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Introduction: Crime and criminal activities have huge influences on society and

societal development. The socialmakeup of the society has a significant impact on the

propagation of crime within a population. It is a well-known reality that crime spreads

across society like an infectious disease, despite the fact that there are many elements

that might a�ect this dynamic. So, understanding crime and the factors influencing

its spread are essential in formulating policies to reduce the prevalence and impacts

of crime.

Methods: We formulate a deterministic mathematical model using a system of

nonlinear ordinary di�erential equations incorporating education programs as tools

to assess the population-level impact on the spread of crime. The model has a

global asymptotically stable crime-free equilibriumwhenever a certain criminological

threshold, known as the e�ective reproduction number RE, is less than unity.

Results and discussion: The model is fitted with prison data reported from July 2021

to June 2022 by the State of Illinois in The United States. The simulations are carried

out to assess the population-level impact of the widespread use of the intervention

programs and the compliance rate in the State of Illinois. We hypothetically fixed the

e�cacy of the intervention programs at 25% while varying the compliance rate (by

the general public). With no compliance, a high level of active criminal population was

recorded. As the compliance rates were significantly improved, the active population

level decreased. The global sensitivity analysis is performed primarily to determine

the parameters with the most e�ect on the spread of crime in the State of Illinois. The

results demonstrate that the e�ective community contact rate, βc, for the criminally

active individuals is the main driver of crime in the State of Illinois.
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1. Introduction

One of the illegal ways to undermine human civilized society is through crime. It is crucial to

thoroughly handle this issue because it has existed for a very long time [1]. Crime is a significant

sociological problem that has been researched extensively in the scientific literature [2]. It is

difficult to provide a concrete definition of crime because every society has its own norms and

values. However, what constitutes a crime is an illegal act or a perpetrator’s deviant conduct, its

effective punishment can be imposed by a criminal legislating institution [3, 4], and the victims of

these acts. Crime mainly rises from the combination of three factors: a driven offender, a suitable

target, and the absence of an able guardian [5–7]. In view of this, all crimes require opportunity

but not every opportunity is followed by crime. The spread of crime usually happens as a result

of coming into contact with criminally active groups of people. We may not realize the spread

of crime until it becomes predominant. Consequently, it goes without saying that crime imposes

costs on society.
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Mathematical modeling is a powerful tool that has been employed

to examine the spread of crime. One of its main goals is to

understand the condition under which the spread of crime within

a population will disappear or persist. For instance, the United

States (U.S) government spends more on the criminal justice system

than any other country. Public spending on its prison system has

increased by six times the rate of government spending on higher

education over the past two decades [8]. A statistical model of

criminal behavior is demonstrated [10]. The role of technology in

combating social crime is studied using a deterministic model [11].

Here, authors considered a deterministic compartment model and

emphasized the need for technology to combat crime in society.

A mathematical model considering serious and minor criminal

activities are formulated and analyzed [12]. In González-Parra et

al. [2], authors have studied a mathematical model by considering

crime as a social epidemic. Here, authors have considered several

compartments and have assumed that a judge or a police officer can

also become a criminal if they come into contact with criminals. An

interesting mathematical model for the dynamics of the spread of

crime is formulated and analyzed [8], where authors have shown

that if they relax the assumption that crime initiates only through

contagion, then the crime-free equilibrium is no longer possible and

the model system can tend to either lower the crime equilibrium or

increase the crime equilibrium. For example, the epidemic spread

of drug use has been modeled using differential equations [13–15].

In Gonzalez et al. [16], the authors constructed a model examining

the dynamics of peer pressure on college-age bulimia, focusing

on the effects of the intervention at two stages of the disease.

The Optimal control for crime at its minimal level during festive

periods such as Christmas and Valentine’s day, and entertainment

events, such as music awards, have also been studied and presented

[17].

Introducing fear to combat crime, will reduce the expectation

of a benefit, and consequently the intention to engage in crime

after considering the cost. Similar research on mathematical models

of crime stems from Becker’s perspective of crime as a rational

decision-making [18] mechanism whereby the individual compares

the benefits and costs (punishment) associated with criminal activity

against criminal alternatives. For example, Freedman et al. [19]

developed a model that depicts that crime is concentrated in

places where the possible monetary benefit from committing a

crime (the probability of not being convicted due to the reward

of the crime) exceeds the cost of criminal opportunity. Wang

et al. [20] generalized this approach allowing for the cost of

an opportunity to be heterogeneous across future criminals and

depending on the level of crime in a given society and estimated

the amount of group crime activity in equilibrium. Another study

focused on sanction policies that reduce crime through general

or specific deterrence [21, 22]. Recently, Durlauf and Nagin [23]

reviewed this research and concluded that incarceration is not the

optimal approach to combat crime. From several research studies,

increase in prison sentence lengths are associated with weak to

modest declines in crime, while micro-level studies suggest that

experiencing incarceration does not seem to prevent reoffending.

Their findings show that the most significant deterrent effects

come from implementing tactics that increase the perceived risk of

apprehension. Recidivism rates in the United States vary depending

on the crime. In the case of property and drug-related offenses, the

likelihood of rearrest within 3 years after release is about 70% [24].

The present study is a development of a new mathematical model

for studying crime dynamics and incorporating education programs

as a tool to curtailing the menace of crime and criminality in the

United States of America (particularly in the State of Illinois). The

model takes the form of Kermack-McKendrick, a compartmental,

deterministic system of nonlinear differential equations [25]. We

consider some relevant aspects of the crime dynamics, including

incarceration, desistance by criminals, and how released criminals

return to their previous crime life. It is worth mentioning that

the model under study exhibits certain features as illustrated in

Srivastav et al. [1]. The model parameterized using available crime

data obtained from the Illinois Department of Corrections Prison

Population Data Sets. In addition, the parameterization of the model

provides an insight into the assessment of some of the education

programs.

The rest of the article is organized as follows; In Section 2,

we present the model formulation while the basic properties

of the model are presented in Section 3. The local and

global stability analysis of the Crime-free equilibrium is

presented in Section 4. In Section 5, we present both the

global and local sensitivity analysis of the model, and

finally, we present numerical simulations and discussions in

Section 6.

2. Model formulation

We present a model to assess the various education programs

to curtail criminality in the State of Illinois. The total population

denoted as N(t) is subdivided into mutually exclusive compartments

of susceptible individuals (i.e., individuals who are at risk

of becoming criminals) S(t), criminally active individuals (i.e.,

individuals who are actively involved in crime at any given

time) C(t), criminals in prison (i.e., individuals who are caught

in the act of crime and are put in prison) P(t), and reformed

Individuals (i.e., individuals who have come out of prison and

leading a normal life), R(t). We consider the following assumptions:

(a) a homogeneously-mixed population [i.e., all individuals (both

susceptible and criminals)] in the community are assumed to have

an equal probability of coming into contact with one another),

(b) exponentially-distributed waiting time in each criminological

compartment, and (c) human demographic processes (i.e., migration,

births or deaths due to causes other than the crime being modeled).

Susceptible individuals join the criminal group when there is effective

interaction with either criminal or prison individuals. A standard

incidence

λ =
(1− εη)

(

βcC + βpP
)

N
,

measures the force of crime, where βc and βp are community

contact rates for both active criminals and criminals in prison,

respectively, 0 < η ≤ 1 is the proportion of community

members who observe the education programs introduced, 0 <

ε ≤ 1 is the efficacy of the education programs (low values

of η imply limited compliance of the intervention programs by

the public, whiles values of η near unity signify widespread

observance of the intervention programs). Again, values of ε

close to zero imply that the intervention programs may not
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FIGURE 1

Flow diagram of the model (Equations 1–4).

TABLE 1 Description of state variables of the model (Equations 1–4).

State variables Description

S Susceptible individuals

C Criminally active individuals

P Criminals in prison

R Reformed individuals

be a major tool to stop or reduce the spread of crime in

the community.

Based on this fact (and noting the flow diagram in Figure 1), the

basic model for the spread of crime dynamics in a community is

given by the following deterministic system of nonlinear differential

equations (where a dot represents differentiation with respect to time

t):

Ṡ = 3− λS+ (1− θ)νR− µS (1)

Ċ = λS+ ωP + θνR− (µ+ α + τ )C (2)

Ṗ = αC − (µ+ γ + ω)P (3)

Ṙ = γP + τC − (µ+ ν)R (4)

Equation (1) describes the dynamics of the law-abiding individuals

in the community S(t). The first term 3 refers to a fixed

number of individuals who join the susceptible population either

through migration or birth. The term (1 − θ)νR refers to the

proportion of individuals who recover fully and return to the

susceptible class. Equations (2) and (3) describe the dynamics within

the active criminal population C(t) and prison population P(t),

respectively, either through incarceration, desistance, recidivism, or

proportion of individuals that return to their previous criminal

life after they have been released from prison. Equation (4)

highlights the modification in the reformed class R(t), which

describes the movement from R(t) to C(t) and C(t) to R(t).

The term ν describes the rate at which reformed individuals

recover fully and return to the susceptible class S(t). We

assume natural deaths occurrence in all compartments. The

description of the variables and parameters are given in Tables 1, 2,

respectively.

TABLE 2 Description of parameters of the model (Equations 1–4).

Parameter Description

3 Recruitment rate

µ Natural mortality rate

βc Community effective contact rate for criminally active individuals

βp Community effective contact rate for criminals in prison

ν Rate of movement of individuals from the reformed class to either

C or S

τ Rate of desistance by criminals

ω Rate at which incarcerated individuals go back to crime

(recidivism)

α Rate of incarceration

γ Rate at which individuals move from P to R after completing their

prison terms

ε Efficacy of the intervention programs (education)

η Proportion of community members who observe the education

programs

θ Fraction corresponding to movement of individuals from R to C

3. Basic properties of the model

Lemma 1. (Positivity) Let t > 0. In this model, if the initial conditions

satisfy S(0) > 0,C(0) > 0, P(0) > 0,R(0) > 0, then for all t ∈ [0, t0],

S(t),C(t), P(t), and R(t) will remain positive in R
4
+ for arbitrary t0.

Proof: With all the parameters used in the system being non-

negative, we can thus place a lower bound on each of the equations

making up the model. Thus,

Ṡ = 3+ (1− θ)νR−

[

(1− εη)(βcC + βpP)+ µN

N

]

S ≥ −

[

(1− εη)(βcC + βpP)+ µN

N

]

S (5)

Ċ =
(1− εη)(βcC + βpP)

N
S− (µ+ α + τ )C ≥ −(µ+ α + τ )C

(6)

Ṗ = αC − (µ+ γ + ω)P ≥ −(µ+ γ + ω)P (7)

Ṙ = γP + τC − νR ≥ −νR. (8)
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By applying basic differential equations method (separation of

variables), we can resolve these inequalities to produce

S ≥ S0e
−1t > 0,

C ≥ C0e
−(µ+τ+α)t > 0,

P ≥ P0e
−(µ+γ+ω)t > 0,

R ≥ R0e
−νt > 0,

where 1 =
(1− εη)(βcC + βpP)+ µN

N
. Thus, for all t ∈

[0, t0], S(t),C(t), P(t), and R(t) will be positive and remain in R
4
+.

Lemma 2. (Boundedness) There exists an SM ,CM , PM ,RM > 0

such that for S(t),C(t), P(t),R(t) lim supt→∞

(

S(t)
)

≤ SM ,

lim supt→∞

(

C(t)
)

≤ CM , lim supt→∞

(

P(t)
)

≤ PM ,

lim supt→∞

(

R(t)
)

≤ RM for all t ∈ [0, t0] for arbitrary t0.

Proof: Since the model Equations (1)–(4) monitors human

populations, all the associated parameters and state variables are

positive, and adding the four equations of the model Equations

(1)–(4) gives us

Ṅ = 3− µN. (9)

Solving Equation (9) yields

N =
3

µ
−

(

N0 −
3

µ

)

e−µt .

The upper bound can be found by taking the lim sup of both sides as

t −→ ∞ to get
3

µ
. So N is bounded below by 0 and above by

3

µ
.

Therefore for t ∈ [0, t0], S(t),C(t), P(t),R(t) are bounded.

The model (Equations 1–4) is biologically and mathematically

well-posed in the domain

D =

{

(S,C, P,R) ∈ R
4
+ : 0 ≤ N ≤

3

µ

}

.

Thus, the domain,D is positively invariant.

4. Stability analysis of crime-free
equilibrium

4.1. Crime-free equilibrium

The model has a crime-free equilibrium (CFE), obtained by

setting the right-hand sides of Equations (1)–(4) to zero, given by

E0 : = (S∗,C∗, P∗,R∗) =

(

3

µ
, 0, 0, 0

)

, (10)

with N∗ = S∗ + C∗ + P∗ + R∗ = 3/µ.

4.2. Crime e�ective reproduction number

For infectious diseases, one of the most important threshold

parameters is the basic reproduction number, denoted by R0, which

is required to determine the transmission dynamics of an infectious

disease in a population. However, in criminal dynamic models, R0,

is a threshold parameter that measures the average number of new

criminals produced by the relapse and interaction of the criminal

population with the susceptible population [26].

The basic tool for examining epidemic thresholds in complex,

structured models is the so-called next-generation matrix [27]. We

use the next-generation method to compute the crime effective

reproduction numberRE for our model. Here, we assumed that each

function is at least twice continuously differentiable in each variable

f =





(1− εη)
(

βcC + βpP
)

S

N
0



 and v =

(

(µ+ α + τ )C − ωP

(µ+ γ + ω)P − αC

)

,

(11)

where f is the rate of appearance of a new crime in a compartment

and v is the rate of transfer of individuals into and out of a

compartment. We linearized the two expressions earlier with respect

to C and P to obtain

F =







βc (1− ε η) βp (1− ε η)

0 0






and

V =







α + µ+ τ −ω

−α γ + µ+ ω






,

since S∗ = N∗. The effective or control reproduction number,

denoted byRE, is then given byRE = ρ(FV
−1) where ρ(·) denotes

the spectral radius (dominant eigenvalue). It follows that

RE = Rc +Rp,

where

Rc =
βc(1− ηε)

(µ+ α + τ )(1− ψ)
and

Rp =
αβp(1− ηε)

(µ+ α + τ )(µ+ γ + ω)(1− ψ)
.

Thus by expressingRE in terms ofR0, we obtainRE = (1− ηε)R0.

In the absence of intervention strategies (i.e., ε = 0 = η), the

effective reproduction number is given by

R0 =
βc

(µ+ α + τ )(1− ψ)
+

αβp

(µ+ α + τ )(µ+ γ + ω)(1− ψ)
,

where ψ =

(

α

µ+ α + τ

)(

ω

µ+ γ + ω

)

.

Remark. The expression ψ represents the proportion of active

criminals incarcerated and reverted back to be criminals or the

likelihood that a criminal will return to being a criminal again. The

terms
1

(µ+ α + τ )
and

1

(µ+ γ + ω)
are the duration of stay in

compartments C and P, respectively. The expression
α

(µ+ α + τ )
is

the proportion of active criminals that are imprisoned or the probability

that a criminal will be sent to prison, and
ω

(µ+ γ + ω)
is the

proportion of prisoners that are released and go back into criminality.
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RE is the number of individuals a criminal activist can

influence during the period of successful criminal behavior where

intervention programs are introduced into the community. The

effective reproduction number RE of the model (Equations 1–4)

is expressed as the sum of two constituents reproduction numbers,

namely the average number of new crimes generated by a typical

active criminal in a community, denoted by Rc, and the average

number of crimes generated by a typical criminal in prison, denoted

byRp.

4.3. Local stability analysis of crime-free
equilibrium

Theorem 4.1. The CFE (E0) of the model (Equations 1–4) is locally

asymptotically stable (LAS) if RE < 1. If RE > 1, the crime rises to a

peak and then eventually declines to zero.

Proof: The local stability of the CFE (E0) is determined by using the

eigenvalues of the Jacobian matrix at E0, given by

J⋄(E0) =











−µ βc (ε η − 1) βp (ε η − 1) −ν (θ − 1)

0 −K1 − βc (ε η − 1) ω − βp (ε η − 1) ν θ

0 α −K2 0

0 τ γ −K3











,

(12)

where K1 = (µ + α + τ ), K2 = (µ + γ + ω), and K3 = (µ + ν).

It is easy to see that the first negative eigenvalue is λ1 = −µ. The

remaining eigenvalues are obtained below:

J⋆ =







−K1 − βc (ε η − 1) ω − βp (ε η − 1) ν θ

α −K2 0

τ γ −K3






.

The characteristic polynomial of the aforementioned matrix J⋆ is

given by

P(λ) = λ3 + a1λ
2
+ a2λ+ a3,

where

a1 = K1 + K2 + K3 − βc(1− ε η),

a2 = K1 K2 − K3 βc − α βp − α ω − K2 βc + K1 K3 + K2 K3 − ν τ θ

+ K2 βc ε η + K3 βc ε η + α βp ε η, and

a3 = K3(K1K2 − αω)(1−RE)+ νθ(K2τ + α + γ ).

Applying the Routh-Hurwitz criterion [28], it is clear that a1 > 0 if

K1 + K2 + K3 > βc(1 − ε η). It should be emphasized that RE < 1

makes a3 > 0. Furthermore, if RE > 1, then a3 < 0. The condition

RE < 1, makes

K1K2 − αω > αβpK2βc, (13)

K1K3 + K2K3 − ντθ > K3βc. (14)

The two inequalities (Equations 13–14) imply that a2 > 0. Finally,

we need to show that a1a2 > a3. After algebraic manipulations, we

have that a1a2 > a3. Thus, the crime-free equilibrium of the model

(Equations 1–4) is locally asymptotically stable whenever RE < 1,

otherwise unstable.

The criminological implication of Theorem 4.1 is that a small

influx of active criminal individuals in the community will not

generate an outbreak of crime in the community if RE < 1. That

is, the spread of crime rapidly dies out (when RE < 1) if the initial

number of active criminal individuals in the community are in the

basin of attraction of the CFE (E0). For instance, when R0 = 2,

one active criminal in the community will, on average, influence

two other individuals during the duration of his/her successful

criminal behavior. Hence, in this case, the crime will be spreading

exponentially until intervention strategies are implemented in the

community and/or a certain proportion of the public is educated. In

this article, since intervention measures are put in place to help stop

or reduce the spread of crime, the rate at which crime spreads will be

minimized. In order for crime elimination to be independent of the

initial size of the sub-populations of the model, it is necessary to show

that the crime-free equilibrium (E0) is globally asymptotically stable.

4.4. Global asymptotic stability of the
crime-free equilibrium

The global asymptotic stability of the crime-free equilibrium of

the model (Equations 1–4) can be established for the special case, that

is in the absence of re-committing the crime (i.e., θ = 0).

Theorem 4.2. Consider the special case of the model (Equations

1–4) in the absence of re-committing the crime (i.e., θ = 0), the

crime-free equilibrium (E0) of the model (Equations 1–4) is globally

asymptotically stable inD wheneverRE < 1.

The proof of Theorem 4.2 is based on using a comparison theorem

[29].

Proof: Consider the special case of the model (Equations 1–4) in the

absence of re-committing the crime. Let us assume that RE < 1.

The equations for the crime compartments for the special case of

the model (Equations 1–4) can be re-written in terms of the next

generation matrices (F and V) as follows:

d

dt

[

C(t)

P(t)

]

= (F − V)

[

C(t)

P(t)

]

−M

[

C(t)

P(t)

]

, (15)

where (with S∗ and N∗ as defined in Section 11),

(F − V) =

[

βc (1−ǫ η)S
∗

N∗ − (α + µ+ τ )
βp (1−ǫ η)S

∗

N∗ + ω

α −(γ + µ+ ω)

]

,

and

M = (1− ε η)

(

1−
S

N

)

[

βc βp

0 0

]

. (16)

Since S ≤ N for all t > 0 in D, it follows that the matrixM, defined

in Equation (16), is non-negative. Hence, the Equation (15) can be

re-written in terms of the following inequality:

d

dt

[

C(t)

P(t)

]

≤ (F − V)

[

C(t)

P(t)

]

. (17)

If RE < 1, this implies that all eigenvalues of the next generation

matrix FV−1 are negative. Equivalently, we can claim that F − V
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is a stable matrix [27]. Thus, it can be concluded that the linearized

differential inequality system (Equation 17) is stable wheneverRE <

1. Hence, it follows from aforementioned analysis that

(C(t), P(t)) → (0, 0), as t → ∞.

Eventually after substituting C(t) = P(t) = 0 into the differential

equations for the rate of change of the R(t) and S(t) compartments

shows that

R(t) → 0 and S(t) → S∗ as t → ∞.

Hence, we can finally claim that the CFE (given in Section 11) for the

special case of the model (Equations 1–4) (with θ = 0) is globally

asymptotically stable inD wheneverRE < 1.

The criminological implication of Theorem 4.2 shows that, for

the special case of the model (Equations 1–4) with θ = 0, the overall

crime can be eliminated from the community ifRE is brought to and

maintained to a value less than unity.

5. Sensitivity analysis

We use sensitivity analysis to determine the robustness of model

predictions to parameter values since there usually are errors in

data collection and presumed parameter values [30]. Sensitivity

indices also enable us to quantify the change in the state variables

that results from changes in the parameters [9]. Sensitivity analysis

is used to discover parameters that have a high impact on the

crime reproductive number and should be targeted by intervention

strategies. We define the normalized forward sensitivity index (NFSI)

of the effective crime reproduction number as the relative change in

R0 occasioned by the relative change in each of the parameters. The

normalized forward sensitivity index of a variable to a parameter is

the ratio of the relative change in the variable to the relative change

in the parameter. Since the effective crime reproduction number R0

is differentiable with respect to all the parameters, we define the

sensitivity index as follows:

Definition 1. For an effective crime reproduction number, R0,

differentiable with respect to the parameter q, the normalized forward

sensitivity index (NFSI) is defined as

ϒR0
q =

∂R0

∂q
×

q

R0
. (18)

Using this definition, we estimate the sensitivity indices of the

parameters of the effective crime reproduction number as follows:

ϒ
R0
βc

=
βc (γ + µ+ ω)

αβp + βc (γ + µ+ ω)

ϒ
R0
βp

=
αβp

αβp + βc (γ + µ+ ω)

ϒR0
τ = −

τ (γ + µ+ ω)

(γ + ω)(α + µ+ τ )+ µ(µ+ τ )

ϒR0
γ = −

αγ (βcµ+ α + µ+ τ )(γ + µ+ ω)))

(αβp + βc(γ + µ+ ω))(α(γ + ω)+ (µ+ τ )(γ + µ+ ω))(γ + µ+ ω)

ϒR0
ω = −

αω(βcµ+ α + µ+ τ )(γ + µ+ ω)))

(αβp + βc(γ + µ+ ω))(α(γ + ω)+ (µ+ τ )(γ + µ+ ω))(γ + µ+ ω)

ϒR0
α = −

α (γ + µ+ ω)
(

βc(γ + ω)− βp(µ+ τ )
)

(

α βp + βc γ + βc µ+ βc ω
) (

α γ + α ω + γ µ+ γ τ + µω + µτ + ω τ + µ2
)

TABLE 3 Baseline values of the fixed parameters of the model (Equations

1–4).

Parameter Value Source

N 2, 746, 388 [31]

µ 1/(74.7× 52) week−1 [32]

3 707.0302 week−1 Estimated

α 0.005 week−1 [33]

γ 0.0159 week−1 [34]

ε 0.43 (dimensionless) [35]

η 0.52 (dimensionless) [36]

θ 0.7 (dimensionless) [22]

ν 0.003 week−1 [34]

TABLE 4 Baseline values of fitted (estimated) parameters of the model

(Equations 1–4), obtained by fitting the model with the weekly crime data

for Illinois for the period July 1st, 2021 to June 30th, 2022.

Parameter Estimated
value

Parameter Estimated
value

βc 0.1543 week−1 βp 0.0010 week−1

τ 0.0100 week−1 ω 0.1067 week−1

The simulations of the model were Equations (1–4) were carried out using the parameters

estimated from the weekly crime data for the State of Illinois.

The final sign of the last index is dependent on the value of

the numerator. It is easily verifiable that all the index values are

less than 1. Since the effective crime reproductive number plays a

critical role in the spread of crime, it is important to identify the most

effective approach in bringing down ourR0. To this end, we perform

numerical simulations using the baseline parameter values given in

Tables 3, 4 to identify which parameters are sensitive to the effective

reproductive number.

Parameter Sensitivity

index

Parameter Sensitivity

index

βc 0.999736 βp 0.000264

τ −0.160078 γ −0.000251

ω −0.001686 α −0.798448

µ −0.039537

We observe that community contact rate for active criminals βc
has nearly one to one corresponding relationship with the crime

reproductive number R0 such that a 10% change in βc results in
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a 9.9% change in R0. So the crime reproductive number is most

sensitive to βc. The crime reproductive number also has a direct

proportional relationship with the parameter βp. However, the effect

is much lower, a 100% change in βp only leads to 0.26% change in the

crime reproductive number. The crime reproductive numberR0 has

an inverse proportional relationship with parameters τ ,ω, γ ,α,µ;

an increase in any of them will bring about a decrease in crime

reproductive numberR0.

5.1. Data fitting and parameter estimation

In this section, we have fitted the observed weekly cumulative

crime data for Illinois from the period of 1 July 2021 to

30 June 2022 [37]. The time series illustration of the least

squares fit of the model (Equations 1–4) is depicted in Figure 2,

showing the model estimation (i.e., blue curve which is plotted

for the criminals in prisons as formulated in Equation 3)

represents the cumulative weekly crimes compared to the observed

cumulative weekly crime data (i.e., red dots) for the aforementioned

time period.

The developed model has a total of 13 different parameters, out

of which 8 parameters are known from the existing literature

which is shown in Table 3. We have calculated the daily

recruitment rate (3) as a product of the total population (N)

of Illinois, which is based on the projections of the latest U.S.

census [31] and the weekly natural mortality rate (µ). The

developed model was fitted using a standard nonlinear least

squares approach, which involved using the inbuilt Matlab

R2022a optimizer function “lsqcurvefit,” which will be used

to obtain the best values of the remaining four unknown

parameters. SSE minimizes the sum of the squared differences

between each observed cumulative crime data points and the

corresponding cumulative crime points obtained from the

model (Equations 1–4). The estimated values of the unknown

parameters which are obtained from the fitting are shown in

Table 4. The effective reproduction number for the set of the

fixed and fitted parameters for the model (Equations 1–4) is

RE = 11.4223.

6. Numerical simulations and
discussions

To demonstrate some of the various theoretical results contained

in this paper, the model (Equations 1–3) is simulated using the

baseline values shown in Table 3 (unless otherwise stated), to assess

the population-level impact of the interventions programs (in a form

of education) against crime level in Illinois. It is worth noting that

throughout the simulations, Matlab R 2022a was used, and the initial

conditions considered are S(0) = 2, 742, 386,C(0) = 3, 950, P(0) =

2, and R(0) = 50. We also simulated the model (Equations 1–

3) using the calibrated parameters in Table 4, coupled with other

estimated parameters in Table 3 to assess the population-level impact

of mitigation strategies. First of all, we simulated the model to

assess the population-level impact of the incarceration on the active

criminal population. The population-level impact of incarceration is

measured by the reduction of the active criminal population.

FIGURE 2

Data fitting of the model (Equations 1–4) using weekly crime data for

Illinois from 1 July 2021 to 30 June 2022. The simulations of the

model (Equations 1–4) carried out using the parameters estimated

from the weekly crime data for the Illinois. The values of the fixed and

fitted parameters used for the purpose of the data fitting and

parameter estimation are shown in Tables 3, 4, respectively.

FIGURE 3

E�ect of varying the incarceration rate α on the criminal population.

Simulation displaying the active criminal population, as a function of

time. The values of the parameters are used from Tables 3, 4 with the

values of α being varied.

One thing that is important in the fight against crime is the rate

of uptake into correctional facilities of criminals. We varied the rate

of uptake into rehabilitation (α) and we found that as the rate of

incarceration increases, the number of criminals in the population

reduces as a result. Thus, the more criminals are incarcerated and

put in rehabilitation programs, the more crime reduces. This can be

seen in Figure 3. This observation is consistent with the conclusion

from similar studies done by Nyabadza et al. [9] and Berenji et

al. [38]. Liedka et al. [39] observed that there exists a negative

relationship between prison(incarceration) and crime. Rose et al. [40]

observed that within 3 years of incarceration, the risk of committing

new assault crimes, property crimes, and drug crimes reduced by

38%, 24%, and 30%, respectively.

In Figure 4, the simulations are carried out to assess the

population-level impact of the widespread use of the intervention

programs and the compliance rate in the Illinois. This Figure shows

a marked decrease in the active criminal population with varying

efficacy and compliance rates. For (a), we hypothetically fixed the

efficacy of the intervention programs at 25% while varying the

compliance rate (by the general public). With no compliance, a high

level of the active criminal population (approximately 2,020,650)
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FIGURE 4

E�ect of intervention programs in the Illinois community. The simulation of the model (Equations 1–3), showing the weekly crime levels, as a function of

time, for the assessment of the impact of the intervention programs (ε) and the compliance rate (η); (A) 25% e�cacy of intervention programs, (B) 50%

e�cacy of intervention programs, (C) 75% e�cacy of intervention programs, and (D) 100% e�cacy of intervention programs for Illinois. Allowing for the

assessment of the combined e�ect of the intervention strategies and how the masses comply with the policies. The improvement in the intervention

strategies and compliance rate are measured in terms of the percentage reduction of crime levels in Illinois. The other parameter values used are given in

Tables 3, 4.

was recorded. As the compliance rates were significantly improved,

the active population level decreased. For (b), we hypothetically

improved the efficacy rate by fixing it at 50% and realized that

increasing the compliance rates by 25% dramatically flattens the

active criminal population curves. However, with such an efficacy

level coupled with the varying compliance rates, the crime level in

the community may still persist. Even though the use of intervention

programs with low-level of efficacy rates may not lead to the

elimination of crime in the community, they have the potential of

reducing the burden of crime in the community (Figure 4B). An

interesting observation was made when the efficacy and compliance

were 75 and 25%, respectively. The burden of active criminal

populations reduces, almost leading to the eventual eradication of

crime in the population. In order to effectively measure the impact

of the intervention programs, it is imperative to consider further

increasing the efficacy levels while varying the compliance rates. For

a case where 100% of the populace in Illinois complies with the

intervention programs with a low-efficacy rate of 50%, the number

of active criminals in the community will be reduced. As it is clear

that it will be impossible to have everyone comply with the education

programs. However, with the right set of strategies, many of the

populace may understand the message and eventually comply with it.

Authors in Zitko [41] made a comparison of state-level education

data and crime and incarceration rates, and they realized that states

that have focused the most on education (in general, financial

support) tend to have lower rates of violent crime and incarceration.

Although education cannot be seen as a “cures all" or a panacea that

will ensure declines in criminal behavior or crime rates, research

indicates that increased spending on high-quality education can

have a favorable impact on public safety. Many trends have been

supported by contemporary research that has examined possible

connections between education and criminal behavior. Both the idea

that people with learning difficulties are more likely to engage in

violent behavior and the idea that education levels (both greater

and lower) are important in the manifestation of criminal behavior

have empirical backing. Numerous criminologists have examined

the connection between intelligence and crime in their writings,

frequently discovering an inverse link between the two. In other

words, criminologists have discovered that those with lower IQs

are more likely to commit a crime than people with higher IQs

[42]. However, James Oleson’s “Criminal Genius” sheds light on

the offenses–drawn from self-reports and interviews–committed

by high-IQ individuals, a group understudied in the field of

criminology [42].
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FIGURE 5

Partial rank correlation coe�cients (PRCCs) showing the e�ects of the

model parameters on the response variable (which in our case is the

crime population as a function of time). The baseline values of the

parameters used are given in Tables 3, 4.

FIGURE 6

The contour plot of the e�ective (or control) reproduction number

RE , as a function of the intervention programs (ǫ) and the compliance

rate (η). The other parameter values used for the contour plot are

given in Tables 3, 4, respectively.

6.1. Global sensitivity analysis

The model (Equations 1–3) has 12 parameters and the purpose of

the sensitivity analysis is to measure the impact of the sensitivities

of the parameters on the outcome of the numerical simulation

results (with respect to a particular response function). The standard

uncertainty and sensitivity analysis, using the Latin Hypercube

Sampling technique and partial rank correlation coefficients (PRCCs)

were applied to ascertain the sensitivities of the parameters against

the crime compartment which is a function of time (as a response

function) [43]. Other response functions, such as the crime effective

reproduction number (RE), could have been used to measure such

sensitivities of the parameters. To do the sensitivity analysis, each

model parameter’s range (lower and upper bound) and distribution

must first be defined, followed by the division of each range into

1,000 equal sub-intervals. A 1,000× 12matrix is created by randomly

selecting parameter sets from this space without replacing them [44,

45]. The values of the response function (crime compartment which

is a function of time) are obtained for each row of this matrix, and

then PRCCs are computed to analyze the contributions of uncertainty

and variability in specific parameters to uncertainty and variability

in the response function. High PRCC values near 1 or -1 are seen

as significantly correlated with the response function, whereas low

PRCC values are regarded as negatively (or positively) correlated

with the response function. We assume, for simplicity, that each of

the 12 parameters of the model (Equations 1–3) obeys a uniform

distribution, and the range for each parameter is obtained by taking

20% to the left, and then 20% to the right, of its baseline value (given

in Tables 3, 4) [43].

In Figure 5, the parameters that have a great impact on the

response variable are the community effective contact rate for

criminally active individuals (βc), the rate of desistance by criminals

(τ ), and the recidivism rate (ω). This explains that the effective

community contact rate for criminally active individuals is the main

driver of crime in our society.

We depict the contour plots of the effective reproduction

number RE as a function of the intervention programs (ǫ) and

the compliance rate (η) at steady-state in Figure 6. As expected,

the increment in the efficacy of the intervention programs along

with the increment in the proportion of community members

who observe the education program (i.e., the compliance rate) has

a significant impact on the reduction of RE. Furthermore, it is

notable from Figure 6 that to keep and maintain RE to a value

less than unity, we need to keep the intervention programs and

the compliance rate above 95%. On the contrary, if due to any

reasons, the intervention programs and the compliance rate both

drop down drastically to 20% or even much lower than it, so for

this scenario, we could observe that the value of RE increases

dramatically to 14 or even above. Overall, our study shows that

to effectively control crime in the community, it is necessary and

sufficient to keep the efficacy of the intervention programs and

the compliance rate of the education programs above 95%. Thus,

a strategy that emphasizes the significant increments in ǫ and η

would notably enhance the prospects of crime elimination in the state

of Illinois.

7. Conclusion

In this paper, we developed a mathematical model that

incorporates programs in curtailing crime dynamics. The

deterministic model was fitted with crime data from Illinois

[37] in the United States (U.S.) by means of a least squares method.

We present both local and global asymptotic analysis for the

crime free equilibrium. We observed globally asymptotically stable

crime-free equilibrium whenever the effective crime reproduction

number RE is less than one, i.e., RE < 1. By using the partial

rank correlation coefficients (PRCCs) method, we are able to

estimate the parameters that have a significant influence on the

model. We observed that the community effective contact rate
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for criminally active individuals (βc), the rate of desistance by

criminals (τ ), and the recidivism rate (ω) tend to have a great

impact on the spread of crime, see, Figure 5. The numerical

simulation shows that with an efficacy level of 75% with varying

compliance levels (0 − 100%), the burden of crime will be

reduced drastically.
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