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Lattice Boltzmann model in
general curvilinear coordinates
applied to exactly solvable 2D
flow problems

Alexei Chekhlov*, Ilya Staroselsky, Raoyang Zhang and

Hudong Chen

Dassault Systemes, Waltham, MA, United States

Numerical simulation results of basic exactly solvable fluid flows using the

previously proposed by H. Chen Lattice Boltzmann Method (LBM) formulated

on a general curvilinear coordinate system are presented. As was noted in

the theoretical work of H. Chen, such curvilinear Lattice Boltzmann Method

preserves a fundamental one-to-one exact advection feature in producing

minimal numerical di�usion, as the Cartesian lattice Boltzmann model. As

we numerically show, the new model converges to exact solutions of basic

fluid flows with the increase of grid resolution in the presence of both natural

curvilinear geometry and/or grid non-uniform contraction, both for near

equilibrium and non-equilibrium LBM parameter choices.
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1. Introduction

Lattice Boltzmann Method (LBM) is currently one of the most accurate and widely

used methods of simulation and analysis of continuum media. In many physics and

engineering applications, LBM almost completely displaced and/or replaced its direct

finite-difference or finite-volume Navier-Stokes-based competitors. As it is well-known,

currently used versions of variable grid LBM are based on the volumetric formulation

of LBM [1] with the Cartesian formulation of lattice cells and space basis vectors and

linear approximations of curved boundaries within a lattice cell and Variable Resolution

(or VR)-regions [2, 3]. Their accuracy and consistency could be potentially improved if

a true non-Cartesian formulation were available.

As was detailed in Chen [4], some attempts to achieve this goal were made in He

et al. [5] and Barraza and Dieterding [6], albeit with a loss of a very important feature

of the basic LBM—precision of the advection stage, and brought a significant amount

of numerical dissipation. The adequate way to avoid this is to represent the process on

a general coordinate system based on Riemann geometry [7] where particles move on a

curved path in Euclidean space. Such amethod should be producing a curvilinear inertial

body force. Several such attempts were made in a series of papers [8–10].

Recently, a new approach [4] was proposed which for the first time has used a truly

curvilinear tensor formulation of the Lattice Boltzmann Method. As noted in Chen [4],
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the following key differences to works [8–10] were proposed:

the volumetric approach which exactly conserves the

mass and momentum without a mass source, and also

the curvilinear body force which adds momentum in the

curvilinear space leads to the exact momentum conservation

and reproduces the Navier-Stokes hydrodynamics to the

viscous order.

The goal of this paper is to test and numerically

validate this new method on several exactly solvable fluid

flow cases in which non-equilateral lattices can be used

and results can be compared with both analytical solutions

and standard LBM. We have chosen the following four 2-

dimensional test models: planar Couette and Poiseuille flows,

with rectangular, but possibly non-equilateral, lattice cells, and

circular Couette and Poiseuille flows, with strong effects of cells’

natural curvilinearity.

We consider two LBM lattices: D2Q9 and D2Q21 with

different degrees of moment isotropy. The D2Q9 has the

moment isotropy up to the 4th order, whereas the D2Q21

has the moment isotropy up to the 6th order. In the first

two of the considered—rectangular yet non-equilateral—cases,

for both the D2Q9 and D2Q21 lattices we observe a very

good convergence of the new numerical method [4] to the

exact solution with resolution increase. In the second two

cases characterized by the true naturally curvilinear lattice cells,

we find that only the D2Q21 lattice leads to convergence to

the exact solutions. Apparently, the D2Q9 4th-order moment

isotropy is not sufficient for ensuring the accuracy of the new

method, since the numerical method does converge to a solution

that is however different from the exact one. Therefore, we

conclude that the higher-order (6th or higher) moment isotropy

of the lattice is required for the volumetric curvilinear LBM

method [4].

We have studied both equilibrium cases with the LBM

relaxation time τ = 1 and non-equilibrium cases with 1
2 <

τ < 1 and confirmed that the method [4] works well for

non-equilibrium cases as well.

In order to achieve our goals, we have generalized the LBM

periodicity, no-slip, and moving wall boundary conditions to

the fully curvilinear case. Additionally, as explained in more

detail later, we have proposed an adjustment procedure using

the "no flow" solution algorithm to adjust the effects of discrete

finite-difference approximation for the generalized basis vectors

definition in Chen [4].

In the next section, we review the theoretical approach

formulated in Chen [4]. Then in Section 3, we present numerical

results for the four basic flow cases mentioned above. In Section

4 we further discuss our findings as well some possible future

work directions. In Appendix A, we discuss the properties

of moments isotropy of the considered lattices D2Q9 and

D2Q21. In Appendix B, we formulate the curvilinear boundary

conditions. In Appendix C, we describe an example of a non-

equidistant lattice used for this study.

2. Formulation of LBM in curvilinear
coordinates

In Chen [4], a volumetric lattice Boltzmann formulation

on a general curvilinear mesh is constructed based on a one-

to-one mapping between physical and computational spaces

x = x(q) as follows. The coordinate values in the computational

space {q} are defined exactly as in standard LBM, i.e., forming a

3D Cartesian lattice with the lattice spacing unity. The nearest

neighbor of a site in the physical space x(q) along the ith (i =
1, 2, 3) coordinate direction in the positive or negative direction

is a spatial point x±i = x(q±i), where q±i is a unique coordinate

value for the neighboring site, so that q±i = (q1±i, q
2
±i, q

3
±i) and

q
j
±i − qj = ±δ

j
i . This defines the distance vector from x(q) to

one of its neighbors x(q±i):

D±i(q) ≡ x(q±i)− x(q); i = 1, 2, 3 (1)

which allows construction of the basis tangent vectors at x(q):

gi(q) ≡ [Di(q)−D−i(q)]/21x;

that have a number of standard differential geometry properties

that can be found in Chen [4]. The metric tensor and the cell

volume J at x(q) are thus defined as

gij(q) ≡ gi(q) · gj(q); J(q) ≡ (g1(q)× g2(q)) · g3(q) (2)

and the co-tangent basis vectors gi(q) as well as the inverse

metric tensor,

gi(q) ≡ ǫijkgj(q)× gk(q)/J(q); gi(q) · gj(q) = δ
j
i;

gij(q) ≡ gi(q) · gj(q), (3)

where ǫijk is a standard 3-dimensional Levy-Civita symbol.

With these definitions, we obtain the lattice Boltzmann

velocity vectors on a general curvilinear mesh defined similar to

the ones on a standard Cartesian lattice,

eα(q) ≡ ciαgi(q)1x/1t (4)

as well as a discrete analog of the Christoffel symbol,

2i
j(q+ cα , q) ≡ [gj(q+ cα)− gj(q)] · gi(q).

α = 0, 1, . . . , b (5)

Now, the evolution of particle distribution is defined in the

computational space q similar to the standard isothermal lattice

Boltzmann equation (LBE), Frisch et al. [11], Chen et al. [12, 13],

Benzi et al. [14], and Qian et al. [15].

Nα(q+ cα , t + 1) = Nα(q, t)+ �α(q, t)+ δNα(q, t), (6)

where Nα(q, t) is the number of particles belonging to the

discrete direction cα in the cell q at time t. Here, �α(q, t)
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is the collision term that satisfies local mass and momentum

conservation, and the particle density distribution function

fα(q, t) is related to Nα(q, t) via

J(q)fα(q, t) = Nα(q, t). (7)

The fundamental fluid quantities such as density

ρ(q, t) and velocity u(q, t) are given by the standard

hydrodynamic moments,

ρ(q, t) =
∑

α

fα(q, t); ρ(q, t)u(q, t) =
∑

α

eα(q)fα(q, t) (8)

Using the Equation (4), the velocity moment above can be

rewritten as

ρ(q, t)u(q, t) =
∑

α

ciαgi(q)fα(q, t) = ρ(q, t)Ui(q, t)gi(q) (9)

and the velocity in the curvilinear coordinate system is given by:

ρ(q, t)Ui(q, t) =
∑

α

ciα fα(q, t); ρ(q, t)U(q, t) =
∑

α

cα fα(q, t).

(10)

Observe that the Equation (10) has the same form for the

fluid velocity as that in the standard Cartesian lattice-based

LBM. We will use a linearized LBM collision term [14, 16]:

�α(q, t) = −J(q)[fα(q, t)− f
eq
α (q, t)]/τ ; (11)

where f
eq
α (q, t) is the equilibrium distribution function and τ

is the Bhatnagar-Gross-Krook (BGK) collision relaxation time

[12, 13, 15, 17].

The extra term δNα(q, t) in the Equation (6) represents the

change of particle distribution due to an effective inertial body

force, which is a key feature of curvilinear geometry-based LBM,

associated with the curvature and non-uniformity of a general

curvilinear mesh. This inertial body force obviously vanishes in

the standard LBM on a Cartesian lattice.

Define the advection process as an exact one-to-one hop

from one site in the computational space Eq to another as in the

standard LBM:

Nα(q+ cα , t + 1) = N′
α(q, t), (12)

where N′
α(q, t) is the post-collide distribution at (q, t) that is

equal to the right side of the Equation (6). In Chen [4] it was

shown that the key intrinsic effect of curvilinear formulation, the

net momentum change via advection from all the neighboring

cells into cell q is given by:

J(q)χ I(q, t) = −
∑

α

[eα(q)− eα(q− cα)]Nα(q, t), (13)

and out of cell q to all its neighboring cells, is given by:

J(q)χo(q, t) = −
∑

α

[eα(q+ cα)− eα(q)]N
′
α(q, t) (14)

so that an “inertial force” χ(q, t) =
[

χ
I(q, t)+ χ

o(q, t)
]

/2

that equals exactly to the amount needed for achieving the

momentum conservation in the underlying Euclidean space is:

Fi(q, t) = χ(q, t) · gi(q)

= − 1

2J(q)

∑

α

c
j
α{2i

j(q+ cα , q)N
′
α(q, t)

−2i
j(q− cα , q)Nα(q, t)}. (15)

The full viscous Navier-Stokes equation is recovered when

the momentum flux is defined as:

δ5ij(q, t) ≡ −1

2

(

1− 1

2τ

)

∑

α

ciαc
k
α[2

j
k
(q+ cα , q)

−2
j
k
(q− cα , q)]f

eq
α (q, t). (16)

It is shown in Chen [4] that choosing:

δNα(q, t) = wαJ(q)[
c
j
αF

j(q, t)

T0
+ (

c
j
αc

k
α

T0
− δjk)

δ5jk(q, t)

T0
] (17)

satisfies the necessary moment constraints. Note also that

due to the appearance of N′
α(q, t) in the Equation (15), the

overall collision process for determining N′
α(q, t) defines an

implicit relationship. Specifically, the Equation (17) defines

the curvilinear correction δNα

(

q, t
)

through Fj
(

q, t
)

and the

Equation (15) expresses Fj
(

q, t
)

using N′ (q, t
)

, which, again,

depends on the same δNα

(

q, t
)

. In this work, for the numerical

implementation of the Equation (15) we split this implicit

relationship into explicit relationships at two successive time

steps: we use theN′
α

(

q, t − 1
)

from the previous time-step in the

Equation (15). Iterative procedures to numerically implement

this implicit relationship in the Equation (15) are also possible.

The physical velocity Ũ was defined in Chen [4] through the

curvilinear body force F as follows:

Ũi(q, t) = Ui(q, t)+ ai(q, t)

2
, where: ai(q, t) ≡ Fi(q, t)

ρ(q, t)
. (18)

The equilibrium distribution function that produces the

Navier-Stokes equation in curvilinear coordinates in the

hydrodynamic limit is Chen [4]:

f
eq
α = ρwα

{

1+ ciαU
i

T0
+ 1

2T0
(
ciαc

j
α

T0
− δij)[(gij − δij)T0 + Ũ iŨ j]

+ 1

6T3
0

(ciαc
j
αc

k
α − T0(c

i
αδjk + c

j
αδki + ckαδij))[T0[(g

ijŨk − δijUk)

+(gjkŨ i − δjkU i)+ (gkiŨ j − δkiU j)]+ Ũ iŨ jŨk]

}

. (19)

We will also need the following simple mapping of fluid

values ρ(q, t) and Ui(q, t) onto the original curvilinear mesh:

ρ(x(q), t) = ρ(q, t); u(x(q), t) = Ui(q, t)gi(q). (20)
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3. Four exactly solvable flow
problems

The four exactly solvable flow problems are presented below

in order to validate the new approach [4]. As stated in Chen

[4], in order to recover the correct isothermal low Ma Navier-

Stokes hydrodynamics, a set of necessary moments isotropy

and normalization conditions must be satisfied. This is why we

present a detailed comparison between two lattices: D2Q9 and

D2Q21. The details of isotropy and normalization conditions

for these two lattices are presented in Appendix A. In all of the

below cases, we use the boundary conditions, generalized by us

for curvilinear LBM, presented in detail in Appendix B.

3.1. Planar Couette flow

This well-known [18] simple exact solution Eu(Ex, t) =
(ux, uy) describes a stationary flow of viscous incompressible

fluid between two vertical planes: at x = 0 moving with a

constant velocity
−→
U 0 = (0,−U0), and a non-moving one at

x = l:

uy = U0

(x

l
− 1

)

. (21)

Solution of the Equation (21) in lattice units for a non-

equidistant lattice is:

ulaty,i = U lat
0

(

xi

△Nx
− 1

)

. (22)

Here xi is a spatially varying coordinate of the lattice node.

In this study, a lattice that is linearly contracting toward the

boundaries is used (see Appendix C), and △ is the average step

△ = l/Nx in the x-direction. We studied other variable-size

lattices and conclude that our main findings do not depend

on the particular type of contraction, as long as some general

stability conditions are satisfied.

Thus, defined plane channel problem does not possess a true

curvilinearity but rather a deviation from the equidistant lattice

which is due to cell contraction.

The LBM parameters for the equilibrium case with τ = 1 for

the D2Q9 lattice are listed in Table 1A:

As it is well expected, on the equidistant D2Q9 lattice

(which corresponds to the trivial compression ratio CR = 0

in our notations), all quantities ρ(x), Ũ1(x) and Ũ2(x) for all

resolutions Nx = 8, 16, 32, 64, 128 accurately reproduce the

exact analytical solution (Equations 21, 22).

One simple way to introduce some curvilinear effects into an

otherwise Cartesian geometry is to consider variable aspect ratio

grid cells, for example as is done in the linear grid compression

TABLE 1 Planar Couette LBM parameters.

Panel A: D2Q9 lattice, variable Nx, and τ = 1

Nx Ulat νlat Masim Re

8 0.208 0.167 0.361 10.0

16 0.208 0.167 0.361 20.0

32 0.208 0.167 0.361 40.0

64 0.208 0.167 0.361 80.0

128 0.208 0.167 0.361 160.0

Panel B: D2Q21 Lattice, variable Nx, and τ = 1

Nx Ulat νlat Masim Re

8 0.208 0.333 0.255 5.0

16 0.208 0.333 0.255 10.0

32 0.208 0.333 0.255 20.0

64 0.208 0.333 0.255 40.0

128 0.208 0.333 0.255 80.0

Panel C: D2Q9 Lattice, variable τ , and Nx = 64

τ Ulat νlat Masim Re

1.0 0.052 0.167 0.090 20.0

0.9 0.042 0.133 0.072 20.0

0.8 0.031 0.100 0.054 20.0

0.7 0.021 0.067 0.036 20.0

Panel D: D2Q21 lattice, variable τ , and Nx = 64

Planar Couette, D2Q21 Lattice, Nx = 64

τ Ulat νlat Masim Re

1.0 0.052 0.333 0.064 10.0

0.9 0.042 0.267 0.051 10.0

0.8 0.031 0.200 0.038 10.0

0.7 0.021 0.133 0.026 10.0

case described in Appendix C. An example of such geometry and

grid is shown in Figure 1A.

The numerical results for the fields of ρ(x) and Ũ2(x) for the

D2Q9 lattice with the nontrivial compression ratio CR = 0.4,

are presented in Figures 2A, B below:

Ũ1(x) in this case is negligibly small for all resolutions

Nx = 8, 16, 32, 64, 128. As we can see, even on strongly non-

equidistant lattice D2Q9 we also converge to the exact solution

with higher resolutions.

The LBM parameters for the D2Q21 lattice and τ = 1 that

we used are listed in the Table 1B above.

The boundary conditions developed for curvilinear LBM

with D2Q21 are presented in Appendix B. In formulating the

boundary conditions, we have assumed the symmetrically-

continued geometry through the boundary. The stencil length

for D2Q21 is three times larger than that for D2Q9, and
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FIGURE 1

Examples of Geometries and Lattices Considered. (A) Cartesian geometry case with Nx = Ny = 32, and linear CR = 0.4 grid compression in

x−direction. (B) Circular geometry case with Nr = 32,Nθ = 20, and NCR = 11.
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FIGURE 2

Planar Couette flow, contracting grid, variable Nx, D2Q9 lattice. (A) ρ(x) for Nx = 8, 16, 32, 64, 128 and CR = 0.4. (B) Ũ2(x) for

Nx = 8, 16, 32, 64, 128, and CR = 0.4.
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therefore some approximation errors are expected to be larger

near the moving boundary than those for D2Q9. It needs to be

pointed out that this issue is related to the boundary conditions

algorithm rather than to the intrinsic nature of the curvilinear

LBM [4].

Similar to the D2Q9 case, our code applied to the trivial

equilateral D2Q21 lattice (CR = 0) gives perfectly converging

results for all ρ(x), Ũ1(x), and Ũ2(x), for all resolutions Nx =
8, 16, 32, 64, 128 that accurately reproduce the exact analytical

solution (Equations 21, 22). Results for ρ(x) and Ũ2(x) for

D2Q21 and nontrivial rectangular lattice with CR = 0.4

are presented in Figures 3A, B below. Note that CR = 0.4

corresponds to △1 = 0.6 × △ and △N
2

= 2.33 × △1,

and that according to our set-up of the linearly contracting

lattice described in Appendix C, this value of CR corresponds

to different values of lattice parameter a for each resolution.

As we can see, even on strongly non-equidistant

lattice D2Q21 we also converge to the exact solution with

higher resolutions.

Let us now present the results of numerical model solutions

for a fixed resolutionNx = 64 but variable τ = {1.0, 0.9, 0.8, 0.7}
for both lattices D2Q9 and D2Q21.

The corresponding LBM parameters for the D2Q9 lattice we

used are listed in Table 1C above.

The agreement of numerical solution with the exact one

with no lattice compression CR = 0 is of course very good for

both lattices D2Q9 and D2Q21 for all τ = {1.0, 0.9, 0.8, 0.7}. In
Figures 4A, B below we present the comparisons of numerical

results with the exact solution for lattice D2Q9with compression

CR = 0.35 and τ = {1.0, 0.9, 0.8, 0.7}. We show variable τ cases

on the same graphs, for the following quantities: U
2
(x)

Ulat
, Uex(x)

Ulat
,

and U
2
(x)

U
2
ex(x)

.

The U
1
(x)

Ulat
for D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35,

are all equal to zero within double-precision accuracy and the
ρ(x)
ρ0

for D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35 show very

weak dependence on τ . We can see that for D2Q9 lattice and

strong cell compression the new method [4] not only converges

with the increase in resolution but also works well for various

values of parameter τ .

The corresponding LBM parameters used for the D2Q21

lattice are listed in Table 1D above. Similar numerical results for

D2Q21 lattice are presented in Figures 5A, B below.

As in the D2Q9 case, the U
1
(x)

Ulat
for D2Q21, τ =

1.0, 0.9, 0.8, 0.7, and CR = 0.35, are approximately equal to zero

and the ρ(x)
ρ0

for D2Q21, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35

show very weak dependence on τ . Here we can also see that for

D2Q21 lattice with strong cell compression the new method [4]

not only converges with the increase in resolution but also works

well for various values of parameter τ .

All the problems considered in the paper were solved

numerically as non-stationary problems converging to a steady

state from zero initial velocity state. The convergence to the

steady state was judged by the conservation of total kinetic

energy in the system in the first two plane geometry problems

and by the conservation of both total kinetic energy and total

angular momentum in the system in the second two curvilinear

(circular) problems. In order to achieve that steady state in some

cases over 150 times to traverse the characteristic length with the

characteristic velocity were required. Total mass in the system

was conserved at all intermediary times.

Also note the fact that in curvilinear and non-equidistant

step cases, the numerical solution for density ρ(Eq) is not

constant, as can be seen in Figures 2A, 3A, is a byproduct of the

finite-difference approximation of the basis vectors in Chen [4]

and can be eliminated and reduced to the exact solution (ρ(Eq) =
ρ0 in this case) using the following "no flow" adjustment:

J
(

Eq
)

→ J
(

Eq
)

ρnf (Eq)
ρ0

, (23)

where ρnf
(

Eq
)

is the numerical solution of the corresponding "no

flow" problem with the same geometry but Ulat = 0.

The differences between D2Q9 and D2Q21 lattices do not

seem to affect the convergence to the exact solution for this

simple model problem.

3.2. Plane Poiseuille flow

This next well-known [18] classical solution describes a

stationary flow of viscous liquid between two infinite vertical

planes at x = 0 and x = l under the action of constant

vertical gravity force corresponding to acceleration −g. The

stationary solution with no-slip boundary conditions at x = 0, l

is a parabola,

uy =
G

2
x(x− l), (24)

where ν is the kinematic viscosity and G ≡ g/ν. Rewritten

in lattice units on a non-equidistant lattice, the Equation

(24) becomes:

ulaty,i =
Glat

2

xi

△

(

xi

△
− Nx

)

. (25)

Similar to the Planar Couette flow, we have investigated

both lattices D2Q9 and D2Q21 and a set of resolutions Nx =
8, 16, 32, 64, 128 with and without lattice contraction.

In Table 2A below we list the set of LBM parameters used for

the D2Q9 lattice:

For D2Q9 lattice with CR = 0, all quantities ρ(x), Ũ1(x),

and Ũ2(x) produced by the new method [4] for all resolutions

Nx = 8, 16, 32, 64, 128 accurately reproduce the exact analytical

solution (Equations 24, 25).

The Table 2B above details the LBM parameters we used for

the D2Q21 lattice cases. For D2Q21 lattice with CR = 0 the
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FIGURE 3

Planar Couette flow, contracting grid, variable Nx, D2Q21 lattice. (A) ρ(x) for Nx = 8, 16, 32, 64, 128 and CR = 0.4. (B) Ũ2(x) for

Nx = 8, 16, 32, 64, 128, and CR = 0.4.
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FIGURE 4

Planar Couette flow, contracting grid, variable τ for D2Q9 lattice. (A) U
2
(x)

Ulat
, Uex (x)

Ulat
for D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35. (B) U

2
(x)

U
2
ex (x)

for

D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35.
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FIGURE 5

Planar Couette flow, contracting grid, variable τ for D2Q21 lattice. (A) U
2
(x)

Ulat
, Uex (x)

Ulat
for D2Q21, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35. (B) U

2
(x)

U
2
ex (x)

for

D2Q21, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35.
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TABLE 2 Plane Poiseuille LBM parameters.

Panel A: D2Q9 lattice, variable Nx, and τ = 1

Nx Ulat νlat glat Masim Re Fr

8 0.208 0.167 6.51× 10−3 0.361 10.0 0.9

16 0.208 0.167 1.63× 10−3 0.361 20.0 1.3

32 0.208 0.167 4.07× 10−4 0.361 40.0 1.8

64 0.208 0.167 1.02× 10−4 0.361 80.0 2.6

128 0.208 0.167 2.54× 10−5 0.361 160.0 3.7

Panel B: D2Q21 lattice, variable Nx, and τ = 1

Nx Ulat νlat glat Masim Re Fr

8 0.208 0.333 1.30× 10−2 0.255 5.0 0.6

16 0.208 0.333 3.26× 10−3 0.255 10.0 0.9

32 0.208 0.333 8.14× 10−4 0.255 20.0 1.3

64 0.208 0.333 2.03× 10−4 0.255 40.0 1.8

128 0.208 0.333 5.09× 10−5 0.255 80.0 2.6

Panel C: D2Q9 lattice, variable τ , and N = 64

τ Ulat νlat glat Masim Re Fr

1.0 0.052 0.167 2.54× 10−5 0.090 20.0 1.3

0.9 0.042 0.133 1.63× 10−5 0.072 20.0 1.3

0.8 0.031 0.100 9.16× 10−6 0.054 20.0 1.3

0.7 0.021 0.067 4.07× 10−6 0.036 20.0 1.3

Panel D: D2Q21 lattice, variable τ , and N = 64

τ Ulat νlat glat Masim Re Fr

1.0 0.052 0.333 5.09× 10−5 0.064 10.0 0.9

0.9 0.042 0.267 3.26× 10−5 0.051 10.0 0.9

0.8 0.031 0.200 1.83× 10−5 0.038 10.0 0.9

0.7 0.021 0.133 8.14× 10−6 0.026 10.0 0.9

new curvilinear algorithm [4] also converges well to the exact

solution for all considered resolutions Nx = 8, 16, 32, 64, 128.

As in the previous Couette flow case for D2Q21 we observe some

very small influence of the boundary conditions.

In Figures 6A–7B below we present the numerical solution

to the non-equidistant case with compression of cells with CR =
0.4. The results for ρ(x) and Ũ2(x), for D2Q9 and CR = 0.4 are

shown in Figures 6A, B below.

Ũ1 in this case is negligibly small for all resolutions. We

again observe a very good convergence with the increase in

resolution to the exact solution (Equations 24, 25). The results

for ρ(x) and Ũ2 for D2Q21 and CR = 0.4 are shown in

Figures 7A, B below.

We again observe a very good convergence with the increase

in resolution to the exact solution (Equations 24, 25). One can

notice a better performance of the D2Q21 lattice in the middle

of the domain than that of the D2Q9.

Let us now show the results of numerical model solutions

for a fixed resolution N = 64 but variable τ = {1.0, 0.9, 0.8, 0.7}
for both lattices D2Q9 and D2Q21. The corresponding LBM

parameters for the D2Q9 lattice we used are shown in

Table 2C above.

The agreement of numerical with the exact solution with no

lattice compression CR = 0 was very good for both lattices

D2Q9 and D2Q21 for all τ = {1.0, 0.9, 0.8, 0.7}. Below in

Figures 8A, B we present the comparisons of numerical results

with the exact solution for lattice D2Q9 with compression CR =
0.35 and τ = {1.0, 0.9, 0.8, 0.7}. We show variable τ cases

on the same graphs, for the following quantities: U
2
(x)

Ulat
, Uex(x)

Ulat
,

and U
2
(x)

U
2
ex(x)

.

The U
1
(x)

Ulat
for D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35,

are all equal to zero within double-precision accuracy and the
ρ(x)
ρ0

for D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35 show very

weak dependence on τ . As one can see, the newmethod [4] using

the D2Q9 lattice with strong cell compression works well for

various values of parameter τ .

The corresponding LBM parameters for the D2Q21 lattice

we used are shown in Table 2D above. In Figures 9A, B below we

present the numerical results for D2Q21 lattice.

Similar to the D2Q9 case, the U
1
(x)

Ulat
for D2Q21, τ =

1.0, 0.9, 0.8, 0.7, and CR = 0.35, are approximately equal to zero

and the ρ(x)
ρ0

for D2Q21, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35

show very weak dependence on τ . Here we observe that the new

method [4] with strong compression also works well for various

values of parameter τ .

To summarize, for these two planar geometry problems

above, both D2Q9 and D2Q21 lattices provide adequate

and comparable performance for cases with and without

lattice compression. Let us now move on to problems with

intrinsic curvilinearity.

3.3. Circular Couette flow

This is also a well-known [18] naturally curvilinear problem

with a closed-form exact solution, which fits very well for our

purpose of validating the new method. This solution describes a

stationary flow of viscous liquid between two infinite concentric

vertical cylinders with radii R1 for the internal one and R2 for

the external one, rotating with corresponding angular velocities

�1 and �2. Here we will need the leading order in Ma =
Uavg

cs
(Mach number) exact solution of the compressible Navier-

Stokes equations.

For both of the circular problems considered here, we

can introduce a measure of natural curvilinearity, a coefficient

NCR = R2
R1

. If we keep the distance between cylinders R2 −
R1 = const, then NCR = 1 corresponds to a previously

considered planar case for R1 → +∞. Conversely, cases
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FIGURE 6

Plane Poiseuille flow, contracting grid, variable Nx, D2Q9 lattice. (A) ρ(x) for Nx = 8, 16, 32, 64, 128 and CR = 0.4. (B) Ũ2(x) for

Nx = 8, 16, 32, 64, 128 and CR = 0.4.
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FIGURE 7

Plane Poiseuille flow, contracting grid, variable Nx, D2Q21 lattice. (A) ρ(x) for Nx = 8, 16, 32, 64, 128 and CR = 0.4. (B) Ũ2(x) for

Nx = 8, 16, 32, 64, 128 and CR = 0.4.
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FIGURE 8

Plane Poiseuille flow, contracting grid, variable τ for D2Q9 lattice. (A) U
2
(x)

Ulat
, Uex (x)

Ulat
for D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35. (B) U

2
(x)

U
2
ex (x)

for

D2Q9, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35.
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FIGURE 9

Plane Poiseuille flow, contracting grid, variable τ for D2Q21 lattice. (A) U
2
(x)

Ulat
, Uex (x)

Ulat
for D2Q21, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35. (B) U

2
(x)

U
2
ex (x)

for

D2Q21, τ = 1.0, 0.9, 0.8, 0.7, and CR = 0.35.
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NCR≫ 1 correspond to cases with strong natural curvilinearity.

The Reynolds number for this problem was defined as Re =
�1R1(R2−R1)

ν . An example of geometry and the lattice with

strong natural curvilinearity with NCR = 11 that we have used

in the calculations is shown in Figure 1B.

The θ-component of the Navier-Stokes equations written

in polar coordinates Er = {r, θ} in our case of a stationary

r-dependent, θ-directional flow is:

−uθ

r2
+ 1

r

d

dr

(

r
duθ

dr

)

= 0,

with the following solution:

uθ (r) = ar + b

r
; (26)

a = �2R
2
2 − �1R

2
1

R22 − R21
; b = R21R

2
2 (�1 − �2)

R22 − R21
. (27)

Note that this classical solution has the following properties:

it is a non-monotonic function of r for 0 ≤ �2
�1

< 1 with an

extremum at

r̂ =
√

√

√

√

�2 − �1
�1

R22
− �2

R21

,

and it is a monotone function outside of this interval.

Also, note that the above velocity profile has the same

leading order behavior in small parameters 0 ≤ x
R1

≤ l
R1

for

l = R2 − R1 and x = r − R1 as the exact planar Couette flow

solution when both vertical planes are moving with velocities

U1 = �1R1 and U2 = �2R2:

uθ (x) ∼ U1 + (U2 − U1) x/l,

which for U1 = 0 reproduces the exact solution for the plane

Couette flow Equation 21.

The radial component of the Navier-Stokes equation for a

stationary r-dependent flow only in θ-direction, is:

− u2
θ

r
= − 1

ρ0

∂p

∂r
, (28)

which simplifies into the following 1-st order ODE:

1

ρ0

dp(r)

dr
= 1

r

(

ar + b

r

)2

.

The LBM formalism results in an expansion in powers of Ma

number with the ideal gas law equation of state:

p(r) = ρ(r)T0. (29)

If we substitute this into the previous incompressible equation,

we obtain the leading order inMa ODE for density:

1

ρ0

dρ(r)

dr
= 1

rT0

(

ar + b

r

)2

.

This defines the density behavior at the leading order inMa:

ρ(r) = ρ̃0 +
ρ0

T0
h(r),

where:

h(r) = − b2

2r2
+ 2ab log

(

r

R1

)

+ a2r2

2
.

The integration constant ρ̃0 can be determined using

conservation of total mass:

M0 =
∫ R2

R1

rρ(r)dr = ρ0π

(

R22 − R22

)

,

which leads to:

ρ̃0 = ρ0

(

1− 2H(R1,R2)

T0
(

R22 − R21
)

)

,

where we denoted:

H(R1,R2) = −b2

2
log

(

R2

R1

)

+ ab

(

R22 log

(

R2

R1

)

− R22 − R21
2

)

+a2

8

(

R42 − R41

)

. (30)

Thus the leading-order inMa exact solution for density is:

ρ(r) = ρ0

{

1+ 1

T0

(

h(r)− 2H (R1,R2)

R22 − R21

)

}

. (31)

We will need the above exact solution for velocity expressed

in lattice units on the non-equidistant lattice:

ulatθ ,i = alat
ri

△r

+ blat△r

ri
, (32)

where we denoted:

alat = ωlat
2 (M + Nr)

2 − ωlat
1 M2

Nr (2M + Nr)
and

blat =
M2 (Nr +M)2

(

ωlat
1 − ωlat

2

)

Nr (2M + Nr)
, (33)

and similar to earlier definitions,△r = R2−R1
Nr

is the average step

in the radial direction. Similarly, the exact solution for density in

lattice units on the non-equidistant lattice is:

ρlati = ρlat0

{

1+ 1

Tlat
0



hlati − Hlat (M,Nr)

Nr

(

M + Nr
2

)





}

, (34)
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TABLE 3 Circular Couette LBM parameters.

Panel A: D2Q9 lattice, variable Nx, and τ = 1

Nθ Nr �1,lat νlat Ulat Masim Re

40 64 3.82× 10−2 0.167 0.245 0.424 93.9

80 128 1.91× 10−2 0.167 0.245 0.424 187.9

160 256 9.56× 10−3 0.167 0.245 0.424 375.8

320 512 4.78× 10−3 0.167 0.245 0.424 751.5

640 1, 024 2.39× 10−3 0.167 0.245 0.424 1503.1

Panel B: D2Q21 lattice, variable Nx, and τ = 1

Nθ Nr �1,lat νlat Ulat Masim Re

40 64 3.82× 10−2 0.333 0.245 0.300 47.0

80 128 1.91× 10−2 0.333 0.245 0.300 93.9

160 256 9.56× 10−3 0.333 0.245 0.300 187.9

320 512 4.78× 10−3 0.333 0.245 0.300 375.8

640 1, 024 2.39× 10−3 0.333 0.245 0.300 751.5

where we denoted:

hlati = −
b2
lat
△2
r

2r2i
+ 2alatblat log

(

ri

△rM

)

+
a2
lat
r2i

2△2
r

, (35)

and

Hlat (M,Nr) =−
b2
lat

2
log

(

1+ Nr

M

)

+ alatblat

{

(M + Nr)
2 log

(

1+ Nr

M

)

−

− Nr

(

M + Nr

2

)}

+
a2
lat

8

{

(M + Nr)
4 −M4

}

.

(36)

In both of our circular problems, we used the same method

of choosing the azimuthal lattice size Nθ as a function of radial

lattice size Nr , which was the following. Requiring that the

lattice cells near r = R1 are approximately equilateral results

in Nθ = Nr
2πR1
R2−R1

.

Obviously, such intrinsically curvilinear problems cannot

be solved by a standard LBM even without radial lattice

step contraction. Therefore, here we present the comparisons

between D2Q9 and D2Q21 lattices without radial grid

contraction for a case of strong natural curvilinearity NCR =
11. We have considered the case of �2 = 0 in the numerical

solutions below.

The LBM parameters for the D2Q9 lattice we have used are

presented in Table 3A, and the LBM parameters used for the

D2Q21 lattice are presented in Table 3B.

In Figures 10A–C we present the numerical solutions for

ρ(r), Ũr(r), and Ũθ (r) for resolutions Nr = 64, 128, 256, 512,

and 1, 024 for D2Q9 lattice. Note that in the cases below we

only show ρ after the application of the "no flow" adjustment

described above.

In a drastic difference to the previously considered planar

problems, we observe here that the D2Q9 lattice does not

converge to the exact solutions (Equations 25, 31, 32, 34). This

calls for exploring of the higher-order D2Q21 lattice.

Figures 11A–C present the numerical solutions for

ρ(r), Ũr(r), and Ũθ (r) for resolutions Nr = 64, 128, 256, 512,

and 1, 024 for D2Q21 lattice, which possesses a higher degree of

isotropy (see Appendix A).

Notice that unlike in the D2Q9 case, the implementation

of the model based on the D2Q21 lattice does converge very

well to the exact solutions (Equations 26, 31, 32, 34) with

the increase in resolution. The more widely used D2Q9 lattice

simply does not have sufficient isotropy to support the LBM on

the curvilinear mesh.

Let us try to outline here the reasons for the importance

of higher-order isotropy. As shown in Chen [4], the 6th-

order isotropy is required to reproduce the Navier-Stokes

equation in curvilinear coordinates. In particular, the 3-rd

order tensor Qijk,eq will satisfy the 6th order isotropy condition

given by the Equation (32) of Chen [4] for a specific choice

of equilibrium distribution function f
eq
α , which requires the

Hermite expansion up to 3rd-order, given by the Equation (33)

of Chen [4]. Therefore, the 6th-order isotropy as defined in the

last Equation (10) of Chen [4] is required in order to avoid

discrete rotational artifacts.

3.4. Circular flow driven by an azimuthal
force (circular Poiseuille flow)

Similar to the previous case, this is a naturally curvilinear

problem with the same exact geometry, but it has a closed-form

exact solution which in the limiting case of R2−R1
R1

→ 0+, such

that R2 − R1 = const converges to the Plane Poiseuille flow

considered above. For this problem, in addition to the Reynolds

number Re = U(R2−R1)
ν , we can also define the Froude number

as Fr = U√
g(R2−R1)

, with the average velocity U obtained from

the exact solution below.

This is a model problem that we at the present time can not

connect to any physical situation but is useful for analyzes of

numerical aspects associated with curvilinear LBM. We are not

aware that this problem was considered before.

As is shown in Appendix D, a constant curvilinear second

co-tangent component of the external “gravity” force g2

corresponds to the following external “gravity” component in

polar coordinates:

gθ = g2
sin△θ

△r

ri. (37)
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FIGURE 10

Circular Couette flow, NCR = 11, variable Nr , D2Q9 lattice. (A)

ρ(r) for Nr = 64, 128, 256, 512, 1, 024 and NCR = 11. (B) Ũr(r) for

Nr = 64, 128, 256, 512, 1, 024 and NCR = 11. (C) Ũθ (r) for

Nr = 64, 128, 256, 512, 1, 024 and NCR = 11.

FIGURE 11

Circular Couette flow, NCR = 11, variable Nr , D2Q21 lattice. (A)

ρ(r) for Nr = 64, 128, 256, 512, 1, 024 and NCR = 11. (B) Ũr(r) for

Nr = 64, 128, 256, 512, 1, 024 and NCR = 11. (C) Ũθ (r) for

Nr = 64, 128, 256, 512, 1, 024, and NCR = 11.
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Denote α = sin△θ

△r
, then the θ-component of the external

"gravity" force corresponds to the acceleration gθ = αrg2.

Similarly to the previous section, in the particular case of

stationary r-dependent and θ-directional flow in the presence of

external force with acceleration Eg =
(

0

−αrg

)

, which is pushing

the fluid in the clockwise azimuthal direction for α > 0, we get:

µ

ρ0

{

− uθ

r2
+ 1

r

d

dr

(

r
duθ

dr

)}

+ αrg = 0, (38)

resulting in:

uθ (r) = ar + b

r
+ A

8
r3. (39)

Here A = α
g
ν , ν = µ

ρ0
is the kinematic viscosity, and

the constants a and b determined from the no-slip boundary

conditions uθ (R1) = uθ (R2) = 0:

a = −A

8

(

R21 + R22

)

< 0, and b = A

8
R21R

2
2 > 0. (40)

The velocity profile given by the Equation (39) which starts and

ends at 0 and has a minimum at:

r̂ =

√

√

√

√

4

3A

(

−a+
√

a2 + 3Ab

2

)

. (41)

One can also define the average velocity which can be used as a

characteristic flow velocity for the specification of Reynolds and

Froude numbers:

uθ = 1

R2 − R1

∫ R2

R1

uθ (r)dr

= a

2
(R2 + R1) + b

log R2
R1

R2 − R1

+ A

32
(R2 + R1)

(

R22 + R21

)

. (42)

Note that the leading-order behavior of this curvilinear flow in

the small parameters x, ǫ: 0 ≤ x = r−R1
R1

≤ ǫ = R2−R1
R1

, is:

uθ (r)

△rαR
3
1

∼ A0

2
x (x− ǫ) ,

where we denoted A0 = g
ν , which exactly corresponds to the

plane Poiseuille flow in Cartesian coordinates (Equation 24).

The radial component of the Navier-Stokes equation

Equation (28) with the equation of state given by the Equation

(29) becomes

1

ρ0

dρ(r)

dr
= 1

rT0

(

ar + b

r
+ A

8
r3
)2

, (43)

with the solution:

ρ(r) = ρ0

[

1+ 1

T0

(

h(r)− 2H (R1,R2)

R22 − R21

)

]

, (44)

where:

h(r) = − b2

2r2
+ 2ab log

r

R1
+ 1

2

(

a2 + bA

4

)

r2+ aAr4

16
+ A2r6

384
,

(45)

and

H(R1,R2) =− b2

2
log

R2

R1
+ ab

(

R22 log
R2

R1
− R22 − R21

2

)

+

+ 1

8

(

a2 + bA

4

)

(

R42 − R41

)

+ aA

96

(

R62 − R61

)

+ A2

3072

(

R82 − R81

)

.

(46)

Rewritten in lattice units,

ulatθ ,i = alat
ri

△r

+ blat
△r

ri
+ Alat

8

r3i

△3
r

, (47)

Alat = glat
νlat

, alat = −Alat

8

[

(Nr +M)2 +M2
]

,

blat = Alat

8
(Nr +M)2 ; (48)

ρlatθ ,i = ρlat0

{

1+ 1

Tlat
0



hlati − Hlat (M,Nr)

Nr

(

M + Nr
2

)





}

, (49)

hlati =−
b2
lat
△2
r

2r2i
+ 2alatblat log

ri

△rM

+ 1

2

(

a2lat +
blatAlat

4

)

r2i

△2
r

+

+ alatAlat

16

r4i

△4
r

+
A2
lat

384

r6i

△6
r

,

(50)

Hlat (M,Nr) =−
b2
lat

2
log

(

1+ Nr

M

)

+ alatblat

[

(M + Nr)
2 log

(

1+ Nr

M

)

−

− Nr

(

m+ Nr

2

)]

+ 1

8

(

a2lat +
blatAlat

4

)

[

(M + Nr)
4 −M4

]

+

+ alatAlat

96

[

(M + Nr)
6 −M6

]

+
A2
lat

3072

[

(M + Nr)
8 −M8

]

.

(51)

As we have shown in the previous section, on non-

equilateral grid systems the D2Q9 lattice cannot adequately
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TABLE 4 Circular Poiseuille flow, D2Q21 lattice parameters, and τ = 1.

Panel A: Circular Poiseuille, D2Q21 Lattice, and τ = 1

Nθ Nr νlat Ulat glat Masim Re Fr

40 64 0.334 0.130 2.52× 10−5 0.159 24.9 3.2

80 128 0.333 0.130 6.26× 10−6 0.159 50.0 4.6

160 256 0.333 0.130 1.56× 10−6 0.159 100.1 6.5

322 512 0.335 0.130 3.96× 10−7 0.159 199.0 9.1

644 1, 024 0.335 0.130 9.89× 10−8 0.159 397.9 12.9

reproduce the exact solutions in intrinsically curvilinear

geometries due to the lack of 6-th order isotropy. Therefore, we

will be only showing here the results for the D2Q21 lattice. We

have again used the same case of strong intrinsic curvilinearity

NCR = 11.

The Table 4 below lists the set of LBM parameters used for

comparisons in this case:

The numerical solutions for ρ(r), Ũr(r) and Ũθ (r) for

resolutions Nr = 64, 128, 256, 512, and 1, 024 for D2Q21 lattice

are presented in Figures 12A–C.

We again observe that the new fully curvilinear method

[4] using D2Q21 converges very well to the exact solutions

Equations (28, 39, 47, 49) with the increase in resolution.

A somewhat high number of grid points (such as Nr = 512

and higher for the Circular Poiseuille problem considered above)

was required to get sufficient accuracy for the curvilinear cases.

We do not see this however as a major obstacle to the practical

implementation of the new method. The observed high-

resolution requirement is partially due to some imperfections

in the boundary condition algorithm. This paper is the first to

numerically establish that the current curvilinear LBM is able to

recover the Navier-Stokes hydrodynamics asymptotically. How

to improve the rate of convergence with a lower number of grid

points is a research topic for the future.

4. Discussion

In this work, we have provided the first numerical tests of

the novel volumetric curvilinear LBMmethod [4]. The accuracy

and performance of the new method have been investigated and

validated on a set of four 2D exactly solvable models: with and

without the natural curvilinearity. The crucial importance of

the isotropy requirement of at least 6th-order which requires

at least D2Q21 lattice in 2D cases has also been demonstrated.

We considered four 2-dimensional exactly solvable problems.

For Cartesian lattice problems with possible grid compression,

both D2Q9 and D2Q21 lattices give accurate results converging

to the exact solutions for various values of 1
2 < τ ≤ 1. For truly

curvilinear cases considered we have presented evidence that

the 4th-order isotropy of D2Q9 is insufficient and the D2Q21

FIGURE 12

Circular Poiseuille flow, NCR = 11, variable Nr , D2Q21 lattice.

(A) ρ(r) for Nr = 64, 128, 256, 512, 1, 024 and NCR = 11. (B) Ũr(r)

for Nr = 64, 128, 256, 512, 1, 024 and NCR = 11. (C) Ũθ (r) for

Nr = 64, 128, 256, 512, 1, 024 and NCR = 11.
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lattice with 6th-order isotropy is needed for convergence to the

exact solution.

This illustration of the importance of moments’ isotropy

is very important. As it was stated in Chen [4], a certain set

of moment isotropy constraints and normalization conditions

must be satisfied in order to correctly recover the full Navier-

Stokes equations [16, 19–22]. In wide practical use are the

small stencil length LBM lattices, such as D2Q9, largely due to

their simplicity of implementation, specifically for the boundary

conditions. However, as we discuss in Appendix A, D2Q9 lattice

satisfies the requirements of moments’ isotropy only to the 4-

th order. Only the D2Q21 lattice satisfies those conditions to

the 6th-order.

The convergence to exact analytical solutions with the

increase in resolution for various values of τ we have obtained

is quite good for all cases considered using the D2Q21 lattice.

However, the simpler D2Q9 lattice can still be used only for

Cartesian geometry cases with 1-dimensional grid compression.

The curvilinear LBM method [4], although somewhat slower

than the standard LBM method due to its higher mathematical

complexity, still keeps all the advantages of the classical LBM

method, such as intrinsic parallelism, applicability to complex

physics cases (such as multi-phase flows, etc.), and no numerical

diffusion at the advection stage.

In order to perform our studies we have developed the

generalized LBM boundary conditions of periodicity, no-slip,

and moving wall types for the fully curvilinear geometry. We

have additionally proposed a "no flow" adjustment procedure

which helps to compensate for the effects of analytical finite-

difference approximation for generalized basis vectors used in

Chen [4].

We find our results to be very promising because, in our

view, they open the much-needed way to expand the LBM

method advantages to curvilinear geometries. The inability of

the LBM method to adequately treat truly curvilinear cases

and adaptive grids has been perceived as a weakness of LBM

methods as compared to the classical finite-difference methods.

In particular, such problems as adaptive grid compression into

the boundary layer for high Reynolds number flows can possibly

be addressed.

Much work remains to be done, such as studies of 3-

dimensional flows, extension to turbulent flow, extensions

to multi-phase and multi-component flows, development of

higher-order LBM boundary conditions for curvilinear cases for

lattices with wider stencils such as D2Q21, and many others.
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