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Dynamical solutions
and quadratic resonance of
nonlinear perturbed
Schrödinger equation

Sidheswar Behera*

Department of Physics, Veer Surendra Sai University of Technology, Burla, India

This work investigates the perturbed nonlinear Schrödinger equation using

the modified ( G
′

G2 )-expansion method. The obtained results are generalized

and classified into classes of trigonometric, hyperbolic, and rational solutions.

The kinematics of soliton and kink profiles are very helpful to understand

the propagation of electromagnetic waves inside nonlinear optical fibers. The

proposedmodifiedmethod is unique, straightforward, concise, and e�ective in

the sense that it gives more traveling wave solutions. The findings of this study

can strengthen a system’s nonlinear dynamic behavior and show how practical

themethodology used to attempt to replicate has been. WolframMathematica

11 is used for mathematical simplification and MATLAB is used for graphical

simulation.

KEYWORDS

perturbed nonlinear Schrödinger equation, soliton solution, kink solution, modified

( G
′
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1. Introduction

Nonlinear evolution equations (NLEEs) are used to explain various nonlinear

conflicts and problems seen in different branches of science, such as plasma physics,

optical fiber communication, fluid dynamics, population growth dynamics, water waves,

chaos theory, and others [1–5]. Therefore, a large number of studies have been adopted

on improved new methods or some modifications to well-established methods to derive

new analytical solutions that can successfully describe certain complicated physical

approaches. From the literature of appliedmathematics and associated areas of nonlinear

science, efforts have increased to obtain traveling wave solutions of NLEEs, which provide

momentous physical properties and akin information. Thus, many powerful and efficient

methods have been developed to find analytical solutions for traveling waves, such as

the tanh-function method [6, 7], variational iteration algorithm-II [8], (G
′

G )-expansion

method [9–11], (G
′

G , 1G )-expansion method [12], first integral method [13], simplest

equation method [14, 15], Kudryashov method [16, 17], modified simple equation

method [18], extended rational sine-cosine method [19], modified ( G
′

G2 )-expansion

method [20, 21], sine-cosine method [22], and so on.
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From the literature, some methods from the family of

(G
′

G )-expansion method have been extensively used to finding

the exact solutions of NLEEs, such as the ( 1
G′ )-expansion

method, double (G
′

G , 1G )-expansion method, extended (G
′

G )-

expansion method, improved (G
′

G )-expansion method, and

modified (G
′

G )-expansion method. In addition these methods,

Li et al. introduced another novel method, the (wg )-expansion

method [23], where w and g satisfy the relation as follows:

(

w

g

)′
= σ + µ

(

w

g

)

+ ρ
(

w

g

)2

, (1)

Where σ ,µ, andρ represent some constants. Considering

suitable values of w and g, the aforementioned relation leads

to (G
′

G )-expansion method, tanh method, or ( G
′

G2 )-expansion

method. Later, method can be realized when w = (G
′

G ) and

g = G. This method has been successfully implemented to find

out exact solutions of some nonlinear problems in mathematical

physics.

In this research work, the authors considered the extended

version of the w
g -expansion method, namely modified ( G

′

G2 )-

expansion method when w and g satisfy

w′g − wg′σ g2 + µwg + ρw2, (2)

considering µ 6= 0, w = (G
′

G ) and g = G leads to

G′′G− 2G′G2 = σG′2 + µG′G2 + ρG4, (3)

Furthermore, the explicit expressions for novel exact

solutions of the considered NLEEs are propped by considering

the general solutions of Equation (3). The focused modified

method gives abundant exact solutions to a class of NLEEs.

More number of novel and unique solutions are realized

by this method over other conventional methods, is one of

its major advantage. The nonlinear perturbed Schrödinger

equation has been focused on across a significant amount of

research by a variety of authors. The PNSE have been studied

by using different methods, for instance, the tanh method,

(G
′

G )-expansion method, rational hyperbolic method, and so

on. To describe the effectiveness of the proposed method

and to find out the exact traveling wave solutions, PNSE will

be considered. The method is mathematically concise, direct,

and more effective in constructing the explicit traveling wave

solutions of NLEEs.

2. The modified (G
′

G2 )-expansion

method

In this section, we outline the general facts of the modified

( G
′

G2 )-expansion method [24].

Step 1: A NLEE may be sometimes expressed as

s(f , ft , fx, ftt , fxt , fxx, ...) = 0, (4)

by utilizing the wave transformation φ = x − Vt and

wave variable f (x, t) = F(φ) where F(φ) is a trial function.

Immediately, the following changes can be implemented.

∂

∂t
= −V

∂

∂φ
,

∂2

∂t2
= V2 ∂

2

∂φ2
,

∂

∂x
=

∂

∂φ
,

∂2

∂x2

=
∂2

∂φ2
, (5)

Equation (4) can be transformed into an ordinary

differential equation (ODE)

S(F, Fφ , Fφφ , Fφφφ , ...) = 0, (6)

Where S is the polynomial in F and successive derivatives

of F. Fφ denotes dF
dφ

and V is the speed of wave. In case

all the terms involved with derivatives, we can integrate the

obtained ordinary differential equation (ODE) (Equation 6).

Furthermore, by considering F → 0 as φ → ∞, the integration

constant can be equated to zero.

Step 2: Taking the formal solution of ODE (Equation 6)

F(φ) = a0 +
N
∑

n=1

{

an

(

G′

G2

)n

+ bn

(

G′

G2

)−n
}

, (7)

Where a0, an, and bn(n = 1, 2, 3, ....N) are some constants,

and G = G(φ) satisfies

(

G′

G2

)′
= σ + µ

(

G′

G2

)

+ ρ
(

G′

G2

)2

, (8)

Where µ, σ , and ρ are free parameters. The positive integer

N can be found out by the balance principle between the

nonlinear term and the highest order derivatives terms involved

in Equation (6). Substitution of Equation (7), and its derivatives

along with Equation (8) into Equation (6). We will have a

complex system, collecting the exponents with the same power

of ( G
′

G2 ), and then setting them zero separately, we will get

systems of algebraic equations for a0, an,bn, and (n = 1, 2, 3, ....).

Solving these systems, we shall determine σ ,µ, and ρ, and values

of a0, an,bn, and (n = 1, 2, 3, ....)

Step 3: There will be five generalized solutions of Equation (5).

Case 1:(Trigonometric solution)

when σρ > 0,µ = 0

(
G′

G2
) =

√
σρ

σ

[

A1 cos
√
σρφ + A2 sin

√
σρφ

A1 sin
√
σρφ − A2 cos

√
σρφ

]

, (9)

Case 2: (Hyperbolic solution)

when σρ < 0,µ = 0

(
G′

G2
) = −

√
|σρ|
ρ

[

A1 sinh 2
√
|σρ|φ + A2 cosh 2

√
|σρ|φ + A2

A1 cosh 2
√
|σρ|φ + A1 sinh 2

√
|σρ|φ − A2

]

(10)
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Case 3: (Rational solution)

when σ = 0, ρ 6= 0,µ = 0

(
G′

G2
) = −

A1

ρ(A1φ + A2)
, (11)

Case 4:( Hyperbolic solution)

when µ 6= 0,△1 ≥ 0 and△1 = µ2 − 4σρ

(
G′

G2
) = −

µ

2ρ

−





√
△1(A1 cosh(

√
△1
2 )φ + A2 sinh(

√
△1
2 )φ)

2ρ(A1 cosh(
√
△1
2 )φ + A2 sinh(

√
△1
2 )φ)



 ,

(12)

Case 5: (Hyperbolic solution)

when µ 6= 0,△2 ≥ 0 and△2 = 4σρ − µ2

(
G′

G2
) = −

µ

2ρ

−





√
△2(A1 cosh(

√
△2
2 )φ − A2 sinh(

√
△2
2 )φ)

2ρ(A1 cosh(
√
△2
2 )φ + A2 sinh(

√
△2
2 )φ)



 , (13)

where A1 and A2 are constants.

Remark 1: More (five cases) analytical solutions are reported in

the proposed method as compared to the basic ( G
′

G2 )-expansion

method (three cases) [23, 24].

Remark 2: More free parameters are involved in our proposed

method as compared to the basic ( G
′

G2 )-expansion method [23,

24].

3. Nonlinear perturbed Schrödinger
equation

The modified ( G
′

G2 )-expansion method has been

implemented to perceive analytical solutions of the nonlinear

perturbed Schrödinger equation (NPSE) is written as follows:

ift + fxx + αf |f |2 + i[γ1fxxx + γ2|f |2fx + γ3f (|f |2)x] = 0

(14)

Where α, γ1, γ2, andγ3 are constants. In Zhang [25]

obtained the Jacobi elliptic function solutions of Equation (14)

by using a modified mapping method. In Shehata [26] has

been utilized a modified ( G
G′ )-expansion method, and analytical

solutions have been realized. Different forms of these equations

have some particular properties and use in communications of

optical soliton. Their pulse center, width, and amplitude can be

adjusted while propagating in corresponding with the structural

constraints, such as line gain, nonlinearity, and diffusion [27].

The general form of NPSE reads as follows:

ift +
1

2
fxx + αf |f |2 = iǫR[f , f ∗] (15)

When R[f , f ∗] = 0, the dimensionless, non-Kerr law

nonlinear Schrödinger equation and similarly for αf |f |2 = |f |2

and R[f , f ∗] = 0, Kerr law nonlinear Schrödinger equation

is realized from Equation (15). The first term of the left-hand

side of the aforementioned equation is the evolution term, and

the second one is the group velocity dispersion (GVD) term.

On the right-hand side, R is the spatio-differential or integro-

differential operator, and ǫ is the perturbation parameter with

0 < ǫ ≤ 0, sometimes termed as the relative width of the quasi-

monochromaticity spectrum [28].While the perturbed terms are

as follows:

R = δ|f |2mf + αfx + βfxx − γ fxxx + λ(|f |2f )x + θ(|f |2)xf

+ ρ(|fx|2f )− iξ (f 2f ∗x )x − iηf 2x f
∗

− iζ f ∗(f 2)xx − iµ(|f |2)xf − iχ fxxxx − iψ fxxxxxx

+ (σ1f + σ2fx)
∫ ∞

−∞
|f |2ds.

(16)

Where δ in the first term is either coefficient of nonlinear

damping or amplification factor based on the sign and m

can take values 0, 1, and 2. It will be linear amplification

or attenuation depending on its positive or negative signs,

respectively, provided m = 0. Two-photon absorption or a

complex nonlinear gain could be realized when m = 1 and δ

is a positive quantity. In contrast, higher-order loss or saturation

correction term arises when m=2. Frequency separation term α

basically intervenes with the frequency of EDFA gain at its peak

and the soliton carrier. Here, β represents the bandpass filtering

and λ stands for self-steeping coefficients in the short pulse

range. θ and ρ are nonlinear dispersion terms. The perturbed

coefficients of ξ , η, and ζ come to light because of quasi-solitons,

µ stands for the coefficient of Raman scattering, and γ ,χ , and

ψ are coefficients of higher-order dispersions, whereas σ1 and

σ2 are two perturbed integro-differential terms due to saturable

amplifiers. Equation (15) is a special case of Equation (14)

and is popularly known as nonlinear Schrödinger equation

(NLSE). For smaller pulses such as solitary lasers in solid state

physics having a pulse width of 10 fs, which is smaller than

the critical value 1 ps, correct prediction no longer holds good,

and the approximation breaks down. In this context, quasi-

monochromaticity is violated, and the importance of higher-

order dispersion terms comes into the picture. When GVD

approaches zero to enhance the performance along with trans-

oceanic and trans-continental distances, it is mandatory to

receive the third and higher-order dispersions. Furthermore,

in case of short pulse widths where GVD changes randomly,

reference to the spectral bandwidth of the signal cannot be

neglected and it is obvious to depend on higher-order dispersion
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terms. That is why the coefficients of χ and ψ are included in

Equation (16) for the fourth and sixth order dispersion terms,

respectively.

Studies on the NPSE by different methods flourish some

important features and properties. The soliton pulses are

the result of a perfect balance between dispersion effects

and nonlinearity, the soliton interaction, symmetry analysis,

integrability, and other useful concepts and physical applications

are among notable features that attracted research scientists

from all over the globe.

A few years after Equation (14) was proposed, a plethora

of results about its exact traveling solutions is being constantly

reported. In this study, we use the modified ( G
′

G2 )-expansion

method to study the exact solution of Equation (14). By

considering the complex wave transformation f (x, t) =
F(φ) exp(iη), where φ = k(x − ct), η = (λx − wt) provided

λ,w, k, and c are constants, when the real and imaginary parts

are embedded separately canceling the common term exp(iη),

the NPSE (14) is reduced to the following form of F(φ):

k2(1− 3γ1λ)F
′′ + (w− λ2 + γ1λ3)F + (α − γ2λ)F3 = 0

(17)

and

γ1k
2F′′′ − (c− 2λ+ 3γ1λ

2)F′ + (γ2 + 2γ3)F
2F′ = 0 (18)

Integrating the aforementioned Equation (18) with respect

to φ and considering the integration constant as zero, we have

developed

γ1k
2F′′ + (2λ− c+ 3γ1λ

2)F + (
1

3
γ2 +

2

3
γ3)F

3 = 0 (19)

4. Quadratic resonance

In a way to outcast the quadratic term(i[γ1fxxx + γ2|f |2fx +
γ3f (|f |2)x]) of Equation (18), we can analyze the quadratic

resonance in the linear form of the NPSE

ift + fxx + αf |f |2 = 0, (20)

Substitution of f = ei(kx+λt), we can realize the dispersion

relation of the Equation (20), and the mathematical structure is

given by

λ = ik
√

k2 − w2, k = ±1,±2, ... (21)

Literally, the meaning of quadratic resonance stands for

nonzero integer values of k, such that

k1 = k2 + k3 (22)

λ1 ± λ2 = ±λ3 (23)

Resonance condition can be verified by squaring

Equation (23) and submitting in Equation (22), we have

2k21 + 3k1k2 + 2k22 − 4w2 = ±
√

k21 − 4w2
√

k22 − 4w2 (24)

Again squaring the aforementioned equation, we have

[(k1 + k2)
2 + k21 + k22 − 6w2](k1 + k2)

2 = 0 (25)

When k1 + k2 = k3 = 0, the equation will be valid.

5. Dispersion relation

In the case of weak nonlinearity, Zakharov and Shabat in

the year 1972 [29] and Ablowitz et al. in the year 1974 [30]

shown separately from any initial condition f (x, t = 0) will

tend to be zero as |x| → ∞ and as a result, an envelope

soliton will be formed. When the spread of the soliton only

depends upon the initial condition, i.e., phase and temporal

range, depending on the w value, either dark or bright soliton

will be realized. For example, by putting k = 3 in the dispersion

relation, Equation (21) a bright soliton will propagate that leads

it, whereas at k = −3, a soliton will propagate that follows it.

From Equation (17) and Equation (19), it is obvious that the

coefficients of both equations for a real function F = F(φ) must

satisfy the well-known proportionality relation,

γ1

(1− 3γ1λ)
=

(2λ− c+ 3γ1λ
2)

(w− λ2 + γ1λ3)
=

( 13γ2 +
2
3γ3)

(α − γ2λ)
, (26)

After some mathematical simplification

w =
(α − γ2λ)(2λ− c+ 3γ1λ

2)

( 13γ2 +
2
3γ3)

+ λ2 − γ1λ3, (27)

here,

λ =
γ2 + 2γ3 − 3αγ1

(γ2 + 2γ3)λ1 − 3γ1γ2
. (28)

According to the aforementioned proportionality relation,

Equation (17) or Equation (19) can be solved in lieu of both

the Equations (17) and (19), only if the Equation (17) and

Equation (19) are written in terms of Equations (27) and (28),

respectively. Let,

A = γ1k
2, B = 2λ− c− 3γ1λ

2,D =
(

1

3
γ2 +

2

3
γ3

)

. (29)

Now Equation (17) can be restructured into a simpler form

AF′′ + BF + DF3 = 0. (30)

By using the homogeneous balance method between F′′

and F3 in Equation (7), we obtain N = 1. Therefore, from

Equation (7), the formal solution has the following form:

F(φ) = a0 + a1

(

G′

G2

)1

+ b1

(

G′

G2

)−1

(31)
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Collecting all the terms in accordance with the same powers

of ( G
′

G2 ) and equating them separately to zero by substituting

Equation (31) into Equation (30) along with Equation (8), yields

an algebraic simultaneous equation set for a0, a1, b1,µ, σ , and ρ,

and after solving them, we have the following values:

a0 = −
i
√
B

√
D
, a1 = 0, b1 =

i
√
B

√
D
, σ = −

√
B

√
2
√
A
,

µ =
√
2
√
B

√
A

, ρ = ρ (32)

Analytical solutions:

Case 1: The trigonometric solution of Equation (14) by the use

of Equation (9) and under the parametric value of Equation (9)

can be given as follows:

F1(φ) = −
i
√
B

√
D

+
i
√
B

√
D

√

−
√
B

ρ
√
2
√
A







A1 cos(− ρ
√
B√

2
√
A
)φ + A2 sin(− ρ

√
B√

2
√
A
)φ

A1 sin(− ρ
√
B√

2
√
A
)φ − A2 cos(− ρ

√
B√

2
√
A
)φ







−1

(33)

Case 2: The hyperbolic solution of Equation (14) by the use of
Equation (10) and under the parametric value of Equation (33)
can be given as follows:

F2(φ) =
i
√
B

√
D

++
i
√
B

ρ
√
D





√

|(−
ρ
√
B

√
2
√
A
)|















A1 sinh 2

(
√

|(− ρ
√
B√

2
√
A
)|
)

φ + A1 cosh 2

(
√

|(− ρ
√
B√

2
√
A
)|
)

φ + A2

A1 sinh 2

(
√

|(− ρ
√
B√

2
√
A
)|
)

φ − A1 cosh 2

(
√

|(− ρ
√
B√

2
√
A
)|
)

φ − A2











−1

(34)

Case 3: The rational solution of Equation (14) by the use of

Equation (11) and under the parametric value of Equation (32)

can be given as follows:

F3(φ) = −
i
√
B

√
D

+
i
√
B

√
D

(

A1

ρ(A1φ + A2)

)−1

(35)

Case 4: The hyperbolic solution of Equation (14) by the use of
Equation (12) and under the parametric value of Equation (32)
can be given as follows:

F4(φ) = −
i
√
B

√
D

+
i
√
B

√
D



−
√
2
√
B

2ρ
√
A

−





√
△1(A1 cosh(

√
△1
2 )φ + A2 sinh(

√
△1
2 )φ)

2ρ(A1 cosh(
√
△1
2 )φ + A2 sinh(

√
△1
2 )φ)









−1

,

(36)

Case 5: The hyperbolic solution of Equation (14) by the use of
Equation (13) and under the parametric value of Equation (32)
can be given as follows:

F5(φ) = −
i
√
B

√
D

+
i
√
B

√
D

[

−
√
2
√
B

2ρ
√
A

−

(√
△2(A1 cosh(

√
△2
2 )φ − A2 sinh(

√
△2
2 )φ)

2ρ(A1 cosh(
√
△2
2 )φ + A2 sinh(

√
△2
2 )φ)

)]−1

,

(37)

6. Results and discussion

In this section, graphical simulations and the physical

properties of the obtained solutions are presented. The solutions

F1(φ) and F2(φ) have been presented, respectively, in Figures 1,

2 for some estimated values of involved parameters. The first

figure shows a solitary wave solution with estimated values of

µ = 0, σρ > 0, σ = 0.2, ρ = 0.5,V = 1,A1 = 0.1,A2 =
0.2, γ1 = − 1

3 , γ2 = 1, γ3 = 1, whereas the second figure

evinces a bright solitary wave solution with estimated values of

µ = 0, σρ < 0, σ = 0.2, ρ = −0.3, V = 2, A1 = 0.02,

A2 = 0.03, γ1 = − 1
3 , γ2 = 1, γ3 = 1, which is similar to the

wave profile of solution u3(z, t) with b0 = 1, b1 = 2, α1 = 1.1,

α2 = 0.7, α3 = 1.5, β1 = 1.9, β2 = 1, and a = 2 by Hosseini

et al. [37]. Dark solitons are seen in the simple dispersion region,

while bright solitons are observed in the anomalous dispersion

region [31]. A dark soliton has varying phases along its width,

and their velocity depends on amplitude through the internal

phase angle [32]. Bright solitons travel with constant phases [32].

Similarly, Figure 3 also represents a type of dark soliton solution.

As shown in Figure 4, a kink profile is obtained, sometimes they

are called fronts. Liu et al. [33] discovered the kink-like wave

or generalized kink wave, which may sometimes be defined as a

semifinal bounded region and has some properties of the kink

wave. In Figure 5, with the estimated values of µ 6= 0,△1 ≥
0,µ = −0.3i, ρ = 0.15, σ = −0.2,V = 2,A1 = 0.5,A2 = 0.4,

(γ1 = − 1
3 , γ2 = 1, γ3 = 1 is having a dark soliton, which is

similar to the wave profile that of |u| for a = 1, b = 1,µ =
1, θ1 = −− 1/3, θ2 = 1, θ3 = 1, λ = −− 1, andH1 = −− 1 by

Wen et al. [34]. According to our extensive literature review, to

the best of our knowledge that, the proposed method is new for

NPSE (Equation 14). Our work will help people to know deeply

the described physical process and possible applications of NPSE

(Equation 14) [35, 36].

7. Conclusion

Soliton solutions of nonlinear perturbed Schrödinger

equation, that is, Equation (14) have been obtained from the
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FIGURE 1

Graphs for µ = 0, σρ > 0, σ = 0.2, ρ = 0.5,V = 1,A1 = 0.1,A2 = 0.2, −4 ≤ x ≤ 4, and −2 ≤ t ≤ 2 values of the Equation (33).

FIGURE 2

Graphs for µ = 0, σρ < 0, σ = 0.2, ρ = −0.3,V = 2,A1 = 0.02,A2 = 0.03, −4 ≤ x ≤ 4, and −2 ≤ t ≤ 2 values of the Equation (34).

FIGURE 3

Graphs for A1 = 0.02, ρ = 0.5,A2 = 0.03, v = 1, −4 ≤ x ≤ 4, and −2 ≤ t ≤ 2 values of the Equation (35).

FIGURE 4

Graphs for µ = −0.3i, ρ = 0.15, σ = −0.2,V = 2,A1 = 0.5,A2 = 0.4, −4 ≤ x ≤ 4, and −2 ≤ t ≤ 2 values of the Equation (36).
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FIGURE 5

Graphs for µ 6= 0,µ = 2, ρ = 1, σ = 2,V = 1, A1 = 0.2,A2 = 0.3, −4 ≤ x ≤ 4, and −2 ≤ t ≤ 2 values of the Equation (37).

estimated values of the GVD coefficient, and Kerr nonlinearly

coefficient and their graphical simulations are presented. As

shown in Figure 1, the amplitude of the soliton-like profile can

be varied by altering the coefficients σ ,µ, ρ,A1, and A2. As

shown in Figure 2, considering the values of B,D, and A by

altering the coefficients γ1, γ2, γ3, σ ,µ, ρ,A1, and A2, a bright

profile can be realized. Moreover, soliton profiles can be realized

by estimated values of A1 , A2, γ1, γ2, γ3, and ρ, which is shown

in Figure 3. As shown in Figure 4, the kink-like profile can

be realized for the estimated values of △2,A1,A2, γ1, γ2, and

γ3. In Figure 5, the amplitude and spread of the dark soliton

profile can be varied by altering the coefficients △1,A1, and

A2. These figures demonstrate the variation in amplitudes of

fast compressive solitons reduces sharply in the small lower

zone, and subsequently decreases slowly in the higher regime.

However, the widths of the opposite trend are seen in the right

moving solitons as Figures 1, 3. To the best of our knowledge

concern from the literature, some of the results are new and

have not been reported previously, and some are converging

such as the wave profile of the left side of Figure 2 is having

similar nature to Figure 2 of Yanjie et al. [34]. We do believe

that our results may be helpful for the additional investigation

of the propagation of the wave in optical MMs. In optical

communication technology, solitons play an important role,

significantly low bit error rate (BER) along with its strongly

anti-interference ability is the reason why optical solitons are

being used as a carrier wave of ultra-high-speed signals with no

distortion.
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