algorithm.

The proposed image encryption algorithm has been

explained for a gray image of size H × W as the plain

image. However, it can be easily extended to RGB images by

converting/reshaping the 3D RGB pixels matrix to a 2D matrix

and considering it as the input to this algorithm. The other way

is to encrypt all three layers separately. The secret key in the

proposed image encryption algorithm is a set of one integer and

seven floating-point numbers. The two floating-point numbers

(X0, Y0) ∈ (0, 2π) serve as the initial conditions for the chaotic

conservative standard map, the remaining five floating-point

numbers (K, K1, K2, K3, K4) > 18.0 serve as the parameter

value for the conservative chaotic standard map at various

stages of the algorithm and an integer 0 < N < 1000 serves

as the number of iterations to skip before using the map for

the encryption purpose. The entire process of proposed image

encryption can be divided into two parts:
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FIGURE 3

Block diagram of the proposed image encryption process.

2.3.1. Part-I

This part of the encryption process requires the secret

key and the information on the size of the plain image. If

in certain applications e.g., online streaming of videos in TV

broadcasting through viewing cards where the size of images

and secret keys are fixed, this part of the encryption process

may be pre-computed and stored to speed up the encryption.

This part of the encryption process can be identified with the

red dotted block in the block diagram of the encryption process

in Figure 3.

1. The conservative chaotic standard map is iterated N number

of times with the initial conditions (X0, Y0) and parameter

K specified in the secret key. The iterates are thrown out and

only the values (XN , YN) are stored for further use.

2. The conservative chaotic standard map is iterated H × W

number of times with the initial conditions (XN , YN) and

parameter K, all the iterates X and Y are used in the following

way to generate the DOTP1 and DOTP2.

DOTP1
(

k
)

=

⌊

XN+k

2π
× 256

⌋

, k = 1, 2, . . . . . . , H × W,

DOTP2
(

k
)

=

⌊

XN+k

2π
× 256

⌋

, k = 1, 2, . . . . . . , H × W

3. The conservative chaotic standard map is iterated H

× W number of times with the initial conditions
(

XN+HW , YN+HW
)

and parameter K1. All the iterates

X and Y are used to generate a pseudo-random number

sequence RSQ1i (i = 1 to H ×W) having integers 1–8 using

the procedure explained in subsection 2.2.

4. Repeat Step 3 with the initial condition
(

XN+2HW , YN+2HW
)

and parameter K2 to generate a

pseudo-random number sequence RSQ2i (i = 1 to H × W)

having integers 1–8.

5. Repeat Step 3 with the initial condition
(

XN+3HW , YN+3HW
)

and parameter K3 to generate a

pseudo-random number sequence RSQ3i (i = 1 to H × W)

having integers 1–8.

6. Repeat Step 3 with the initial condition
(

XN+4HW , YN+4HW
)

and parameter K4 to generate a

pseudo-random number sequence RSQ4i (i = 1 to H × W)

having integers 1–8.

2.3.2. Part-II

This part of encryption is executed pixel-wise and therefore

repeated H × W times. Here we are explaining the process for

the ith pixel of the plain image. This part of the encryption

process may be identified with the green dotted block in the

block diagram of the encryption process in Figure 3.

7. Compute the two terms plain image dependent term

(PIDT) and cipher image dependent term (CIDT) in the
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following way.

PIDT (i) = mod(
∑H×W

k=i+1
PIk, 256)

CIDT (i) = mod(
∑i−1

k=1
CIk, 256)

Here PIk and CIk are kth plain image and cipher image

pixels. For the first pixel of the plain image, the value CIDT

will be zero.

8. Compute and modify the DOTP for the encryption

of ith pixel

DOTP (i) = ([DOTP1 (i) ⊕ DOTP2 (i)]⊕ PIDT (i))

⊕ CIDT(i),

here⊕ is the XOR operation. This step of encryption brings

in extreme sensitivity to the plain image and cipher image

too and makes it very robust against known plaintext and

chosen-ciphertext attacks.

This step onward the role of conservative chaos-driven

DNA encoding, decoding and addition starts.

9. Encode the DOTP (i) in DNA sequence using the DNA

RSQ1thi Encoding Rule. Here first we convert the DOTP (i)

value in the 8-bit binary form.

10. Encode the ith pixel of the plain image (first converted to 8-

bit binary form) i.e., PIi in DNA sequence using the DNA

RSQ2thi Encoding Rule.

11. Add the DNA sequences ofDOTP (i) and PIi using the DNA

RSQ3thi Addition Rule.

12. Nowwe generate theDNA sequence of the ith pixel of cipher

image in the following way: The resultant DNA sequence

from Step 11 is added to the DNA sequence of the (i− 1)th

pixel of cipher image using the DNA RSQ3thi Addition Rule.

For the encryption process of the first plain image pixel,

the DNA sequence of the cipher image pixel to be added

here is fixed to “ATCG” as the 0th cipher image pixel does

not exist.

13. The DNA sequence of the ith pixel of cipher image

(generated in Step 12) is converted to the 8-bit binary form

using the DNA RSQ4thi Decoding Rule.

The decimal equivalent of this 8-bit is finally

considered as the intensity of the ith pixel of the cipher

image CIi.

The entire Part-II of the proposed encryption (except Steps

7 and 8) is based on the dynamic lookup table operations (DNA

encoding, DNA addition, DNA subtraction, DNA decoding

tables) controlled by the pseudo-random sequences generated

in Part-I, therefore, almost negligible arithmetic operations are

involved in Part-II of the encryption and hence can be executed

very fast.

In the next section, we analyze the performance and security

of the proposed image encryption algorithm through various

statistical and perceptual quality analyses.

3. Performance and security analysis

For the performance and security analysis of the proposed

image encryption algorithm, we have used five different images

Lena, Baboon, Peppers, All Black (all pixel values are “0”), and

All White (all pixel values are “255”) each of size 200 × 200.

For the encryption of these images, we have considered five

different randomly chosen secret key combinations which

are depicted in Figure 4 along with their corresponding

cipher images produced using the proposed image

encryption algorithm.

3.1. Histogram analysis

For an ideal cipher image, the histogram must be uniform

i.e., the number of pixels corresponding to all intensity levels

should be equal irrespective of the content of the plain image

as well as of the secret key. The histograms for all five pairs of

plain and cipher images are shown in Figure 5. From the visual

inspection of cipher images and their histograms, we may easily

infer that the histograms are uniform.

However, for quantitative confirmation, we have also

computed the statistical measures like chi-square distribution,

histogram variance, deviation from ideality, maximumdeviation

and irregular deviation for the histograms which mainly

confirms the uniformity of the cipher image histograms and

also predicts the amount of deviation between the histograms of

plain and cipher images. The details of these measures and the

results of our analysis are described in the following subsections.

3.1.1. Chi-square and histogram variance

To understand the pixel distribution quantitively, we

compute the χ2 from the histograms of the plain and cipher

images using the following statistical formula.

χ2(I) =
∑256

i=1

(fi − f0)
2

f0
, (3)

here f0 =
total number of pixels

number of intensity levels i.e. 256
and fi is the total

number of pixels at the ith intensity level.

For perfect uniform distribution, the value of χ2 is zero

and a standard value of the χ2 for typically acceptable random

cipher image (significance level 0.05) is around 293. We have

displayed the results of χ2 for all five pairs of plain and cipher

images in Table 5. We observe that the χ2 values for plain

images are very high and it is lower than the acceptable standard

value for the cipher images produced using the proposed image

encryption algorithm.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2022.1100839
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Patidar and Kaur 10.3389/fams.2022.1100839

FIGURE 4

Plain images, corresponding secret keys and cipher images.
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FIGURE 5

Histograms of plain images and corresponding cipher images.
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TABLE 5 χ
2 and histogram variance for the plain and cipher images.

Lena Baboon Peppers All black All white

χ2 Plain image 2.5400e+04 3.8312e+04 1.9280e+04 10,200,000 10,200,000

Cipher image 241.4336 220.8128 229.7856 291.7888 277.7984

HistVar Plain image 1.5503e+04 2.3384e+04 1.1768e+04 6.2256e+06 6.2256e+06

Cipher image 147.3594 134.7734 140.2500 178.0938 169.5547

We have also calculated the histogram variances (HistVar)

for the plain and cipher images using the following statistics:

HistVar (I) =
1

N2

∑N

i=1

∑N

j=1

1

2
(fi − fj)

2, (4)

here fi and fj are the total number of pixels at the ith and

jth intensity levels, respectively, and N is the total number of

intensity levels i.e., 256. The results of our computation for all

the five pairs of plain and cipher images are shown in Table 5, the

results clearly show that the histogram variances are very high

for the plain images and very low for the cipher images (almost

1% of the histogram variance of plain images).

3.1.2. Deviation from ideality, maximum
deviation, and irregular deviation

Another way to measure the uniformity of the histograms

of cipher images is using a metric Deviation from Ideality (DI).

It measures the deviation of the histogram of the cipher image

from the ideal uniform histogram. The DI metric is calculated in

the following way:

DI =
1

H ×W

(

∑255

i=0
[fi(C)− f0]

)

(5)

here f0 =
total number of pixels

number of intensity levels i.e. 256
and fi(C) is the

histogram of ith level (total number of pixels at the ith intensity

level) in the encrypted image.

The histogram of the cipher image is nearly uniform if the

value of the DImetric is nearly zero or very low. For a completely

uniform/ideal histogram, the value of DI is zero. In Table 6, we

have shown the values of DI metric for all five cipher images

corresponding to the five plain images used in the analysis. We

observe that the DI values are nearly zero or negligible hence the

histograms of cipher images are almost uniform.

Similarly, another metric referred as Maximum Deviation

(MD) measures the deviation of the histogram of the cipher

image from the histogram of the plain image. The computation

of MD can be done using the following statistics:

MD =
1

H ×W

(

d0 + d255

2
+
∑254

i=1
di

)

, (6)

here di is the absolute difference between the histograms

corresponding to the ith level of plain and encrypted images.

TABLE 6 Deviation of cipher images from ideality, maximum and

irregular deviations between plain and cipher images.

Lena Baboon Peppers All black All
white

DI 0.0615 0.0597 0.0595 0.0705 0.0671

MD 0.6507 0.8778 0.5731 1.4916 1.4916

ID 0.6937 0.7622 0.6459 0.0705 0.0671

The higher the value of MD, the larger the deviation between

the histograms of the plain and cipher images. We have shown

the values of metric MD also in Table 6 for all five pairs of

plain and cipher images used in the present analysis. The results

clearly show that the histograms of plain and cipher images are

significantly different.

Sometimes, the Maximum Deviation does not provide the

correct information about the deviation between the histograms

therefore may mislead the interpretation. To overcome this,

another metric Irregular Deviation (ID) is also used which

measures the deviation of the difference of the histograms

between plain and cipher images with the mean of the difference

of the histograms and high value of ID signifies a better

encryption algorithm. The metric ID is calculated using the

following formula/statistics:

ID =
1

H ×W

(

∑255

i=0

∣

∣di −Md

∣

∣

)

, (7)

here di is the absolute difference between the histograms

corresponding to the ith level of plain and encrypted images and

Md is themean of the difference of histograms. The higher values

signify the larger deviation. The results for the metric ID for all

five pairs of plain and cipher images are given in Table 6. The

results indicate that the plain and cipher images are significantly

different in terms of statistical deviations.

All the above results of the histogram analysis confirm the

desired level of uniformity of pixel distribution in the cipher

images and remove the possibility of implementing statistical

attacks based on histogram analysis.
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3.2. DNA sequence-based analysis

3.2.1. Hamming distance

Hamming distance is used to compare two character/symbol

strings of equal length and is defined as the number of positions

where two corresponding symbols/characters are different in

two strings. For two image DNA sequences I1 and I2 the

Hamming distance (HD) is defined as:

HD (I1, I2) =
∑H×W×4

i=1
d (I1i, I2i) where

d (I1i, I2i) =

{

0 if I1i = I2i

1 if I1i 6= I2i
, (8)

I1i and I2i are the i
th symbol/base in the DNA sequence of

the images I1 and I2, respectively, H and W are the height and

width of images I1 and I2.

The higher the value of Hamming distance, the more

dissimilar the strings are. In our analysis, we are comparing the

DNA sequences of plain images and cipher images. Considering

the images of 200 × 200 size used in the test run, there are total

40,000 pixels in each image and hence 160,000 bases in their

corresponding DNA sequences. The results of our computation

for the Hamming distance for all five pairs of plain and cipher

images are recorded in Table 7. It is observed that in all the

cases the Hamming distance is nearly 120,000 irrespective of

the content of the plain image as well as the secret key used

for the encryption. It signifies that 75% of the bases in the DNA

sequences of plain and cipher images are different.

TABLE 7 Hamming distance (HD) between plain and cipher images.

Lena Baboon Peppers All black All white

120,078 119,907 119,749 120,023 120,126

3.2.2. Base ratio

The base ratio (BR) of a particular base in a DNA sequence

is the percentage of the occurrence of that base in the sequence.

For an image of height H and width W, the base ratio can be

calculated in the following way

BR (S) =
count(S)

H ×W × 4
× 100%, (9)

where S is one of the symbol/base (out of A, T, C, and G) in

the DNA sequence of an Image. As every pixel in the image is

represented by four DNA bases therefore the total symbols in

the DNA sequence of an image shall be four times the number of

image pixels. We have shown the results of the base ratio for all

four bases (A, T, C, and G) for all five pairs of plain and cipher

images in Table 8. We observe that in all cases the occurrence of

DNA bases is uniform (nearly 25%) in both the plain and cipher

images. It is interesting to note here that in the proposed image

encryption algorithm chaos-based randomized encoding of the

plain image is used as the first step of encryption and the base

ratio results show that this first step of encoding itself brings in

so much uniformity in the encryption process. This is testimony

to the fact that the proposed image encryption method is robust

against any sort of statistical attack on the DNA bases.

3.3. Fixed-point ratio

A particular pixel in an image is identified as the fixed-point

if it does not change its gray value after the entire encryption

process. The fixed-point ratio is the percentage number of such

fixed points which exist in an image after the encryption. For a

pair of plain and cipher images, the fixed-point ratio (FPR) is

calculated in the following way:

FP (P, C) =

∑W×H
i=1 f (Pi, Ci)

H ×W
× 100%, with

(Pi, Ci) =

{

1 if Pi = Ci

0 if Pi 6= Ci
, (10)

TABLE 8 Base ratio (BR) for various plain and corresponding cipher images.

DNA base Lena Baboon Peppers All black All white

Plain image A 24.9319 24.9581 25.0738 25.3900 25.1000

T 24.9744 24.8744 24.9919 24.4825 25.0875

C 24.9163 25.0794 24.8881 24.6575 24.7450

G 25.1775 25.0881 25.0463 25.4700 25.0675

Cipher image A 25.0894 24.9662 24.8025 25.2475 24.9975

T 25.1625 25.1406 24.8850 24.8381 24.8400

C 24.7319 24.9537 25.1850 24.8006 25.1563

G 25.0162 24.9394 25.1275 25.1138 25.0063
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TABLE 9 Fixed point ratio (FPR) for various pairs of plain and cipher

images.

Lena Baboon Peppers All black All white

0.4000 0.3550 0.4025 0.4300 0.4300

where Pi and Ci are the ith pixel values in the images P and

C , respectively, H and W are the height and width of images P

and C.

For all five pairs of plain and cipher images, we have

summarized the values of the FPRmetric in Table 9, these results

clearly show that the percentage of pixels which do not change

after encryption through the proposed method is below 0.5%

and thus it signifies the existence of effective substitution and

diffusion in the proposed image encryption algorithm.

3.4. Correlation analysis

In an image having definite visual content, the adjacent

pixels are highly correlated and a weak encryption process does

not completely remove such correlations. In addition to this,

cryptanalysts sometimes use pairs of plain and corresponding

cipher images to identify some meaningful relationship between

the plain and cipher images by analyzing the correlation between

the pairs of plain and cipher images. An ideal cipher should

produce cipher images possessing almost zero correlation with

the plain images.

To analyze the above mention types of correlations, we have

computed the correlation coefficients for all horizontally and

vertically adjacent pixel pairs in all plain and their corresponding

cipher images using the following expressions:

C =

1
N

∑N
i=1 (xi − x̄)(yi − ȳ)

√

(

1
N

∑N
i=1 (xi − x̄)2

) (

1
N

∑N
i=1 (yi − ȳ)2

)

with

x̄ =
1

N

∑N

i=1
xi and ȳ =

1

N

∑N

i=1
yi, (11)

here xi and yi form ith pair of horizontally/vertically

adjacent pixels and N is the total number of pairs of

horizontally/vertically adjacent pixels.

In general, for plain images having definite visual content,

the correlation coefficients are very high and ideally, for cipher

images, these correlation coefficients should be negligible or

zero. The results of such horizontal and vertical correlation

coefficients have been given in Table 10. The results indicate

that there is no correlation between plain and cipher image

pixels thereby eliminating the possibility of implementing any

statistical attack based on the correlation.

We have also computed the 2D correlation coefficient

between the plain and corresponding cipher image using the

following statistics:

CPC =

1
H×W

∑H
i=1

∑W
j=1

(

Pij − P̄
) (

Cij − C̄
)

√

(

1
H×W

∑H
i=1

∑W
j=1

(

Pij − P̄
)2
) (

1
H×W

∑H
i=1

∑W
j=1

(

Cij − C̄
)2
)

,

(12)

with P̄ = 1
H×W

∑H
i=1

∑W
j=1 Pij and C =

1
H×W

∑H
i=1

∑W
j=1 Cij, here P and C are the plain and

encrypted images, respectively.

The result of such 2D correlation coefficients for all five

pairs of plain and cipher images are given in Table 10, which

clearly shows that the pairs of plain and cipher images do not

possess any correlation, therefore, removing the possibility of

implementing statistical attacks based on correlation.

3.5. Information entropy analysis

Information entropy (also referred to as Shanon entropy

or global information entropy) is a measure of uncertainty

associated with a random image or it may be considered as the

measure of disorder. It quantifies the amount of information

contained in the image (in bits) per pixel. It can also be

interpreted as the minimum number of bits per pixel necessary

to communicate it correctly. It is also a statistical measure

of randomness in the image. The information entropy for a

greyscale image may be computed in the following way:

H(I) =
∑256

i=1
P(Ii) log2

1

P(Ii)
(bits per pixel), (13)

where P(Ii) is the probability of occurrence of the pixel value

Ii in the image I. For a flat image, the information entropy

is zero and for an image whose pixel distribution is perfectly

uniform [i.e., P (Ii) = 1/256] the information entropy is 8-bits

per pixel. The results of global information entropy for the plain

and cipher images are given in Table 11. It is observed that the

global information entropy for the encrypted images is very close

to the maximum possible value i.e., 8-bits.

The Shanon entropy or global information entropy measure

may possess some weaknesses such as inaccuracy, inconsistency,

and low efficiency in certain cases and to overcome such

weakness, a new variant named local information entropy is

suggested which is the mean entropy of several or all non-

overlapping image blocks that are randomly selected from

image. For an image I divided into k number of non-overlapping

blocks Ii (i = 1 to k), the local information entropy may be

computed in the following manner:

H (I)local =
1

k

∑k

i=1
H(Ii) , (14)

here H (Ii) is the Shanon entropy of the ith block Ii and k is

the total number of non-overlapping blocks of the image I.
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TABLE 10 Correlation between horizontally and vertically adjacent pixels in plain & cipher images and 2D correlation between pairs of plain and

cipher images.

Lena Baboon Peppers All black All white

Horizontal adjacent pixels Plain image 0.9322 0.8670 0.9544 0.5774 0.5774

Cipher image 3.8945e−04 −0.0019 −0.0067 −0.0030 −0.0078

Vertical adjacent pixels Plain image 0.9684 0.8315 0.9646 0.5774 0.5774

Cipher image −0.0083 −0.0028 0.0054 −0.0034 −0.0028

2D correlation between plain and cipher image −0.0016 0.0019 0.0013 7.0171e−04 0.0076

TABLE 11 Global and local information entropy.

Block size Lena Baboon Peppers All black All white

Global information entropy Plain image 200× 200 7.4351 7.1938 7.5820 0 0

Cipher image 7.9956 7.9960 7.9959 7.9947 7.9950

Local information entropy Plain image 50× 50 6.6886 6.8043 6.9406 0 0

Cipher image 7.9253 7.9240 7.9259 7.9266 7.9213

Plain image 40× 40 6.5113 6.7134 6.7164 0 0

Cipher image 7.8804 7.8804 7.8841 7.8810 7.8798

Plain image 25× 25 5.7811 6.4054 6.2370 0 0

Cipher image 7.4703 7.6699 7.6730 7.6742 7.6671

The result of local information entropy for the plain and cipher

images corresponding to three different block sizes (25 × 25, 40

× 40, 50 × 50) are given in Table 11. We observe that the local

information entropy of cipher images is also close to the global

information entropy and well-above the standard values of local

information entropy of random images.

3.6. Perceptual quality analysis

One of the major objectives of the image encryption

algorithm is to secure the content by making the unintelligible

and obfuscating the visual data to appear random. It can

be observed from the Figure 4, that after the encryption the

images look completely randomwith no visual patterns/content.

In addition to the visual inspection of the encrypted images,

quantitative perceptual quality analysis is also done for the image

encryption processes to observe how much quality degradation

is introduced (of course recoverable at the decryption) by

the encryption algorithm so that the information becomes

completely unintelligible and appear garbage. For an encryption

algorithm, it is expected that encrypted images have low

perceptual quality with reference to the plain image and it is

measured with metrics such as mean absolute error (MAE),

Mean square error (MSE), peak-signal-to-noise ratio (PSNR),

spectral distortion (SD), structural similarity index measure

(SSIM), and feature similarity index measure (FSIM).

The MAE, MSE, and PSNR are used to quantify the image

fidelity or spatial dissimilarities between two images. Although

these metrics do not include the characteristics of image signal

and the human vision system (HVS), they are widely used as the

first full-reference measures. In encryption, it is expected to have

large values of MAE and MSE and low values of PSNR (<<28)

which convey the higher amount of average dissimilarity in the

pixel values between the plain and cipher images. These metrics

may be computed in the following way:

MAE =
1

H ×W

∑H

i=1

∑W

j=1

∣

∣Pij − Cij
∣

∣, (15)

MSE =
1

H ×W

∑H

i=1

∑W

j=1

∣

∣Pij − Cij
∣

∣

2
and (16)

PSNR = 10 log10

[

Max(f )
]2

1
H×W

∑H
i=1

∑W
j=1

∣

∣Pij − Cij
∣

∣

2
, (17)

here Pij and Cij are the ijth pixel values of the plain and

encrypted images, respectively, and Max(f ) is the highest

intensity level i.e., 255.

To measure the spectral dissimilarity between the plain

and encrypted images, the spectral distortion (SD) measure is

used. It is computed using the following expression: SD =
1

H×W

∑H
u=1

∑W
v=1

∣

∣Fp(u, v)− Fc(u, v)
∣

∣, here Fp and Fc are

the discrete Fourier transform of the plain and encrypted

images, respectively.

Another metric structural similarity index measure (SSIM)

takes into consideration the human vision system (HVS) and
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TABLE 12 Perceptual quality metrics.

Lena Baboon Peppers All black All white

MAE 72.5634 69.4042 75.1730 127.3586 127.5093

MSE 7.6628e+03 6.8391e+03 8.3134e+03 2.1668e+04 2.1716e+04

PSNR 9.2869 9.7808 8.9330 4.7726 4.7629

SD 1.3971e+04 1.3885e+04 1.4271e+04 1.3225e+04 1.3211e+04

SSIM 0.0125 0.0092 0.0111 4.7659e-06 0.0090

FSIM 0.3618 0.4806 0.3695 0.0461 0.0712

compares the images with respect to luminance, contrasts and

structural features [62]. For perfectly identical images SSIM

is “1” and very low for dissimilar images with respect to the

above features. It can be computed using the following statistics:

SSIM
(

a, b
)

=
(2µaµb+ C1)(2σab+C2)
(

µ2
a+µ2

b
+C1

)(

σ 2
a+σ 2

b
+C2

) where µa is the average

of all pixels of image a, µb is the average of all pixels of image b,

σ 2
a is the variance of the pixel values of image a, σ 2

b
is the variance

of the pixel values of image b and σab is the covariance of pixels

of images a and b.

Another comparatively new perceptual image quality

measure: the feature similarity index measure (FSIM) takes

into consideration the phase congruency (PC) and gradient

magnitude (GM) as two complementary feature measures to

characterize the image local quality. FSIM metric is computed

for two images in the following way [63].

FSIM
(

a, b
)

=
2fafb+c

f 2a+f 2
b
+c

, here f indicates one of the features

(PC or GM). FSIM is computed individually for the PC and

GM and then multiplied to obtain the final FSIM. For perfectly

similar images FSIM is “1” and low for the dissimilar images with

respect to PC and GM.

We have computed all six above explained measures for

all the five pairs of plain and cipher images, to observe the

perceptual quality of the encrypted images produced using the

proposed image encryption algorithm and the results have been

summarized in Table 12. It can be easily observed from the

results that as desired for an encrypted image the MAE, MSE

are very high, PSNR is very low, SD is very high and SSIM and

FSIM are small which confirms the very low perceptual quality

of encrypted images.

3.7. Plaintext sensitivity analysis
(di�erential analysis)

To resist the differential analysis in which the attacker may

analyze the relationship between the plaintext and ciphertext

by making minor changes in the plaintext and observing

the effects in the ciphertext to discover the secret key. To

check the robustness of the encryption algorithm against such

differential analysis, we quantify the plaintext sensitivity of the

encryption algorithm using two metrics Net Pixel Change Rate

(NPCR) which measures the percentage number of pixels in

the encrypted image which change their values after making

an infinitesimal change in the plaintext and encrypted with the

same secret key andUnified Average Change in Intensity (UACI)

which measures the net average change in the intensity of

each pixel in the encrypted image after making an infinitesimal

change in the plaintext and encrypted with the same secret

key. The computation is done by comparing the two cipher

images which are produced using the same secret key and their

corresponding plaintexts are differing in only one-pixel value at

any random location. Several random combinations of the secret

key and locations of the pixel in plain image are considered one

by one and average values of NPCR and UACI are computed.

Following mathematical formulae are used for the computation

of the NPCR and UACI.

NPCR =

(

1

H ×W

∑H

i=1

∑W

j=1
Dij

)

× 100%, with

Dij =



















0 if Cij = Cij

1 if Cij 6= Cij

, (18)

UACI =

(

1

H ×W

∑H

i=1

∑W

j=1

∣

∣Cij − Cij
∣

∣

255

)

×100%.

(19)

Cij and Cij are two different cipher images produced with

the same secret key and for slightly different plain images (only

one pixel different). The standard values of NPCR and UACI for

two random images are 99.6094 and 33.4635, respectively. The

results of our computation for the NPCR and UACI for various

plain images used in our analysis are summarized in Table 13.

It can be observed that the NPCR and UACI for the proposed

image encryption algorithm converge to the values for standard

random images hence the two cipher images corresponding to

two plain images having an infinitesimal difference are almost

random therefore the proposed image encryption algorithm has

required plaintext sensitivity to resist the differential attacks.
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TABLE 13 NPCR and UACI in the proposed image encryption

algorithm.

Lena Baboon Peppers All
black

All
white

NPCR 99.6125 99.6825 99.6450 99.6225 99.6052

UACI 33.5115 33.4323 33.4561 33.5393 33.5060

3.8. Key sensitivity analysis

In general, an ideal encryption algorithm should possess

a complex and sensitive relationship between the secret key,

plaintext and ciphertext. One of the ways to measure this

sensitive behavior is to observe the key sensitivity of the

encryption algorithm. The key sensitivity may be measured

in two ways: one at the encryption level and another at the

decryption level.

To observe the key sensitivity at the encryption level, we

encrypt the same plain image with two slightly different secret

keys (differing by an infinitesimal change) and compare the two

cipher images by computing KS1: the percentage of the total

number of corresponding pixels which are different in both

cipher images and KS2: the average change in the intensity of

corresponding pixels in both the cipher images. It is done by

using the following formulae:

KS1 =

(

1

H ×W

∑H

i=1

∑W

j=1
Sij

)

× 100% with

Sij =



















0 if CAij = CBij

1 if CAij 6= CBij

, (20)

KS2 =





1

H ×W

∑H

i=1

∑W

j=1

∣

∣

∣
CAij−CBij

∣

∣

∣

255



× 100 %.(21)

Here CAij and CBij are two different cipher images

corresponding to the same plain image produced with a

minute change in one of the parts of the secret key.

In the proposed image encryption algorithm, there are eight

parts of the secret key, seven of them are floating-point numbers

and one is an integer. For computing the key sensitivity metrics,

we make a change of 10−14 in only one of the parts of the secret

key (if it is a floating-point number) or a change of 1 (if it is an

integer) and then compute KS1 and KS2 for the corresponding

cipher images produced for the same plain image. The results

of our computation for all five plain images are summarized

in Table 14. The top row in the table indicates the part of the

secret key which has been changed in the above-mentioned

manner to compute KS1 and KS2. The results converge to the

values for standard random images hence the two cipher images

compared are perfectly random and therefore proposed image

encryption algorithm possesses the extreme key sensitivity at the

encryption level.

To observe the key sensitivity at the decryption level,

we encrypt the plain image with a secret key and decrypt

it with a slightly different secret key and then compare

the correctness of the decrypted image with respect to the

plain image by computing the perceptual metrics MAE,

MSE, and PSNR (already explained above). The strategy

of a minor change in the secret key is the same as

adopted above for the computation of KS1 and KS2. The

results of our computation are summarized in Table 15. It

is observed that the decryption with a slightly different key

obtains a completely dissimilar image as compared to the

plain image.

3.9. Key space analysis

The secret key in the proposed image encryption algorithm

is a set of one integer and seven floating-point numbers. The

two floating-point numbers (X0, Y0) ∈ (0, 2π) serve as the

initial conditions for the chaotic conservative standard map, the

remaining five floating-point numbers (K, K1, K2, K3, K4) >

18.0 serve as the parameter value for the conservative chaotic

standard map at various stages of the algorithm and an

integer 0 < N < 1000 serves as the number of iterations

to skip before using the map for the encryption purpose.

The key sensitivity analysis reveals that the parameter and

initial conditions of the conservative chaotic standard map

differing by 10−14 can be treated as a distinct key. Since

the initial conditions (X0, Y0) ∈ (0, 2π) therefore there are

(2π × 10−14)
2
combinations of different keys for the Initial

conditions. The parameter of standard chaotic map can have any

value larger than 18.0 with a precision of 10−14 consequently,

have infinite number of distinct combinations and there are

103 different combinations for the value N. In this way, we

may conclude that the proposed image encryption algorithm

has infinite key space and consequently brute force attack

is infeasible.

3.10. Classical attack analysis

Themost common and frequently used cryptanalytic attacks

are known-plaintext attacks and chosen-plaintext attacks.

In a known-plaintext attack the cryptanalyst knows the

plaintext and its corresponding ciphertext and by establishing

a meaningful relationship between the two along with the

knowledge of the encryption algorithm tries to discover

the secret key. In chosen plaintext attack, the cryptanalyst

chooses multiple plaintexts of his/her choice (based on the

intuition and knowledge of the structure of the encryption

algorithm), generates the corresponding ciphertext for the
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TABLE 14 Key sensitivity analysis results at the encryption level.

X0 Y0 K N K1 K2 K3 K4

Lena KS1 99.6000 99.6275 99.6075 99.6075 99.6450 99.5450 99.6175 99.5375

KS2 33.5236 33.6311 33.4323 33.3443 33.3465 33.3965 33.3671 33.4881

Baboon KS1 99.6075 99.5950 99.6075 99.5775 99.6250 99.5750 99.6400 99.5725

KS2 33.1785 33.4433 33.3673 33.3415 33.4220 33.5358 33.5419 33.4749

Peppers KS1 99.6200 99.6225 99.6300 99.6025 99.6400 98.7575 98.7575 99.6150

KS2 33.3415 33.5978 33.6319 33.5565 33.4891 33.5236 33.5236 33.5278

All black KS1 99.6075 99.6175 99.6275 99.5850 99.6550 99.6250 99.6425 99.6075

KS2 33.4289 33.5525 33.5671 33.4387 33.3660 33.3177 33.2725 33.3290

All white KS1 99.6100 99.6300 99.5650 99.6150 99.6175 99.5375 99.6100 99.6100

KS2 33.3634 33.6905 33.7103 33.4444 33.5743 33.4981 33.6602 33.3332

TABLE 15 Key sensitivity analysis results at the decryption level.

X0 Y0 K N K1 K2 K3 K4

Lena MAE 84.9971 85.3188 85.5766 84.3930 85.7021 85.2330 85.3190 85.0059

MSE 1.0847e+04 1.0897e+04 1.0957e+04 1.0766e+04 1.0987e+04 1.0879e+04 1.0886e+04 1.0854e+04

PSNR 7.7777 7.7577 7.7341 7.8103 7.7222 7.7650 7.7619 7.7748

Baboon MAE 68.9074 69.4480 69.5254 69.3836 69.2587 69.6259 69.4769 69.1596

MSE 6.7418e+03 6.8477e+03 6.8487e+03 6.8201e+03 6.8425e+03 6.8810e+03 6.8572e+03 6.7934e+03

PSNR 9.8431 9.7754 9.7747 9.7929 9.7787 9.7543 9.7694 9.8099

Peppers MAE 75.4327 75.0208 74.4845 74.9074 75.0093 75.2616 75.2777 75.0977

MSE 8.3501e+03 8.2700e+03 8.1647e+03 8.2750e+03 8.2714e+03 8.3492e+03 8.3180e+03 8.3262e+03

PSNR 8.9139 8.9557 9.0114 8.9531 8.9550 8.9143 8.9306 8.9264

All black MAE 127.5773 127.9102 127.7842 128.0183 127.3016 127.4850 127.8863 127.3536

MSE 2.1732e+04 2.1803e+04 2.1817e+04 2.1870e+04 2.1713e+04 2.1739e+04 2.1863e+04 2.1722e+04

PSNR 4.7599 4.7457 4.7428 4.7322 4.7635 4.7584 4.7336 4.7617

All white MAE 127.6402 127.7985 127.6922 127.5577 128.0315 128.3397 126.9492 127.1920

MSE 2.1802e+04 2.1811e+04 2.1761e+04 2.1702e+04 2.1855e+04 2.1972e+04 2.1603e+04 2.1691e+04

PSNR 4.7458 4.7440 4.7539 4.7657 4.7353 4.7122 4.7858 4.7681

same secret key (which is unknown) and then extracts

some correlation, statistical information etc. to discover the

secret key. The differential attack (see Section 3.7) is also

a kind of chosen-plaintext attack only. Sometimes adaptive

chosen plaintext attacks are also implemented where one

pair of plaintext (chosen in the first step) and corresponding

ciphertext is analyzed and based on the results, the cryptanalyst

chooses/creates a specific plaintext for the next step and further

carries out the analysis and continues till the secret key

is discovered.

Since the proposed image encryption algorithm exhibits

extreme key, plaintext and ciphertext sensitivity (refer to

Sections 3.7 and 3.8) therefore it is very difficult to extract

any meaningful information through the pairs of plaintexts and

cyphertexts. In the proposed image encryption algorithm, the

dynamic one-time pixel (DOTP) is generated with the help

of a part of the key and modified at the encryption of each

pixel through the information from the plaintext and ciphertext

generated so far. This DOTP is further used to encrypt the pixel

and then the ciphertext generated so far will be used along with

the plaintext information for the next DOTP modification and

so on (i.e., feed -forward and feedback mechanisms). Moreover,

the rules chosen for the encryption of each pixel are also

dynamic and key-dependent. In the entire encryption process

the secret key, plaintext and ciphertext are closely and sensitively

interconnected such that an infinitesimal change in any of the
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TABLE 16 Encryption time.

Size of the image Average encryption time (s)

200× 200 0.756

256× 256 1.242

512× 512 5.011

components leads to a diverse effect in the resultant therefore

implementation of any of the above-mentioned attacks appears

completely infeasible.

3.11. Encryption time analysis

We have also done the encryption time analysis for the

proposed image encryption algorithm using various images of

widely different visual content, different sizes on an Intel(R)

Core(TM) i7-8565UCPU@ 1.80 GHz with 16 GB RAM running

on Windows 10 64-bit OS. The analysis has been done for three

different sizes of images 200 × 200, 256 × 256, and 512 ×

512, with 100 different images of each size, encrypted with the

proposed algorithm using 100 randomly chosen different keys.

In all for each size, a total of 10,000 experimentations have been

done and an average encryption time is calculated. The results

have been summarized in Table 16.

3.12. Comparison with other recent
similar algorithms

In this section, we give a comparison of various performance

metrics for the recent hybrid DNA chaos-based image

encryption algorithms along with the proposed image

encryption algorithm to highlight its features and robustness.

For the comparison, we have chosen various hybrid DNA

chaos-based image encryption algorithms published in the year

2021. The comparison, shown in Table 17, has been done for the

correlation coefficients of cipher images produced with these

algorithms, plaintext sensitivity metrics (NPCR and UACI),

uniformity of histograms of cipher images produced using these

algorithms (Histogram variance, and Chi-square distribution),

global information entropy and encryption time. All the results

quoted here are produced for the image “Lena” and taken from

the respective references.

4. Conclusion

The DNA encoding/decoding and operations (addition,

subtraction, XOR, XNOR, complementing, etc.) if implemented

jointly in a specific and strategic manner, under the control

of chaotic systems, are capable of shuffling as well as altering T
A
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the pixel values, therefore, may be effectively utilized for

the image encryption. So far, many such algorithms have

been developed and most of them are based on dissipative

chaotic systems which possess the periodic windows and

patterns in bifurcation diagrams, co-existing attractors in the

neighborhoods of parameter space and are also characterized by

the strange attractor which makes them prone to chaos-specific

attacks and sometimes statistical attacks too. In this paper,

we have proposed a novel conservative chaotic standard map-

driven dynamic DNA coding (encoding, addition, subtraction,

and decoding) for the image encryption, which is the first (to

the best of our knowledge) hybrid DNA and chaos-based image

encryption based on conservative chaos. The algorithm also uses

a novelmethod of generating pseudorandom sequences from the

2D conservative chaotic standard map which is validated for the

pseudo randomness through NIST test suite before using it in

the proposed algorithm. A unique combination of feed-forward

and feedback mechanisms has been incorporated along with a

sequential inter-dependence (through the iterates of the chaotic

map) while producing multiple pseudorandom sequences in the

proposed image encryption algorithm to produce the desired

plaintext, ciphertext and key sensitivities. The algorithm has

been analyzed for its performance and security extensively

through the most frequent, popular, contemporary and up-

to-date quantitative metrics used in the field. The results of

our analysis are encouraging and prove the superiority, and

robustness of the proposed algorithm against the most common

cryptanalytic and statistical attacks.
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