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Bifurcation analysis of a
predator–prey model involving
age structure, intraspecific
competition, Michaelis–Menten
type harvesting, and memory
e�ect

Hasan S. Panigoro*, Emli Rahmi and Resmawan Resmawan

Biomathematics Research Group, Department of Mathematics, Universitas Negeri Gorontalo,

Gorontalo, Indonesia

The complexity of the dynamical behaviors of interaction between prey

and its predator is studied. The prey and predator relationship involves the

age structure and intraspecific competition on predators and the nonlinear

harvesting of prey following the Michaelis–Menten type term. Some biological

validities are shown for the constructed model such as the existence and

uniqueness as well as the non-negativity and boundedness of solutions. Three

equilibrium points, namely the origin, axial, and interior points, are found

including their global dynamics by employing the Lyapunov function along

with the generalized Lassale invariant principle. The changes in dynamical

behaviors driven by the harvesting and the memory e�ect are exhibited,

including transcritical, saddle-node, backward, and Hopf bifurcations. The

appearance of these interesting phenomena is strengthened by giving

numerical simulations consisting of bifurcation diagrams, phase portraits, and

their time series.
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1. Introduction

Since Lotka and Volterra introduced the classical predator–prey model, theoretical

studies of predation without age structure have attracted the attention of many authors,

for example Deng et al. [1], Huang et al. [2], Tahara et al. [3], and Zeng et al. [4]. However,

in nature, many species of plants and animals could have life histories that can simply be

partitioned into two age stages: immature andmature stages. In each stage, individuals of

species have identical biological characteristics, such as the ability to reproduce, motile,

ingest food, and survive [5]. In particular, there are amphibians, insects, birds, and

mammals with life cycles that can last from only several days or weeks to more than a

century. For this reason, some researchers have developed the predator–prey model by

incorporating age structure either in prey or/and predator population with other factors

that also influence the dynamics of the predator–prey model, mainly restricted to the

classical integer-order, stochastic, or delay equations [6–13].
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InWang and Chen [14] considered the predator–preymodel

with age structure for the predator population using time delays.

If we ignore the effect of time delay, the model can be written

as follows:

dx

dt
= rx

(

1−
x

K

)

−mxz,

dy

dt
= nxz − βy− δ1y,

dz

dt
= βy− δ2z.

(1)

Here x(t), y(t), and z(t) represent the population densities

of prey, immature predator, and mature predator, at time t,

respectively. Model (Equation 1) assumes that the prey grows

logistically with r as the intrinsic growth rate, K is the carrying

capacity; m is the linear Holling type I functional response, n

is the conversion rate with which captured prey are converted to

new immature predator, β is the maturity rate of the predator, δ1

and δ2 are the death rate of the immature and mature predators,

respectively. It is also assumed that only the mature predator can

feed the prey through the term mxz. If we do not consider the

age structure of the predator population, then model (Equation

1) is reduced to the classical Lotka–Volterra model for which

the positive equilibrium or the boundary equilibrium of this

model is globally asymptotically stable. This means that the

model has no periodic solution. On the other hand, Wang and

Chen [14] prove that in the model (Equation 1), there exists

an orbitally asymptotically stable periodic solution around the

interior equilibrium point which suggests that the age structure

can cause periodic oscillation of populations.

From the point of view of human needs, harvesting of

populations generally occurs in wildlife, forestry, and fisheries

management. When harvesting is integrated into the predator–

prey model, there are three types of harvesting, namely

constant harvesting [15], linear harvesting [16], and non-linear

harvesting [17]. In this article, we assume that the predator is

not a commercial species and there is intraspecific competition

among immature predators. Therefore, the predator–prey

model with age structure and intraspecific competition in

predator (Equation 1), where the prey population is subject to

Michaelis–Menten type harvesting, is given by

dx

dt
= rx

(

1−
x

K

)

−mxz −
hx

c+ x
,

dy

dt
= nxz − βy− δ1y− ωy2,

dz

dt
= βy− δ2z.

(2)

An example of prey-predator interactions whose biological

phenomena are described in the model (Equation 2) can be

found in the African wild dog with its prey impala. The African

wild dogs are a social structure that lives in packs. For 3–4

weeks, young African wild dogs were in the den with their

mother. All adult members of African wild dogs are care for their

young ones and provide food for them. The hunting members

of the pack will return to the den where they regurgitate meat

for the nursing female and young. In some cases, young ones

fail to survive because the hunting member does not bring

back sufficient food for the young, which leads to intraspecific

competition in immature predator [18]. On the other hand, the

prey, impala, even though there are no major threats to their

survival, poaching has become significantly contributed to the

decline in its number [19].

Note that the growth rates of the prey, immature, andmature

predator populations in the model (Equation 2) depend only on

the local state as the left-hand side is the integer-order derivative.

On the other hand, most biological systems have properties

where the current state is affected by all of the past states or it

is called the memory effect. Therefore, modeling with memory

effects can be done by analyzing the system using fractional-

order calculus [20, 21]. The operators of the fractional-order

derivative have non-local properties to make themmore suitable

for dynamical systems that have memory influences on their

state variables.

After Riemann and Liouville generalized the concept of

integer-order calculus to the fractional-order calculus over

two decades ago, the studies about the predator–prey models

with fractional-order differential equation have gained much

attention, for example, Rahmi et al. [22], Owolabi [23], Barman

et al. [24], Ghanbari and Djilali [25], Yousef et al. [26], Ghosh

et al. [27], and Panigoro et al. [28]. The fractional-order

derivatives are defined as an integration that provides the ability

to store the whole memory over time, and hence, it could give

an exact description of different ecological phenomena. For this

reason, the new structure for the model (Equation 2) is given in

the following form:

CDα
t x(t) = rx

(

1−
x

K

)

−mxz −
hx

c+ x
= F1(x, y, z),

CDα
t y(t) = nxz − βy− δ1y− ωy2 = F2(x, y, z),

CDα
t z(t) = βy− δ2z = F3(x, y, z).

(3)

The existence and local stability of all equilibrium points of

the model (Equation 3) are discussed in Panigoro et al. [29].

However, to the best of our knowledge, the global dynamics and

bifurcation analysis of the model (Equation 3), to this day, have

not been investigated. Here, CDα
t f (t) is the standard Caputo

derivative for a continuous function f (x) ∈ C([0,+∞),R),

which is defined as follows:

CDα
t f (t) =

1

Ŵ(1− α)

∫ t

0

f ′(τ )

(t − τ )α
dτ , (4)

where Ŵ(∗) is the gamma function, t ≥ 0, and 0 < α ≤ 1 is

known as the order of the fractional derivative.

Based on the above discussion, we have organized our work

in several sections: In Section 3, we develop the existence and
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uniqueness solution of the model (Equation 3). To check the

biologically well-posedness of the model, we establish the non-

negativity and boundedness of solutions of the model in Section

3. In Section 4, we derive some sufficient conditions to ensure the

global asymptotic stability of each locally asymptotically stable

equilibrium point by applying the Lyapunov functions. We then

analyze the existing conditions of transcritical, saddle-node,

backward, and Hopf bifurcations in Section 5. Some numerical

simulations of our obtained results are carried out in Section 6.

Finally, the conclusions are given in Section 7.

2. Existence and uniqueness

In this section, we will show that the model (Equation

3) has a unique solution. A similar manner given by Mahata

et al. [30] is adopted. We first take the Riemann–Liouville

integral (Definition 1 in Yavuz and Sene [31]) on both

sides of Equation (3) to achieve the following Volterra-type

integral equations.

x(t)− x(0) =
1

Ŵ(α)

∫ t

0
F1(x(τ ), y(τ ), z(τ ))(t−)α−1 dτ ,

y(t)− y(0) =
1

Ŵ(α)

∫ t

0
F2(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ , (5)

z(t)− z(0) =
1

Ŵ(α)

∫ t

0
F3(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

Now, we will show that the kernels Fi(x, y, z), i =

1, 2, 3, satisfy the Lipschitz condition. For ‖.‖ is the Euclidean

norm, we suppose that
∥

∥x(t)
∥

∥ ≤ a1,
∥

∥x̄(t)
∥

∥ ≤ a2,
∥

∥y(t)
∥

∥ ≤ a3,
∥

∥ȳ(t)
∥

∥ ≤ a4,
∥

∥z(t)
∥

∥ ≤ a5, and
∥

∥z̄(t)
∥

∥ ≤ a6 are bounded functions. For x, x̄, y, ȳ, z, and z̄,

we have

∥

∥F1
(

x, y, z
)

− F1
(

x̄, y, z
)
∥

∥

= ||

[

rx
(

1−
x

K

)

−mxz −
hx

c+ x

]

−

[

rx̄

(

1−
x̄

K

)

−mx̄z −
hx̄

c+ x̄

]

||

= ||r(x− x̄)−
r

K
(x+ x̄) (x− x̄) −mz (x− x̄)

− ch

(

x− x̄

(c+ x)(c+ x̄)

)

||

≤ r ‖x− x̄‖ +
(a1 + a2)r

K
‖x− x̄‖ + a5m ‖x− x̄‖ +

h

c
‖x− x̄‖

= g1 ‖x− x̄‖ ,
∥

∥F2
(

x, y, z
)

− F2
(

x, ȳ, z
)
∥

∥

=

∥

∥

∥

[

nxz − βy− δ1y− ωy2
]

−
[

nxz − β ȳ− δ1ȳ− ωȳ2
]
∥

∥

∥

=
∥

∥−β(y− ȳ)− δ1(y− ȳ)− ω(y+ ȳ)(y− ȳ)
∥

∥

≤ β
∥

∥y− ȳ
∥

∥+ δ1
∥

∥y− ȳ
∥

∥+ ω(a3 + a4)
∥

∥y− ȳ
∥

∥

= g2
∥

∥y− ȳ
∥

∥ ,

∥

∥F3
(

x, y, z
)

− F3
(

x, y, z̄
)
∥

∥

=
∥

∥

[

βy− δ2z
]

−
[

βy− δ2z̄
]
∥

∥

≤ g3 ‖z − z̄‖ ,

where g1 = r+
(a1 + a2)r

K
+a5m+

h

c
, g2 = β+δ1+ω(a3+a4),

and g3 = δ2. Therefore, we conclude that Fi(x, y, z), i = 1, 2, 3,

satisfy the Lipschitz condition. Furthermore, it is clear that if

0 ≤ gi < 1, then Fi(x, y, z) are contractions for i = 1, 2, 3.

Therefore, the following theorem is obtained.

Theorem 1. The kernel Fi(x, y, z), i = 1, 2, 3 satisfy the

Lipschitz condition and contractions if 0 < gi < 1, i = 1, 2, 3.

Next, Equation (5) can be written as follows:

x(t) = x(0)+
1

Ŵ(α)

∫ t

0
F1(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

y(t) = y(0)+
1

Ŵ(α)

∫ t

0
F2(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

z(t) = z(0)+
1

Ŵ(α)

∫ t

0
F3(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

Which can be written by the following recursive formula

xn(t) = x(0)+
1

Ŵ(α)

∫ t

0
F1(xn−1, y, z)(t − τ )α−1 dτ ,

yn(t) = y(0)+
1

Ŵ(α)

∫ t

0
F2(x, yn−1, z)(t − τ )α−1 dτ ,

zn(t) = z(0)+
1

Ŵ(α)

∫ t

0
F3(x, y, zn−1)(t − τ )α−1 dτ ,

with initial conditions x0(t) = x(0), y0(t) = y(0), and z0(t) =

z(0). Therefore, we have

ϕ1n (t) = xn(t)− xn−1(t)

=
1

Ŵ(α)

∫ t

0

(

F1(xn−1, y, z)− F1(xn−2, y, z)
)

(t − τ )α−1 dτ ,

ϕ2n (t) = yn(t)− yn−1(t)

=
1

Ŵ(α)

∫ t

0

(

F2(x, yn−1, z)− F2(x, yn−2, z)
)

(t − τ )α−1 dτ ,

(6)

ϕ3n (t) = zn(t)− zn−1(t)

=
1

Ŵ(α)

∫ t

0

(

F3(x, y, zn−1)− F3(x, y, zn−2)
)

(t − τ )α−1 dτ ,

where xn(t) =
∑n

j=1 ϕ1n (t), yn(t) =
∑n

j=1 ϕ2n (t), and zn(t) =
∑n

j=1 ϕ3n (t). Now, we evaluate the norm of Equation (6). We

achieve

∥

∥ϕ1n (t)
∥

∥ =
∥

∥xn(t)− xn−1(t)
∥

∥

≤
1

Ŵ(α)

∫ t

0
||
(

F1(xn−1, y, z)
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−F1(xn−2, y, z)
)

(t − τ )α−1 dτ ,
∥

∥ϕ2n (t)
∥

∥ =
∥

∥yn(t)− yn−1(t)
∥

∥

≤
1

Ŵ(α)

∫ t

0
||
(

F2(x, yn−1, z)

−F2(x, yn−2, z)
)

(t − τ )α−1 dτ ||, (7)
∥

∥ϕ3n (t)
∥

∥ =
∥

∥zn(t)− zn−1(t)
∥

∥

≤
1

Ŵ(α)

∫ t

0
||
(

F3(x, y, zn−1)

−F3(x, y, zn−2)
)

(t − τ )α−1 dτ ||.

From Theorem 1, we have that the kernel satisfy the

Lipschitz condition and hence Equation (7) becomes

∥

∥xn(t)− xn−1(t)
∥

∥ ≤
g1

Ŵ(α)

∫ t

0

∥

∥xn−1 − xn−2
∥

∥ (t − τ )α−1 dτ ,

∥

∥yn(t)− yn−1(t)
∥

∥ ≤
g2

Ŵ(α)

∫ t

0

∥

∥yn−1 − yn−2
∥

∥ (t − τ )α−1 dτ ,

∥

∥zn(t)− zn−1(t)
∥

∥ ≤
g3

Ŵ(α)

∫ t

0

∥

∥zn−1 − zn−2
∥

∥ (t − τ )α−1 dτ .

The last inequality gives

∥

∥ϕ1n (t)
∥

∥ ≤
g1

Ŵ(α)

∫ t

0

∥

∥ϕ1n−1 (τ )
∥

∥ dτ ,

∥

∥ϕ2n (t)
∥

∥ ≤
g2

Ŵ(α)

∫ t

0

∥

∥ϕ2n−1 (τ )
∥

∥ dτ , (8)

∥

∥ϕ3n (t)
∥

∥ ≤
g3

Ŵ(α)

∫ t

0

∥

∥ϕ3n−1 (τ )
∥

∥ dτ .

Finally, the existence of a solution is given by the following

theorem.

Theorem 2. The solution of model (Equation 3) has a solution

under the condition if we have t1 such that

(

t1gi

Ŵ(α + 1)

)

<

1, i = 1, 2, 3.

Proof. We assume that x(t), y(t), and z(t) are bounded and their

kernel Fi, i = 1, 2, 3 satisfy the Lipschitz condition. According

to Equation (8), we obtain

∥

∥ϕ1n (t)
∥

∥ ≤
∥

∥x0(t)
∥

∥

[

t1g1

Ŵ(α + 1)

]n

,

∥

∥ϕ2n (t)
∥

∥ ≤
∥

∥y0(t)
∥

∥

[

t1g2

Ŵ(α + 1)

]n

, (9)

∥

∥ϕ3n (t)
∥

∥ ≤
∥

∥z0(t)
∥

∥

[

t1g3

Ŵ(α + 1)

]n

,

which represent the existence and continuity of the system. To

show that the solution of the model (Equation 3) can be set up

from the functions in Equation (9), we assume

x(t)− x(0) = xn(t)− Q1n (t),

y(t)− y(0) = yn(t)− Q2n (t), (10)

z(t)− z(0) = zn(t)− Q3n (t).

whereQin , i = 1, 2, 3 are the remaining terms. Furthermore, the

given terms would be demonstrated to hold
∥

∥Qi∞

∥

∥ → 0 ∀i =

1, 2, 3. Denoting that

‖Q1n‖ (t) ≤

∥

∥

∥

∥

1

Ŵ(α)

∫ t

0

(

F1(x, y, z)− F1(xn−1, y, z)
)

dτ

∥

∥

∥

∥

≤
1

Ŵ(α)

∫ t

0

∥

∥F1(x, y, z)− F1(xn−1, y, z)
∥

∥ dτ

≤
tg1

Ŵ(α + 1)

∥

∥x− xn−1
∥

∥ ,

‖Q2n‖ (t) ≤

∥

∥

∥

∥

1

Ŵ(α)

∫ t

0

(

F2(x, y, z)− F2(x, yn−1, z)
)

dτ

∥

∥

∥

∥

≤
1

Ŵ(α)

∫ t

0

∥

∥F2(x, y, z)− F2(x, yn−1, z)
∥

∥ dτ (11)

≤
tg2

Ŵ(α + 1)

∥

∥y− yn−1
∥

∥ .

‖Q3n‖ (t) ≤

∥

∥

∥

∥

1

Ŵ(α)

∫ t

0

(

F3(x, y, z)− F3(x, y, zn−1)
)

dτ

∥

∥

∥

∥

≤
1

Ŵ(α)

∫ t

0

∥

∥F3(x, y, z)− F3(x, y, zn−1)
∥

∥ dτ

≤
tg3

Ŵ(α + 1)

∥

∥z − zn−1
∥

∥ .

By applying a recursive pattern, we acquire

∥

∥Q1n (t)
∥

∥ ≤

[

t

Ŵ(α + 1)

]n+1

gn1 k,

∥

∥Q2n (t)
∥

∥ ≤

[

t

Ŵ(α + 1)

]n+1

gn2 k, (12)

∥

∥Q3n (t)
∥

∥ ≤

[

t

Ŵ(α + 1)

]n+1

gn3 k.

At the point t1, we have

∥

∥Q1n (t)
∥

∥ ≤

[

t1

Ŵ(α + 1)

]n+1

gn1 k,

∥

∥Q2n (t)
∥

∥ ≤

[

t1

Ŵ(α + 1)

]n+1

gn2 k, (13)

∥

∥Q3n (t)
∥

∥ ≤

[

t1

Ŵ(α + 1)

]n+1

gn3 k.

By considering the results of Theorem 1 and applying n →

∞ to both sides, we have
∥

∥Qi∞

∥

∥→ 0 ∀i = 1, 2, 3.

In the end, we will show that the solution is unique for each

initial value by utilizing the contradiction approach. Suppose

that there exists another solution of the model (Equation 3),

namely x1(t), y1(t), and z1(t). Then, we have

x(t)− x1(t) =
1

Ŵ(α)

∫ t

0

(

F1(x, y, z)− F1(xn−1, y, z)
)

dτ ,

y(t)− y1(t) =
1

Ŵ(α)

∫ t

0

(

F2(x, y, z)− F2(x, yn−1, z)
)

dτ , (14)

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2022.1077831
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Panigoro et al. 10.3389/fams.2022.1077831

z(t)− z1(t) =
1

Ŵ(α)

∫ t

0

(

F3(x, y, z)− F3(x, y, zn−1)
)

dτ .

Applying the norm on both sides, we achieve

∥

∥x(t)− x1(t)
∥

∥ ≤
1

Ŵ(α)

∫ t

0

∥

∥F1(x, y, z)− F1(xn−1, y, z)
∥

∥ dτ ,

∥

∥y(t)− y1(t)
∥

∥ ≤
1

Ŵ(α)

∫ t

0

∥

∥F2(x, y, z)− F2(x, yn−1, z)
∥

∥ dτ ,

(15)

∥

∥z(t)− z1(t)
∥

∥ ≤
1

Ŵ(α)

∫ t

0

∥

∥F3(x, y, z)− F3(x, y, zn−1)
∥

∥ dτ .

By considering Theorem 1, we obtain

∥

∥x(t)− x1(t)
∥

∥ ≤
tg1

Ŵ(α + 1)

∥

∥x(t)− x1(t)
∥

∥ ,

∥

∥y(t)− y1(t)
∥

∥ ≤
tg2

Ŵ(α + 1)

∥

∥y(t)− y1(t)
∥

∥ ,

∥

∥z(t)− z1(t)
∥

∥ ≤
tg3

Ŵ(α + 1)

∥

∥z(t)− z1(t)
∥

∥ .

Therefore, the following equations are obtained.

∥

∥x(t)− x1(t)
∥

∥

(

1−
tg1

Ŵ(α + 1)

)

≤ 0,

∥

∥y(t)− y1(t)
∥

∥

(

1−
tg2

Ŵ(α + 1)

)

≤ 0, (16)

∥

∥z(t)− z1(t)
∥

∥

(

1−
tg3

Ŵ(α + 1)

)

≤ 0.

As a result, we achieve
∥

∥x(t)− x1(t)
∥

∥ = 0,
∥

∥y(t)− y1(t)
∥

∥ =

0, and
∥

∥z(t)− z1(t)
∥

∥ = 0, which impact x(t) = x1(t), y(t) =

y1(t), and z(t) = z1(t). Then, we finally give the following

theorem.

Theorem 3. The Caputo fractional-order predator–prey model

(Equation 3) has a unique solution.

3. Non-negativity and boundedness

In this section, we will show that for any initial condition is

in R
3
+ where

R
3
+ : =

{

(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x ∈ R, y ∈ R
}

.

The solution not only exists and is unique but also bounded

and always in R
3
+ as t → ∞. Therefore, we have the following

two theorems.

Theorem 4. If the initial condition in R
3
+ then both population

densities of prey and predator given by model (Equation 3)

remain in R
3
+.

Proof. To prove this non-negativity condition, we apply

reductio ad absurdum (contradiction method), which is also

used in Barman et al. [24] and Maji [32]. We assume that there

exists t̂ > 0 such that










x(t) > 0, when 0 ≤ t < t̂,

x(t̂) = 0, when t = t̂

x(t̂+) < 0, when t = t̂+.

(17)

From the first equation in Equation (3) along with

Equation (17), we have

CDα
t x (t)|x(t̂) = 0. (18)

According to Lemma 3.1 in Barman et al. [33], we get

x(t̂+) = 0 which contradicts with Equation (17) where x(t̂+) <

0. This means that x(t) ≥ 0 for all t ∈ [0,∞]. Similarly, we can

show that y(t) ≥ 0 and z(t) ≥ 0 for all t ∈ [0,∞]. In conclusion,

we have the non-negative solution for model (Equation 3) when

the initial values are in R
3
+.

Theorem 5. The solution of model (Equation 3) is always

bounded in R
3
+ for the initial condition in R

3
+.

Proof. Since we work the population model, it is natural that

the population must be bounded due to the limitation of their

biological resources, which is also known as environmental

carrying capacity. Thus, the boundedness of the solution of the

model (Equation 3) is also important to learn and prove. From

Theorem 4, we can define a positive function as follows:

N (t) = x+
my

n
+

mz

n
. (19)

For any γ > 0, the following fractional-order differential

equation holds.

CDα
t N (t)+ γN (t)

= CDα
t x(t)+

m

n
CDα

t y(t)+
m

n
CDα

t y(t)+ γN (t)

=

(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

+
m

n
(nxz − βy− δ1y− ωy2)

+
m

n
(βy− δ2z)+ γ x+

γmy

n
+

γmz

n

= rx−
rx2

K
−

hx

c+ x
−

δ1my

n
−

ωmy2

n

−
δ2mz

n
+ γ x+

γmy

n
+

γmz

n

≤ rx−
rx2

K
−

δ1my

n
−

δ2mz

n
+ γ x+

γmy

n
+

γmz

n

= (r + γ )x−
rx2

K
+ (γ − δ1)

my

n
+ (γ − δ2)

mz

n

By choosing γ < min{δ1, δ2}, we obtain

CDα
t N (t)+ γN (t) ≤ (r + γ )x−

rx2

K
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= −
r

K

(

x2 −
(r + γ )Kx

r

)

= −
r

K

(

x2 −
(r + γ )Kx

r
+

(r + γ )2K2

4r2
−

(r + γ )2K2

4r2

)

= −
r

K

[

(

x−
(r + γ )K

2r

)2

−
(r + γ )2K2

4r2

]

= −
r

K

(

x−
(r + γ )K

2r

)2

+
(r + γ )2K

4r

≤
(r + γ )2K

4r

According to Lemma 3 in Panigoro et al. [34], we apply the

comparison principle and obtain

N (t) ≤

(

N (0)−
(r + γ )2K

4γ r

)

Eα[−γ tα]+
(r + γ )2K

4γ r
. (20)

For t → ∞, we achieve N (t) →
(r + γ )2K

4γ r
, which means

all solutions of model (Equation 3) with non-negative initial

conditions are confined to �̂ where

�̂ : =

{

(x, y, z) ∈ R
3
+ : N (t) = x(t)+

my(t)

n
+

mz(t)

n

≤ σ , σ =
(r + γ )2K

4γ r
+ ε, ε > 0

}

. (21)

4. Global dynamics

In this section, the global dynamics of model

(Equation 3) are investigated. Note that all biological

equilibrium points, their existence conditions, and their

local stability are successfully described in Panigoro

et al. [29], which can be rewritten by the following theorem.

Theorem 6. (i) The origin point Eo = (0, 0, 0) always exists.

It is locally asymptotically stable (LAS) if r <
h

c
.

(ii) The axial point EA =
(

x̂, 0, 0
)

where x̂ is the positive root

of x2 + (c− K)x+

(

h

r
− c

)

K = 0, which has

(a) an equilibrium point if c >
h

r
.

(b) a pair of equilibrium points if c < min

{

K,
h

r

}

.

Moreover, it is LAS if h <
(c+ x̂)2r

K
and x̂ <

(β + δ1)δ2

βn
.

(iii) The interior point EI =
(

x∗, y∗, z∗
)

exists, if ai, i = 2, 3 in

Panigoro et al. [29] satisfies the following statements.

(a) An equilibrium point in R
3
+ if a3 < 0.

(b) Two equilibrium points in R
3
+ if a2 < 0 and a3 > 0.

The LAS condition of EI can be seen in Theorem 4 in

Panigoro et al. [29].

Note that all equilibrium points may attain local asymptotic

stability with several biological conditions. Now, we will identify

the biological properties to obtain globally asymptotically stable

(GAS) for each equilibrium point. The analytical results are

given by the following three theorems.

Theorem 7. The origin point Eo = (0, 0, 0) is GAS if r ≤
h

c+ σ
.

Proof. We define the positive definite Lyapunov function as

follows:

V1(x, y, z) = x+
my

n
+

mz

n
(22)

By applying Lemma 3.1 in Vargas-De-León [35], we compute

the α−order derivative of V1(x, y, z) along the solution of the

model (Equation 3) as follows:

CDα
t V1(x, y, z) ≤

CDα
t x+

m

n
CDα

t y+
m

n
CDα

t z

=

(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

+
m

n
(nxz − βy− δ1y− ωy2)

+
m

n
(βy− δ2z)

= rx−
rx2

K
−mxz −

hx

c+ x
+mxz

−
βmy

n
−

δ1my

n
−

ωmy2

n
+

βmy

n
−

δ2mz

n

= rx−
rx2

K
−

hx

c+ x
−

δ1my

n
−

ωmy2

n
−

δ2mz

n

≤ rx−
hx

c+ x
−

δ1my

n
−

δ2mz

n
.

From Equation (21), we have x ≤ σ and hence

CDα
t V1(x, y, z) ≤ rx−

hx

c+ σ
−

δ1my

n
−

δ2mz

n

= −

(

h

c+ σ
− r

)

x−
δ1my

n
−

δ2mz

n

Therefore, CDα
t V1(x, y, z) ≤ 0 for all (x, y, z) ∈ R

3
+, if

r ≤
h

c+ σ
. We also find that CDα

t V1(x, y, z) = 0, if (x, y, z) =

(0, 0, 0). This conveys that {Eo} is the only invariant set on which
CDα

t V1(x, y, z) = 0. Obeying Lemma 4.6 in Huo et al. [20],

r ≤
h

c+ σ
obviously becomes the biological condition of Eo to

reach GAS.

Theorem 8. The axial point EA = (x̂, 0, 0) is GAS if
hK

cr
< x̂ <

δ2

n
.
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Proof. We construct a positive definite Lyapunov function

based on the Volterra equation as follows:

V2(x, y, z) =
(

x− x̂− x̂ ln
x

x̂

)

+
my

n
+

mz

n
. (23)

The α-order derivative of V2(x, y, z) along the solution of the

model (Equation 3) given by Lemma 3.1 in Vargas-De-León [35]

is given by

CDα
t V2(x, y, z) ≤

(

x− x̂

x

)

CDα
t x+

mCDα
t y

n
+

mCDα
t z

n

=

(

x− x̂

x

)(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

Z +
m

n

(

nxz − βy− δ1y− ωy2
)

+

m

n

(

βy− δ2z
)

=
(

x− x̂
)

(

r −
rx

K
−mz −

h

c+ x

)

+mxz

−
mδ1y

n
−

mωy2

n
−

mδ2z

n

=
(

x− x̂
)

(

−
r

K
(x− x̂)+

h(x− x̂)

(c+ x)(c+ x̂)
−mz

)

+mxz −
mδ1y

n
−

mωy2

n
−

mδ2z

n

= −
r

K

(

x− x̂
)2

+
h
(

x− x̂
)2

(c+ x)(c+ x̂)
+mx̂z

−
mδ1y

n
−

mωy2

n
−

mδ2z

n

≤ −
r

K

(

x− x̂
)2

+
h
(

x− x̂
)2

cx̂

+mx̂z −
mδ1y

n
−

mδ2z

n

= −

(

r

K
−

h

cx̂

)

(

x− x̂
)2

−
mδ1y

n

−

(

δ2

n
− x̂

)

mz

Since
hK

cr
< x̂ <

δ2

n
, we have CDα

t V2(x, y, z) ≤ 0 for

all (x, y, z) ∈ R
3
+. It is also clear that CDα

t V2(x, y, z) = 0 if

(x, y, z) = (x̂, 0, 0). This confirms that {EA} is the only invariant

set on which CDα
t V2(x, y, z) = 0. Therefore, EA is GAS due to

Lemma 4.6 in Huo et al. [20]. This confirms the justifiability of

Theorem 8.

Theorem 9. Let �X : =
{

(x, y, z) :
z∗

z
<

(1−mx∗)my∗ − nσ

(1+ σm)my∗

}

and h <
c2r

K
.

The interior point EI = (x∗, y∗, z∗) is GAS in �X .

Proof. Consider a positive definite Lyapunov function as

follows:

V3(x, y, z) =
(

x− x∗ − x∗ ln
x

x∗

)

+
m

n

(

y− y∗ − y∗ ln
x

y∗

)

+
1

δ2

(z − z∗)2

2z∗
. (24)

By applying Lemma 3.1 in Vargas-De-León [35] and Lemma

1 in Aguila-Camacho et al. [36], we obtain the α-order derivative

of V3(x, y, z) as follows:

CDα
t V3(x, y, z) ≤

(

x− x∗

x

)

CDα
t x+

m

n

(

y− y∗

y

)

CDα
t y+

1

δ2

(

z − z∗

z∗

)

CDα
t z

=

(

x− x∗

x

)(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

+
m

n

(

y− y∗

y

)

(

nxz − βy− δ1y− ωy2
)

+
1

δ2

(

z − z∗

z∗

)

(

βy− δ2z
)

=
(

x− x∗
)

(

−
r

K

(

x− x∗
)

−m(z − z∗)

+
h(x− x∗)

(c+ x)(c+ x∗)

)

+
(

y− y∗
)

(

mxz

y
−

mx∗z∗

y∗
−

mω(y− y∗)

n

)

+
(

z − z∗
)

(

y

y∗
− 1−

z − z∗

z∗

)

= −
r

K

(

x− x∗
)2

+mz∗x+mx∗z

+
h
(

x− x∗
)2

(c+ x)(c+ x∗)

∗ −
my∗xz

y
−

mx∗z∗y

y∗

−
mω

(

y− y∗
)2

n
+

yz

y∗
−

z∗y

y∗

− z + z∗ −

(

z − z∗
)2

z∗
.

Applying Equation (21), we have

CDα
t V3(x, y, z) ≤ −

(

r

K
−

h

c2

)

(

x− x∗
)2

−
mω

(

y− y∗
)2

n
−

(

z − z∗
)2

z∗

−

(

1−mx∗ −
σn

my∗

)

z + (1+ σm)z∗.

Since
z∗

z
<

(1−mx∗)my∗ − nσ

(1+ σm)my∗
, we achieve

CDα
t V2(x, y, z) ≤ −

(

r

K
−

h

c2

)

(

x− x∗
)2

−
mω

(

y− y∗
)2

n
−

(

z − z∗
)2

z∗
.

Thus, CDα
t V3(x, y, z) ≤ 0 for all (x, y, z) ∈ R

3
+, when

h <
c2r

K
. We also confirm that CDα

t V3(x, y, z) = 0 if (x, y, z) =
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(x∗, y∗, z∗) and hence {EI} is the only invariant set on which
CDα

t V3(x, y, z) = 0. Based on Lemma 4.6 in Huo et al. [20], the

interior point EI is GAS in �X . This ends the proof.

5. Bifurcation analysis

In this section, we will study the occurrence of several

phenomena namely transcritical, saddle-node, backward, and

Hopf bifurcations. Two parameters are chosen, namely the

harvesting rate (h) and the order of the derivative (α), as

the memory index. For the analytical purpose, we define the

following parameter.

h∗1 = cr,

h∗2 =
(c+ K)2r

4K
,

α∗ =
2

π
arctan

∣

∣

∣

∣

ζ2

ζ1

∣

∣

∣

∣

.

Next, the following theorem is given for describing the

occurrence of transcritical bifurcation driven by the harvesting

rate (h) as the bifurcation parameter.

Theorem 10. The origin point Eo and the axial point EA

exchange their stability via transcritical bifurcation when h

passes through h∗1 .

Proof. Since the axial consists of two equilibrium points, we

focus on the axial point nearest to the origin point. When h =

h∗1 , the axial point merge with the origin point E0 = EA =

(0, 0, 0) where the eigenvalues of the Jacobianmatrix are: λ1 = 0,

λ2 = (β + δ1), and λ3 = −δ2. We obtain
∣

∣arg (λ2,3)
∣

∣ = π >

απ/2 while
∣

∣arg (λ1)
∣

∣ = απ/2. This means E0 = EA = (0, 0, 0)

is non-hyperbolic. When h∗1 < h <
(c+ K)2r

4K
, by applying

Theorems 2 and 3 in Panigoro et al. [29], E0 becomes LAS while

the nearest EA becomes a saddle point. For 0 < h < h∗1 , The

origin E0 becomes unstable and the nearest EA /∈ R
3
+ becomes

unstable. This condition shows the existence of transcritical

bifurcation, where h becomes the bifurcation parameter while

h = h∗1 is the bifurcation point.

Now, the existence of saddle-node bifurcation on axial

will be proven by still regarding the harvesting rate (h) as

the bifurcation parameter. As a result, the following theorem

is proposed.

Theorem 11. Suppose that c < min

{

h

r
,K

}

. The axial point EA

undergoes saddle-node bifurcation when h passes through the

bifurcation point h∗2 .

Proof. According to Theorem 1 in Panigoro et al. [29], the

axial point does not exist when h > h∗2 . When h = h∗2 , a

unique equilibrium point EA =

(

K − c

2
, 0, 0

)

occurs in axial

where its Jacobian matrix has three eigenvalues: λ1 = 0 and

λ2,3 = −
1

2

[

β + δ1 + δ2 +
√

(β + δ1 − δ2)2 + 2βn(K − c)
]

.

Since
∣

∣arg (λ1)
∣

∣ = απ/2, this axial point is non-hyperbolic.

When h < h∗, two axial points occurs given by EaA =
(

x̂a, 0, 0
)

and EbA =
(

x̂b, 0, 0
)

, where x̂a =
K − c

2
+

√

(h∗ − h)K

r
and x̂b =

K − c

2
−

√

(h∗ − h)K

r
. It is easy to validate that both EaA and

EbA are in R
3
+ and have different stability. As a consequence, all

the given circumstances express the occurrence of saddle-node

bifurcation.

Based on Theorems 10 and 11, we obtain more global

bifurcation namely backward bifurcation given by the following

lemma.

Lemma 1. The model (Equation 3) undergoes backward

bifurcation driven by the harvesting rate (h).

Proof. From previous theorems, the axial point EaA exists and is

LAS, while Eo is unstable when h < h∗1 . When h∗1 < h < h∗2 , Eo

becomes LAS, EaA still exists and is LAS, and unstable EbA occurs.

The bistability condition is held for this interval of h which

means that the convergence of the solution is very sensitive to

the initial condition. Finally, those two axial points merge when

h = h∗2 and disappear when h > h∗2 . This completes the proof.

Finally, we will show that the memory index in this case, that

is, the order of the derivative (α), affects the dynamical behaviors

of the model (Equation 3) indicated by the appearance of Hopf

bifurcation around the interior point EI .

Theorem 12. Suppose the characteristic equation of

the Jacobian matrix evaluated at EI can be written as

λ3 + ξ1λ
2 + ξ2λ + ξ3 = 0, which has a pair of complex

conjugate eigenvalues λ1,2 = ζ1 ± iζ2, where ζ1 > 0 and one

real negative eigenvalue (λ3 < 0). The model (Equation 3)

undergoes a Hopf bifurcation when the order of the fractional

derivative α crosses out the critical value α∗ = 2
π arctan

∣

∣

∣

ζ2
ζ1

∣

∣

∣
.

Proof. From the earlier assumptions, we have

min1≤i≤3

∣

∣arg(λi)
∣

∣ = arctan
∣

∣

∣

ζ2
ζ1

∣

∣

∣
. Therefore, the solution

of m(α∗) = α∗ π
2 − min | arg(λi)| = 0 is only when

α∗ = 2
π arctan

∣

∣

∣

ζ2
ζ1

∣

∣

∣
. If we check the transversal condition:

dm(α)
dα

|α=α∗ = π
2 which is not equal to 0, we can assure that

the sign of m(α) changes when the bifurcation parameter α

passing by α∗. It means that the equilibrium point EI is stable

when α ∈ (0,α∗) and is unstable for α∗ < α < 1.

6. Numerical simulations

In this section, we explore the dynamical behaviors of the

model (Equation 3) numerically to support analytical findings,
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FIGURE 1

Bifurcation diagram driven by the harvesting rate (h) of the model (Equation 3) around the axial point using the parameter values: r = 0.1, K = 5,

m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05, δ2 = 0.05, ω = 0.1, and α = 0.9.
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FIGURE 2

Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05,

δ2 = 0.05, ω = 0.1, α = 0.9, and h = 0.02.
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FIGURE 3

Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05,

δ2 = 0.05, ω = 0.1, α = 0.9, and h = 0.12.
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Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05,

δ2 = 0.05, ω = 0.1, α = 0.9, and h = 0.18.

FIGURE 5

Bifurcation diagram driven by the order of the derivative (α) of model (Equation 3) around the axial point EI using parameter values: r = 0.8,

K = 5, m = 0.25, h = 0.01, c = 0.08, n = 0.2, β = 0.4, δ1 = 0.01, δ2 = 0.01, δ2 = 0.01, and ω = 0.1.

especially the occurrence of bifurcation. The predictor–corrector

scheme given by Diethelm et al. [37] is employed. All of

the parameters used in these simulations are assumptions

matched with the biological conditions given by the previous

analysis results. This decision was taken because this work

does not specifically address an ecological case involving a

particular organism.

To show the occurrence of several bifurcations driven by the

harvesting rate (h), we first set the parameter as follows:

r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01,

β = 0.06, δ1 = 0.05, δ2 = 0.05, ω = 0.1, α = 0.9. (25)

By varying the harvesting rate in the interval 0 ≤ h ≤ 0.24,

the bifurcation diagram is portrayed as in Figure 1. We have

three types of dynamic behaviors around the axial point. When

0 ≤ h < h∗1 = 0.05, we have unstable origin point Eo and

LAS EA. The origin point losses its stability via transcritical

bifurcation when h crosses h∗1 and the unstable axial point

EA occurs simultaneously. These dynamics are maintained for

interval h∗1 < h < h∗2 = 0.15125. On the other hand, the

stable branch of axial point EA is preserved for 0 ≤ h <

h∗2 . The LAS point and unstable point of EA merge into the

non-hyperbolic point when h = h∗2 . The axial point finally

disappeared when h passes through h∗2 while the sign of Eo

does not change. Thus, we have saddle-node bifurcation on axial

with h∗2 as the bifurcation point. If we observe from a more

global point of view, these interesting phenomena represent the

existence of backward bifurcation marked by the occurrence of

bistability condition. To show these dynamical behaviors, we

choose three values of harvesting rate in each interval: h =

0.02, 0.12, and 0.18 and portray them as phase portraits and time

series (see Figures 2–4). The interesting phenomenon called

bistability is portrayed in Figure 3. Two equilibrium points LAS
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FIGURE 6

Phase portrait of the model (Equation 3) around interior point EI using parameter values from Equation (26). (A) α = 0.81, (B) α = 0.84, (C)

α = 0.87, and (D) α = 0.9.

simultaneously impact the sensitivity of the convergence of the

solution to the selection of the initial value. The two closest

initial values are set which converge to the different equilibrium

points. One of them convergent to the origin point and the

other solution convergent to the axial point. This means, two

conditions may arrive, namely the extinction of all populations

and the only prey existence point. Several references show

that the bistability condition occurs as the consequence of

saddle-node bifurcation, see Adhikary et al. [38] and several

references therein.

From the biological point of view, these numerical

bifurcations describe the possibility for the prey to extinct or

survive due to the change in the harvesting rate while the

predator both mature and immature is always extinct (Figure 1).

Three feasible conditions may happen. First, for any sufficiently

small harvesting rate (0 ≤ h < h∗1 = 0.05), the prey population

may maintain its existence in this ecosystem (Figure 2). Second,

if the harvesting rate increases (h∗1 < h < h∗2), two possible

conditions may occur namely the extinction of prey or the

viability of prey. These circumstances depend on the initial

condition, where if the initial condition is quite close to the

origin point, the prey will be extinct, and for the initial condition

is far enough from the origin point, the prey can survive

extinction (Figure 3). Third, if the harvesting rate is again

increased (h > h∗2), the population of prey will finally extinct

and there are no population again in this ecosystem (Figure 4).

The next circumstance occurs in the interior point of the

model (Equation 3), which demonstrates the influence of the

order of the derivative as the memory index on the dynamical

behaviors around the interior point. We set the parameter as

follows:

r = 0.8, K = 5, m = 0.25, h = 0.01, c = 0.08, n = 0.2,

β = 0.4, δ1 = 0.01, δ2 = 0.01, δ2 = 0.01, ω = 0.1. (26)

To identify the dynamical behaviors, we vary the values of

α in the interval 0.76 ≤ α ≤ 1. As a result, we obtain the

bifurcation diagram given in Figure 5. For α < α∗ ≈ 0.86, the

interior point EI is LAS. To show this condition, we give the

phase portraits by selecting α = 0.81 and α = 0.84 as given

in Figures 6A, B. Nearby solution oscillates and convergent

to EI . When α crosses α∗ ≈ 0.86, EI losses its stability

via Hopf bifurcation which is indicated by the occurrence of

periodic signal namely limit-cycle. The nearby solution stays

away from EI and convergent to the limit-cycle. The evolution

of the limit-cycle given in Figure 5 also shows that the diameter

of the limit-cycle increases when alpha increases. We portray

the phase portraits in Figures 6C, D to show the dynamics
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FIGURE 7

Phase portrait of the model (Equation 3) around interior point EI using parameter values from Equation (26).

of solutions around EI for α = 0.87 and α = 0.9. It is

shown that the densities of all populations are oscillated and

finally converge to the limit cycle. The physical interpretations

of Hopf bifurcation driven by α are closely related to the

influence of the memory on the change of behaviors around the

interior point. The stronger the influence of memory, the higher

the ability of prey and predators to maintain their existence

(α < α∗). For less memory effect which is indicated by α >

α∗, all populations lose the ability to stabilize their number

of individuals. The population density fluctuates according to

seasonal patterns which indicates by the appearance of a limit

cycle (Figures 6C, D), and the peak of each population also

increases for less memory effect (Figure 7). Although the density

for each population cannot tend to a constant number, in

this case, the memory effect cannot cause the extinction of

every population.

7. Conclusion

The dynamics of a predator–prey model incorporating

four biological conditions, namely age structure, intraspecific

competition, Michaelis–Menten type harvesting, and memory

effect, have been studied. All biological validities have been

presented such as the existence, uniqueness, non-negativity,

and boundedness of the solution. The dynamics of the model

have been explored by showing the global stability conditions

for three equilibrium points namely the origin, the axial, and

the interior points. We have shown that three bifurcations

phenomena driven by the harvesting rate occur around the

axial point namely transcritical, saddle-node, and backward

bifurcations. The bistability condition exists as the impact of

saddle-node bifurcation which states that the existence of prey

depends on the initial condition. A bifurcation driven by the

memory effect also has been shown around the interior point

which is called Hopf bifurcation. All the bifurcation phenomena

having an impact on the densities of the population not only

may reduce their densities but also threaten the existence of

several populations.
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