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This study presents a deterministic model for the environmental transmission

dynamics of monkeypox (MPX) in the presence of quarantine and vaccination.

The analysis of the model established three important equilibrium states

namely; monkeypox-free equilibrium (MPXV-FE), infected rodent-free

endemic equilibrium (IRF-EE), and coexistence equilibrium (CO-EE). The

local and global stability of the equilibrium states is examined in terms of

reproduction numbers. For global stability, the comparison theory is used

for MPXV-FE while the Voltera-Lyapunov matrix theory is used for IRF-EE.

Sensitivity analysis is performed using the Latin hypercube sampling method,

and the results showed that environmental transmission parameters are the

main driver of infection in the dynamics of MPX infection. This is further

supported by numerical simulations to show the impact of environmental

transmission on the MPX infection and also the validity of the theoretical

analysis. Based on the results, it is recommended that health practitioners and

policy-makers should constitute control strategies that will focus on reducing

transmission and shedding of the virus in the environment while increasing the

environmental decay rate of the MPXV. This will complement the quarantine

and vaccination strategies in place.

KEYWORDS

monkeypox, environmental transmission, sensitivity analysis, comparison theory,

Voltera-Lyapunov matrix theory

1. Introduction

Monkeypox (MPX) is a contagious zoonotic disease caused by the monkeypox virus

(MPXV). It belongs to the genus Orthopoxvirus of the Poxviridae family. MPX is similar

to smallpox in clinical presentation and is mostly found in Central and West Africa,

which at times spread to other regions, WHO [1] and Jezek et al. [2]. The first identified

human MPXV case was a nine-month-old boy in the Democratic Republic of Congo in

1970, WHO [1] and CDC [3]. Afterward, Nigeria had its index case of human MPX in

1971. Thereafter, Nigeria has been experiencing an increasing outbreak of MPXV with
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over 500 suspected cases that include more than 200 confirmed

cases of MPXV, WHO [1]. After the eradication of smallpox

globally in 1980, the MPXV has been the leading orthopoxvirus

infection in humans to date. In recent times, the reported cases

of MPXV infection have greatly increased when compared to the

past decades (years), WHO [1], CDC [4], and Nolen et al. [5]. As

of 2nd August 2022, there have been a total number of 25,391

MPXV confirmed cases worldwide with 25,047 in non-endemic

regions (countries that do not have historically reported cases)

and 344 in endemic regions (countries that have historically

reported cases), CDC [3]. In addition, between 1 January and

12 June 2022, a total of 141 suspected and 36 confirmed cases of

MPXV infection have been reported in Nigeria, NCDC [6]. The

main reservoir for MPXV infection in humans is still unknown,

but several studies suggested that animals most likely rodents

and non-human primates are the potential reservoirs (natural

host), WHO [1], CDC [4], and Nolen et al. [5].

The three possible and potential means of transmitting

MPXV are animal-human (zoonotic) transmission, human-

human transmission, and environmental factors (inter-human

or animal) transmission. Animal-human transmission occurs

through direct contact with the blood, body fluids, and

cutaneous and mucosal lesions of infected animals, WHO [1]

and CDC [4]. Zoonotic transmission can occur through the

consumption of half-cooked or uncooked meat of these natural

hosts, Alakunle et al. [7]. Human to human transmission occurs

via close contact with an infected person’s bodily fluids, skin

lesions or sores, and respiratory tract secretions, WHO [1],

CDC [4], and Somma et al. [8]. Transmission via environmental

factors occurs when a human or an animal comes into contact

with recently infected surfaces or materials contaminated with

the virus, whether by infected humans or animals. The MPXV

has an incubation period of 7 to 14 days, but this can also

range from 5 to 21 days, WHO [1]. Infected persons can

spread the virus even before the symptoms appear. In humans,

the symptoms of smallpox are more severe and often deadly,

as compared to MPXV infection. The obvious symptoms

manifested by individuals who may have contracted MPX

include fever, severe headache, chills, backache, muscle pain,

intense asthenia (fatigue), lymphadenopathy (swollen lymph

nodes), followed by a rash and these symptoms last for about

2–4 weeks, WHO [1] and CDC [3]. The lymphadenopathy

symptom clinically differentiates MPXV infection from every

other member of the Poxviridae family. At present, the case

fatality rate (epidemic risk) of MPX is in the range of 3–6% [1].

The main testing mechanism used in the detection of

MPXV is the polymerase chain reaction (PCR) or real-time

polymerase chain reaction (RT-PCR) blood test. This is the

best laboratory test used in the diagnosis of MPX due to its

accuracy and sensitivity, WHO [1] and Fowotade et al. [9].

The eradication of MPXV seems complicated and impossible

because it infects both humans and animals and there is an

increasing encroachment of humans into wildlife habitats where

MPX reservoirs are believed to be. In addition, humans do

not have direct control over the reservoir of infected animals

(animal reservoir). At present, there is no specific or proven

treatment or vaccine for MPX, but existing vaccines used for

smallpox provides significant protection of approximately 85%

efficacy against MPX. In addition, some certain novel antiviral

medications, such as Tecovirimat, Brincindofovir, and Vaccinia

immune globulin have proven benefits in preventing the spread

of infection within the population. It is also worth noting that

in 2019, a two-dose vaccine based on a modified attenuated

vaccinia virus (Ankara Strain) was approved by WHO for

the prevention of MPX, WHO [1]. Under strict and rigorous

implementation of infection prevention and control measures,

such as the use of PPE (to avoid direct contact with infected

persons or animals, and surfaces or materials contaminated

with the virus), isolating or quarantining the suspected cases

or infected persons, practicing good hand hygiene, raising

awareness of the risk factor, use of standard contact and droplet

precautions, educating people on the requiredmeasures to adopt

to reduce the exposure to the MPXV, the probability that the

MPXV will lead to an epidemic can be drastically reduced or

minimized if these measures are implemented, WHO [1] and

CDC [4].

The lack of adequate awareness and knowledge of the

transmission dynamics and risk factors of the MPXV disease

provides a fertile ground for its spread across both endemic

and non-endemic regions. There are not many literature studies

on MPXV hence the present unusual outbreak needs urgent

research attention into the sudden surge. The reliability of

mathematical models has been proven beyond doubt over the

years. These efficient mathematical tools have been employed

for a better understanding of the potential implications of

infectious disease transmission dynamics and for formulating

control strategies that suppress and halt the effects of infectious

diseases, epidemics, and pandemics, Madubueze et al. [10] and

Ogunmiloro [11]. Some scholars have developed mathematical

models of MPXV with two interacting host populations, namely

the human and non-human (rodent or monkey) populations,

Somma et al. [8], Lasisi et al. [12], Usman and Adamu [13],

and Emeka et al. [14]. Somma et al. [8] incorporated a public

enlightenment campaign parameter and a quarantine class in

the human population to control the spread of MPX, while,

the exposed class for both human and non-human populations

and the vaccination class for migrants were incorporated by

Lasisi et al. [12]. Usman and Adamu [13] investigated the

effect of combined vaccine and treatment interventions as

control strategies to study the transmission dynamics of MPXV

infection. Emeka et al. [14], on the other hand, developed

a deterministic mathematical model for the transmission

dynamics of MPXV, in which they looked at the effect of

an imperfect vaccine on the dynamics of infection among

the human host population. Their simulations emphasized the

impact of a weak, medium, and strong immune system on
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some epidemiological statuses. Peter et al. [15] established

that isolating infected humans will reduce the MPXV in the

population. However, MPXV still persists in the population

despite the aforementioned results. We, therefore, considered

the effect of a contaminated environment (that is surfaces and

materials contaminated by MPXV through the shedding of

the virus in the environment) on MPXV dynamics. This is

based on the epidemiology of MPX, WHO [1] and it forms

the motivation of this study. To the best of our knowledge,

there have been no studies on MPXV on this. We also include

the isolated (quarantined) class [15] and the vaccinated class

[13] in the human population. This makes the study to be the

first work to consider the impact of quarantine, vaccination,

and contaminated environment on the transmission dynamics

of MPXV and it describes how the contaminated environment

(contaminated surfaces and materials) transmits the infection

to the susceptible human population. A quarantine strategy is

used to quarantine any suspected cases of MPXV, such that, if

the quarantined persons show any signs and symptoms of the

MPXV infection, they are isolated for treatment, otherwise, after

an incubation period without symptoms, they are moved back

to the susceptible class again.

The arrangement of this paper is as follows: Section 2

presents the model formulation for the MPXV, and Sections

3 and 4 discuss the model analysis. Section 5 presents

the sensitivity analysis of the formulated model. Section 6

presents numerical simulations to substantiate and validate

some analytical results with its discussions, and Section 7

presents the conclusion.

2. Model formulation

There is indeed no perfect mathematical model that can

accurately predict the detailed outcome of the infectious

disease transmission dynamics, Keeling and Rohani [16] and

Ogunmiloro [17]. However, having a thorough understanding

of the infectious disease to be modeled is the key to

formulating a mathematical model for the disease. Furthermore,

when formulating a mathematical model for the infectious

disease, it is important to note that as the infection spreads

throughout the population, the population is subdivided into

non-intersecting compartments, such as susceptible individuals,

infected individuals, and recovered individuals. The formulated

mathematical model should be able to capture the dynamics of

each compartment, taking into account how each compartment

changes over time, Martcheva [18].

This section presents the formulation framework for the

MPX disease model. During the development of the model,

we proposed a compartmental MPX model for the human

population (SH(t),VH(t),EH(t),QH(t), IH(t), and RH(t)), the

vector (rodent) population (SR(t), IR(t)), and environmental

contamination compartment (B(t)). We also considered the

following assumptions based on a simplified epidemiological

history of the MPXV disease.

• All recruitment (via birth or immigration) into the

population is instantly vulnerable to the MPXV disease,

WHO [1]

• Susceptible humans can be infected by both infectious

rodents and humans, [4]

• Susceptible rodents can be infected by infectious rodents

but not by infectious humans, [1] and Marennikova [19]

• Susceptible humans can be infected via MPXV

concentration within the environment due to the

shedding of the virus by infectious humans and rodents,

[4] and Ježek et al. [20]

• Individuals in MPX endemic areas are vaccinated, [1, 8]

• The rodents remain infectious and have no recovered class,

WHO [1] and CDC [4]

• All compartments of rodent and human populations are

well-mixed, Marennikova and Šeluhina [19]

On the one hand, the total human population at time

t, denoted by NH(t), is subdivided into sub-populations

of susceptible (SH(t)), vaccinated (VH(t)), exposed (EH(t)),

quarantine (QH(t)), infectious, IH(t), and recovered (RH(t))

individuals such thatNH(t) = SH(t)+VH(t)+EH(t)+QH(t)+

IH(t)+RH(t). On the other hand, the total rodent population at

time t, denoted by NR(t), is subdivided into sub-populations of

susceptible rodents (SH(t)) and infectious (IH(t)) rodents such

that NR(t) = SR(t)+ IR(t).

2.1. Dynamics of the humans

The recruitment of susceptible individuals into the human

population occurs via birth or immigration at a constant

rate, 3H . The susceptible population (SH(t)) decreased by

vaccination of susceptible humans at a rate, ǫ while increased

through the loss of vaccine-acquired immunity by vaccinated

humans, Vh(t), at a waning rate, φ, and through the progression

from the quarantine humans, QH(t), at a rate, γ . Susceptible

humans acquire MPX infection after effective contact with

infectious rodents, infectious humans, and contaminated

environment, B(t) at a force of infection rate, λH is given by

λH =
β1IH

NH
+

β2IR

NR
+

β3B

K + B

where β1,β2, and, β3 are transmission rates from infectious

humans to susceptible humans, infectious rodents to susceptible

humans, and the concentration of MPXV in the environment

to susceptible humans, respectively. The parameter, K, is the

concentration of MPX pathogen in the environment which

increased by 50% to give rise toMPX transmission and B(t) is the
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environmental contamination compartment. Natural mortality

occurs in all human classes at a rate, µH , so that

dSH

dt
= 3H − λHSH + φVH + γQH − (ε + µH) SH .

The population of vaccinated humans (VH(t)) is generated by

the vaccination of susceptible individuals at the rate, ǫ. This

population decreases due to the waning of the vaccine at the rate,

φ, and by the natural death rate, µH . This gives

dVH

dt
= ǫSH − (φ + µH)VH .

The population of exposed humans
(

EH(t)
)

is formed by the

infection of susceptible humans
(

SH(t)
)

at the rate, λH . This

population is reduced by the progression of individuals to the

quarantine and infectious compartments at the rates, σ and τ ,

respectively, and by the natural death rate, µH . Thus,

dEH

dt
= λHSH − (σ + τ + µH)EH .

The population of quarantine humans
(

QH(t)
)

is generated

by the progression of exposed humans to the quarantine

compartment at a rate, σ . This population also decreases with

the progression of quarantine individuals to the susceptible

and infectious compartments. The quarantined humans without

symptoms after the incubation period return to the susceptible

class at a rate, γ , while those with symptoms are isolated for

treatment and are progressed to the infected class at a rate, α.

This gives,

dQH

dt
= σEH − (γ + α + µH)QH .

The population of infectious humans
(

IH(t)
)

is formed by

the progression of exposed and quarantine humans to the

infectious compartment at the rates, τ and α, respectively. Also,

this population decreases through the recovery of the infected

humans at the rate, ω, and disease-induced death rate, δ. The

infected humans comprise quarantine individuals that develop

symptoms and are under treatment and exposed humans who

miss the quarantine strategy within the population. This gives,

dIH

dt
= τEH + αQH − (ω + µH + δ) IH .

The population of recovered humans is generated by the

recovery of infectious humans at the rate, ω, and reduces by the

natural death at the rate, µH , so that

dRH

dt
= ωIH − µHRH .

2.2. Dynamics of the rodents

The susceptible rodents class, SR(t), is recruited at a constant

rate, 3R, and is decreased through acquiring infection following

substantial contact with infectious rodents at a rate, λR, where,

λR =
β4IR

NR

with β4 as the transmission rate from infectious rodents to

susceptible rodents. It is possible that the susceptible rodents

can be infected via interaction with the infected environment.

However, this is not considered in this work as the main

focus of this study is solely on human interaction with the

infected environment. Natural mortality occurs in all rodent

compartments at a rate, µR. This yields,

dSR

dt
= 3R − λRSR − µRSR.

The population of infectious rodents, IR(t), is generated via

interaction between the susceptible rodents, (SR(t)), and infected

rodents, (IR(t)), at the rate, λR. This population decreases by a

natural death at a rate, µR. Hence,

dIR

dt
= λRSR − µRIR.

2.3. The dynamics of the MPXV
concentration within the environment

The concentration of MPXV within the environment is due

to the shedding of the virus by infected humans and rodents in

the environment, and this contributes to the force of infection,

λH . There are a number of options in the literature regarding the

choice of incidence functions for virus or pathogen interaction

in the environment, Hethcote [21], Berge et al. [22], and Tian

et al. [23]. For example, Berge et al. [22] showed that the mass

action incidence is used for the interaction of Ebola virus in

the environment. This study followed Tian and Wang [23]’s

approach to cholera infection and formulated the incidence

function for the concentration of MPXV in the environment.

This is due to the indirect transmission of MPXV that occurs

in a saturated manner (how long the virus survives in the

environment) and this takes the form

β3B

K + B
.

The concentration of MPXV in the environment is generated

when the infected humans and rodents shed the virus in the

environment at the rates, ρ1 and ρ2, respectively. It is reduced

by the decay rate of MPXV in the environment at a rate, µB.

Hence,

dB

dt
= ρ1IH + ρ2IR − µBB.
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Thus, the full system of equations for the transmission dynamics

of the MPX disease is given by the following nonlinear system of

differential equations, and it is presented graphically in Figure 1:

dSH

dt
= 3H − λHSH + φVH + γQH − (ǫ + µH) SH , (1)

dVH

dt
= ǫSH − (φ + µH)VH , (2)

dEH

dt
= λHSH − (σ + τ + µH)EH , (3)

dQH

dt
= σEH − (γ + α + µH)QH , (4)

dIH

dt
= τEH + αQH − (ω + µH + δ) IH , (5)

dRH

dt
= ωIH − µHRH , (6)

dSR

dt
= 3R − λRSR − µRSR, (7)

dIR

dt
= λRSR − µRIR, (8)

dB

dt
= ρ1IH + ρ2IR − µBB. (9)

All state variables are described in Table 1 and are subjected to

initial conditions:

SH(0) > 0, VH(0) ≥ 0, EH(0) ≥ 0, QH(0) ≥ 0, IH(0) ≥ 0,

RH(0) ≥ 0, SR(0) > 0, IR(0) ≥ 0, B(0) ≥ 0.

Also, all the parameters of the MPX model (Equations 1–9) are

assumed to be non-negative and are presented in Table 2.

3. Mathematical analysis of model
properties

In this section, we quantitatively determined the

characteristic properties of the model constituted by establishing

the system feasible region and positivity of the system solutions.

3.1. Feasible region

We show that the model system (Equations 1–9) is well-

posed by stating and proving the following theorem;

Theorem 3.1. The MPX model (Equations 1–9) is a dynamical

system that has a biologically feasible region given as

� =

{

(SH ,VH ,EH , IH ,QH ,RH ,B) ∈ R
7
+ :

0 ≤ NH(t) ≤
3H

µH
, (SR, IR) ∈ R

2
+ :

0 ≤ NR(t) ≤
3R

µR
,

B(t) ≤
1

µB

(

ρ13H

µH
+

ρ23R

µR

)

}

.

Proof: For non-negative initial conditions, the model system

(Equations 1–9) possesses at all time, t ≥ 0, a unique

non-negative solution that lies in the region, �. Following

the approaches of Busenberg and Cooke [24] and Stuart and

Humphries [25], we add the first six equations of the system

(Equations 1–6) such that

dNH

dt
= 3H − µHNH − δIH

H⇒ 0 ≤
dNH

dt
= 3H − µHNH − δIH ≤ 3H − µHNH .

Applying Gronwall’s inequality implies that

0 ≤ NH(t) ≤
3H

µH
, for 0 ≤ NH(0) ≤

3H

µH
,

where NH(0) is the initial condition of the human population,

NH(t).

Also, by adding the seventh and eighth Equations, we obtain

dNR

dt
= 3R − µRNR,

which by similar approach yields

0 ≤ NR(t) ≤
3R

µR
, for 0 ≤ NR(0) ≤

3R

µR
.

With IH ≤ NH and IR ≤ NR, we have from the last equation of

the system (Equation 9) that

dB

dt
≤ ρ1

(

3H

µH

)

+ ρ2

(

3R

µR

)

− µBB,

which by Gronwall’s inequality leads to

0 ≤ B(t) ≤
1

µB

{

ρ13H

µH
+

ρ23R

µR

}

, for 0 ≤ B(0)

≤
1

µB

{

ρ13H

µH
+

ρ23R

µR

}

.

Using the well-known result in Theorem 2.1.5 of Stuart and

Humphries [25], we conclude that the model system (Equations

1–9) defines a dynamical system within the region, �.

3.2. Positivity of the system solutions

We show that all state variables of the MPX dynamics

transmissionmodel (Equations 1–9) are non-negative at all time,

t > 0, and this means that the model is epidemiologically

significant and mathematically well-posed. We state and prove

the following theorem:

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2022.1061546
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Madubueze et al. 10.3389/fams.2022.1061546

FIGURE 1

Model flow diagram for the environmental transmission dynamics of Monkeypox (MPX) infection.

Theorem 3.2. Let the initial conditions
{

SH(0),VH(0),EH(0),QH(0), IH(0),RH(0),B(0) ≥ 0
}

∈ ℜ7
+

and
{

SR(0), IR(0) ≥ 0
}

∈ ℜ2
+. Then, the solution set

{SH(t),VH(t),EH(t),QH(t), IH(t),RH(t),

SR(t), IR(t),B(t)} of the model system (Equations 1–9) is

non-negative for all t > 0.

Proof: Using the approach ofMadubueze et al. [10], it follows

from the first equation of the system (Equations 1–9) that

dSH

dt
= 3H − λHSH + φVH + γQH − (ε + µH) SH ,

such that

dSH

dt
≥ −λHSH − (ε + µH) SH .

Solving this equation gives

SH ≥ SH(0) exp

(

−

∫ t

0
λHdt

)

exp (− (ε + µH) t) ≥ 0

which is positive, given that Sh(0) is also positive. In the same

way,

VH(t) ≥ VH(0) exp{−(φ + µH)t} ≥ 0,

EH(t) ≥ EH(0) exp{− (σ + τ + µH) t} ≥ 0,

QH(t) ≥ QH(0) exp {− (γ + α + µH) t} ≥ 0,

IH(t) ≥ IH(0) exp {− (ω + µH + δ) t} ≥ 0,

RH(t) ≥ RH(0) exp{−µH t} ≥ 0.

It can also be shown for the rodent compartment

and the MPX-contaminated environment

compartment. This shows that the solution set

{SH(t),VH(t),EH(t),QH(t), IH(t),RH(t), SR(t), IR(t),B(t)}

is non-negative for all t ≥ 0 since exponential functions and

initial solutions are non-negative.

4. The stability analysis of the MPX
model

This section presents the quantitative investigation of the

model equilibrium states and their stability conditions.
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TABLE 1 Description of state variables.

Parameters Description

SH(t) Susceptible Individuals at risk of infection at any time, t

VH(t) Vaccinated individuals at any time, t

EH(t) Exposed individuals but not infectious at any time, t

QH(t) Quarantine individuals at any time, t

IH(t) Infected individuals at any time, t

RH(t) Recovered individuals at any time, t

SR(t) Susceptible rodents at any time, t

IR(t) Infected rodents at any time, t

B(t) Environmental contamination at any time, t

4.1. Monkeypox virus-free equilibrium
state (MPXV-FE)

For the existence of an equilibrium state, we require that,

dSH

dt
=

dVH

dt
=

dEH

dt
=

dQH

dt
=

dIH

dt
=

dRH

dt

=
dSR

dt
=

dIR

dt
=

dB

dt
= 0,

which implies from the MPX model (Equations 1–9) that

0 = 3H − λHSH + φVH + γQH − (ǫ + µH) SH ,

0 = ǫSH − (φ + µH)VH ,

0 = λHSH − (σ + τ + µH)EH ,

0 = σEH − (γ + α + µH)QH ,

0 = τEH + αQH − (ω + µH + δ) IH ,

0 = ωIH − µHRH ,

0 = 3R − λRSR − µRSR,

0 = λRSR − µRIR,

0 = ρ1IH + ρ2IR − µBB (10)

with

λH =
β1IH

NH
+

β2IR

NR
+

β3B

K + B
.

and λR =
β4IR

NR
. Then, from Equation (10), the MPXV-FE for

the model (Equations 1–9) exists when there is no infection in

the environment, human, and rodent host populations, and it is

TABLE 2 Parameter estimation for numerical simulation.

Parameter Description Value, Source

Day−1

3H Recruitment rate of susceptible

humans

800 [10]

φ Loss of vaccine-acquired immunity

rate

0.095 [13]

γ Progression rate from quarantine

to susceptible

2.0 [15]

ǫ Vaccination rate 0.1− 1 [14]

τ Progression rate from exposed to

infectious

0.2 [15]

σ Quarantine rate 2.0 [15]

α Progression rate from quarantine

to infectious

0.52 [15]

µH Human natural death rate 0.2 [13]

δ Monkeypox-induced death rate 0.1 [13]

ω Human recovery rate 0.83− 0.93 [39, 40]

β1 Human to human contact rate 0.000063 [13, 41]

β2 Rodent to human contact rate 0.00025 [41]

β3 Environmental transmission rate 0.01 [22]

β4 Rodent to rodent contact rate 0.27 [41]

K Concentration of the disease

pathogen in the environment

500 Assumed

µB Decay rate of monkeypox virus in

the environment

0.003 [22]

ρ1 Shedding rate of infectious

individuals to the environment

0.04 [22]

ρ2 Shedding rate of infectious rodents

to the environment

0.02 Assumed

3R Recruitment rate of susceptible

rodent

0.2 [14]

µR Rodent natural death rate 0.3 [14, 42]

denoted by E0. This implies that there is no infection and thus,

no recovery at MPXV-FE, i.e.,

EH = QH = IH = RH = IR = B = 0.

Then, we have,

E0 = (S0H ,V
0
H ,E

0
H ,Q

0
H , I

0
H ,R

0
H , S

0
R, I

0
R,B

0)

=
( 3Hq

pq− φǫ
,

3Hǫ

pq− φǫ
, 0, 0, 0, 0,

3R

µR
, 0, 0

)

(11)

where

p = ǫ+µH , q = φ+µH , and A = pq−φǫ = µH(q+ǫ).

(12)

It is clear from Equation (11) that there is no infection

within the human and rodent populations. Now, with
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the introduction of MPX into the population, it is

necessary to investigate the pattern of transmission

dynamics. This process invariably requires the computation

of the basic reproduction number, which is denoted

byR0.

4.2. Basic reproduction number, R0

The stability of the disease-free equilibrium, E0, is governed

and controlled by R0, which is a crucial mathematical quantity

that is considered paramount to the public health sector in

the study of the epidemiology of infectious diseases. R0 is

defined as the mean number of secondary infections produced

by a single infectious human/rodent when introduced into a

completely susceptible population, Diekmann et al. [26]. It is

computed using the next-generation approach described by

Diekmann et al. [26] with Fi as the rate of new infection

and Vi as the rate of transitional terms in the compartment,

i. Applying the approach to the MPX model (Equations 1–9)

yields

Fi =

















(

β1IH
NH

+
β2IR
NR

+
β3B
K+B

)

SH

0

0
β4IRSR
NR

0

















and

Vi =















f1EH

−σEH + f2QH

−τEH − αQH + f3IH

µRIR

−ρ1IH − ρ2IR + µBB















(13)

where i = 1, ..., 5 is the number of infected compartments

and

f1 = σ+τ+µH , f2 = γ +α+µH , and f3 = ω+µH+δ. (14)

Taking the partial derivatives of Fi and Vi with

respect to the infection state variables, EH ,QH , IH , IR,

and B at the MPXV-FE, E0 yield the Jacobian

matrices

F =

















0 0
β1S

0
H

N0
H

β2S
0
H

N0
R

β3S
0
H

K

0 0 0 0 0

0 0 0 0 0

0 0 0 β4 0

0 0 0 0 0

















and

V =















f1 0 0 0 0

−σ f2 0 0 0

−τ −α f3 0 0

0 0 0 µR 0

0 0 −ρ1 −ρ2 µB















(15)

with
S0H

N0
H

=
q

q+ ǫ
,

S0H

N0
R

=
µR3Hq

µH3R(q+ ǫ)
,

and S0H =
3Hq

A
. Hence, FV−1 matrix,

where V−1 is the inverse matrix of V , is

given by

FV−1 =



















k1 k2 k3 k4 k5

0 0 0 0 0

0 0 0 0 0

0 0 0
β4

µR
0

0 0 0 0 0



















(16)

where k1 =
q(σα + f2τ )

f1f2f3

[

β33Hρ1

KAµB
+

β1

q+ ǫ

]

, k2 =

qα

f2f3

[

β1

q+ ǫ
+

β33Hρ1

KAµB

]

, k3 =
q

f3

[

β1

q+ ǫ
+

β33Hρ1

KAµB

]

,

k4 =
3Hq

µR

[

β3ρ2

KAµB
+

β2µR

µH3R(q+ ǫ)

]

, and k5 =
β33Hq

KAµR
.

Therefore, R0 for the MPX model (Equations 1–9)

is the spectral radius of the matrix, FV−1, and it is

given by

R0 = ρ(FV−1) = max[R0R,R0H],

whereR0R =
β4
µR

andR0H = R01 +R02 +R03 +R04

with

R01 =
α σ β1 q

f1 f2 f3 (q+ ǫ)
, R02 =

β1 q τ

f1 f2 (q+ ǫ)
,

R03 =
3H β3 ρ1 qα σ

AK f1 f2 f3 µB
, and R04 =

3H β3 ρ1 q f2 τ

AK f1 f3 µB
.

Here, R0R and R0H are the reproduction numbers for rodent

to rodent transmission and human-human and environment

transmission respectively. The reproduction numbers R01 and

R02 are for human-human transmission while R03 and R04 are

reproduction numbers for human-environmental contact.

The biological insight by Diekmann et al. [26] indicates

that the MPXV infection can be eliminated in both human and

rodent host populations if R0 < 1, while it can persist in both

host populations whenR0 > 1.

4.3. Local stability of MPX-FE

The local stability of the MPX-FE state, E0, of the model

(Equations 1–9) is established in terms ofR0 by determining the

eigenvalues of linearized Jacobian matrix, J(E0), that is evaluated

at E0.

Theorem 4.1. The monkeypox-free equilibrium, E0, of model

system (Equations 1–9) is locally asymptotically stable if R0 =

max[R0R,R0H] < 1, otherwise it is unstable.
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Proof: To prove the local stability of the MPXV-FE, E0, we

show that the Jacobian matrix, J(E0), of the model system (1–

9) at E0 has negative eigenvalues. The Jacobian matrix, J(E0), is

given by

J(E0) =

















































−p φ 0 γ −
β1S

0
H

N0
H

0 0 −
β2S

0
H

N0
R

−
β3S

0
H

K

ǫ −q 0 0 0 0 0 0 0

0 0 −f1 0
β1S

0
H

N0
H

0 0
β2S

0
H

N0
R

β3S
0
H

K

0 0 σ −f2 0 0 0 0 0

0 0 τ α −f3 0 0 0 0

0 0 0 0 ω −µH 0 0 0

0 0 0 0 0 0 −µR −β4 0

0 0 0 0 0 0 0 β4 − µR 0

0 0 0 0 ρ1 0 0 ρ2 −µB

















































.

(17)

The eigenvalues of J(E0) are −µR, β4 − µR, and −µH and the

solutions of the 6th-degree polynomial that is given by

D0λ
6+D1λ

5+D2λ
4+D3λ

3+D4λ
2+D5λ+D6 = 0. (18)

Here, the coefficients Di(i = 0, 1, 2, . . . , 5) are defined in

terms of reproduction numbers,R01, R02, R03,R04, and R0H

as

D0 = 1,

D1 = µB + f1 + f2 + f3 + p+ q,

D2 = pq− φε + (p+ q)(f1 + f2 + f3 + µB)+ f1f3(1−R02)

+ (f2 + µB)(f1 + f3)+ µBf2,

D3 = f1f2f3(1−R0H)+ (pq− φε)(f1 + f2 + f3 + µB)

+ (p+ q)(f1f2 + f1f3 + f1µB + f2f3 + f2µB + f3µB)

+f1f3µB(1−R02 −R04)+ f2µB(f1 + f3),

D4 = (pq− φε)[f1f2 + f1µB + f2f3 + f2µB + f3µB

+f1f3(1−R02)]+ f1f2f3µB(1−R0H)

+f1f2f3(p+ q)(1−R01 −R02)

+f1f3(p+ q)µB(1−R02 −R04)+ f2µB(f1 + f3)(p+ q),

D5 = f1f2f3µB(p+ q)(1−R0H)+ (pq− φε)

f1f2f3(1−R01 −R02)+ (pq− φε)µBf1

f3(1−R02 −R04)+ (pq− φε)f2µB(f1 + f3), and

D6 = (pq− φε)µBf1f2f3(1−R0H).

Using the Routh-Hurwitz criteria in Kim et al. [27] and

conditions in Heffernan et al. [28] that if the inequalities

Di > 0(i = 0, 1, 2, . . . , 6), D1D2 > D0D3,

D4D5 > D3D6,D2D4 > D6D0,

are satisfied, then the polynomial (Equation 18) has negative

real part solutions. This is true provided R0 < 1.

Hence, the MPXV-FE, E0, is locally asymptotically stable

if R0 = max[R0R,R0H] < 1, since β4 − µB =

µR(R0R − 1) and R0H = R01 + R02 + R03 + R04,

otherwise it is unstable when R0 > 1. Theorem (3)

means that the MPXV will be eradicated in the population

provided R0 < 1.

4.4. Existence of endemic equilibrium
(EE) states

The model (Equations 1–9) achieves the endemic

equilibrium state when the monkeypox disease persists

within the population that is when at least one of the

infected state variables of the system (Equations 1–9)

is not equal to zero. There are two endemic equilibria,

namely the infected-rodent-free endemic equilibrium

(IRF-EE) and the coexistence endemic equilibrium (CO-

EE). Solving simultaneously the rodent compartments

of the system (Equation 9) yields S0R =
3R

µR
, I0R = 0

for IRF-EE and S∗R =
3R

β4
, I∗R =

3H(R0R − 1)

β4
,

for CO-EE.

4.4.1. Infected rodent-free endemic equilibrium

Theorem 4.2. There exists a unique IRF-EE when R0H > 1 for

the model system (Equations 1–9).

Proof: Solving simultaneously the human host and

environmental compartments of the Equation (10) in

terms of λ∗H =
β1IH

NH
+

β3B

K + B
for S0R =

3R

µR
, I0R = 0,

we have IRF-EE, E∗IRF = (S∗H , V
∗
H , E

∗
H , Q

∗
H , I

∗
H , R

∗
H ,

3R
µR

,0,

B∗)

where

S∗H =
f1 f2 q3H

λ∗H q (f1 f2 − γ σ ) + f1 f2 A
,

V∗
H =

ǫ f1 f2 3H

λ∗H q (f1 f2 − γ σ ) + f1 f2 A
,

E∗H =
q f2 3H λ∗H

λ∗H q (f1 f2 − γ σ ) + f1 f2 A
,

Q∗
H =

q σ 3H λ∗H

λ∗H q (f1 f2 − γ σ ) + f1 f2 A
,

I∗H =
q3H(τ f2 + α σ )λ∗H

f3
[

λ∗H q (f1 f2 − γ σ ) + f1 f2 A
] ,

R∗H =
ω q3H(τ f2 + α σ )λ∗H

µH f3
[

λ∗H q (f1 f2 − γ σ ) + f1 f2 A
] ,

and

B∗∗ =
ρ1 q3H(τ f2 + α σ )λ∗H

µB f3
[

θ∗∗H q (f1 f2 − γ σ ) + f1 f2 A
] ,

(19)
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FIGURE 2

Forward bifurcation plot for the transmission dynamics of the

MPX infection at the human-human and environment

reproduction number (R0H) = 1.

with λ∗H = 0 and λ∗H as the solution of

M2λ
∗2
H +M1λ

∗
H −M0 = 0, (20)

such that

M2 = q2GH,

M1 = µH f1 f2 f3 q (q + ǫ) (1−R01 −R02)G

+µB AK f 21 f 22 f 23 H(1− R03 −R04),

M0 = µHµB AK f 21 f
2
2 f

2
3 (q+ ǫ)(R0H − 1), (21)

where

G = 3H ρ1 (ασ + f2τ ) + µB K f3 (f1 f2 − γ σ ),

H = f3 µH (f2 + σ ) + (µH + ω) (ασ + f2 τ ), (22)

and f1f2 − γ σ > 0.

Here, λ∗H = 0 corresponds to the MPX disease-FE, E0, in

Equation (11) while the positive solution of Equation (20),

λ∗H =
−M1 +

√

M2
1 + 4M2M0

2M2
represents IRF-EE, E∗∗IRF , of

the model system (Equations 1–9) and hence λ∗H > 0 provided

R0H > 1. This gives a forward bifurcation at R0H = 1 in

the absence of infected rodents and it showed graphically in

Figure 2.

4.4.2. Coexistence endemic equilibrium state

The coexistence endemic equilibrium state of

model system (Equations 1–9) occurs when S∗R =

3R

β4
, I∗R =

3H(R0R − 1)

β4
, and it is denoted as

E∗C0 = (S∗H ,V
∗
H ,E

∗
H ,Q

∗
H , I

∗
H ,R

∗
H ,

3R

β4
,
3H(R0R − 1)

β4
,B∗).

Solving simultaneously the human host, rodent host,

and environmental compartments at equilibrium state

in terms of λ∗∗H =
β1IH

NH
+

β2IR

NR
+

β3B

K + B
for

S∗R = 3R
β4

, I∗R =
3H(R0R − 1)

β4
, we obtain the polynomial

E3λ
∗∗3
H + E2λ

∗∗2
H + E1λ

∗∗
H + E0 = 0, (23)

where

E3 = q2HQ,

E2 = [1−R01 − R02] µH f1 f2 f3 q (q + ǫ)Q

+ (1 − R03 − R04) µB AK f1 f2 f3 qH

+
A3R(R0R − 1) f1 f2 f3 q ρ2H

β4

×

[

1 −
β3 (f1 f2 − γ σ ) q

A f1 f2

]

+ β2 µR(1 − R0R) q
2 QH,

E1 = β2 µR (1 − R0R) f1 f2 f3 Z

+
β3 A3R (1 − R0R) f1 f2 f3 q ρ2H

β4
+ (1 − R0H)µH µB

× AK f 21 f 22 f 23 (q + ǫ)

+
µH A3R (1 − R0R) f

2
1 f 22 f 23 q ρ2 (q + ǫ)

β4

×

[

R01 + R02 +
β3 (f1f2 − γ σ ) q

A f1 f2
− 1

]

,

E0 = (1 − R0R)µH A f 21 f 22 f 23 (q + ǫ)M, (24)

with

Q = G+
3R (f1 f2 − γ σ ) f3 ρ2 (R0R − 1)

β4
,

M =
β3 ρ2 3R

β4
+ β2 µB K µR +

β2 3R µR (R0R − 1) ρ2
β4

,

and

Z = AqH

[

3R(R0R − 1) ρ2
β4

+ µB K

]

+ µH (q + ǫ)Q.

(25)

Note that the state variables of co-existence equilibrium,

S∗H , V
∗
H , E

∗
H , Q

∗
H , I

∗
H , R

∗
H , and B∗ are defined in Equation (19)

with λ∗H in Equation (20) as λ∗∗H in Equation (23).

Theorem 4.3. For the monkeypox model (Equations 1–9), there

exists a positive unique CO-EE when R0R > 1, and it exhibits a

backward bifurcation at R0R = 1 if E2 > (<)0 and E1 < 0 or

E2 < 0 and E1 > 0, otherwise a backward bifurcation does not

exist when E2 > 0 and E1 > 0.
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Proof: The number of positive roots of Equation (23) is

determined by the signs of its coefficients using Descartes’ rule

of signs. IfR0R > 1, it implies that the coefficients, E3 > 0 and

E0 < 0. The signs of E2 and E1 are determined byR0H such that

whenR0H < 1 orR0H > 1, Equation (23) has a unique positive

equilibrium. Hence, a positive CO-EE, E∗CO, exists ifR0R > 1.

Furthermore, when R0R is < 1, E0 > 0 and E3 > 0

with the assumption that Q > 0. The signs of E2 and E1 are

determined using Descartes rule of signs such that if E2 > (<

) 0 and E1 < 0 or E2 < 0 and E1 > 0, two EE exist for

R0R < 1. However, when E2 > 0 and E1 > 0, no positive

endemic equilibrium exists for R0R < 1. Therefore, the MPX

model (Equation 18) has two positive equilibria that coexist with

MPXV-FE, E0, when R0R < 1 which implies the presence of

backward bifurcation at R0R = 1. The backward bifurcation

plot for theMPXmodel (Equations 1–9) atR0R = 1 is displayed

in Figure 3. Note that the backward bifurcation exists only at

R0R = 1 which involves the coexistence of the two populations

and their respective reproduction numbers.

4.5. Global stability of the equilibrium
states

We present in this subsection, the global stability of the

equilibrium states. To begin, we state the following notations.

Lemma 4.4. From Bassey et al. [29] and Chien and Shateyi [30],

let A > 0 (< 0) be a real square matrix of order n. If A is

symmetric positive (negative) definite, then all the eigenvalues of

A have negative (positive) real parts if and only if there exists a

matrix H > 0 such that

HA+ ATHT < 0 (> 0).

Lemma 4.5. Using the global stability theorem in Castillo-Chavez

et al. [31], consider a disease model system written in the form

dX

dt
= F(X,Z),

dZ

dt
= G(X,Z)

with G(X, 0) = 0, where X ∈ Rm and Z ∈ Rn represent

uninfected and infected sub-populations (compartments),

respectively. X0 = (Xt , 0) denotes the disease-free equilibrium of

the model.

Assuming that the following conditions hold:

1.
dX

dt
= F(X, 0), Xt is globally asymptotically stable.

2. G(X,Z) = AZ − Ĝ(X,Z) with Ĝ(X,Z) ≥ 0 for all (X,Z) ∈

�, where Jacobian matrix A =
∂G

∂Z
(Xt , 0) = F − V is an

M-matrix, whose off-diagonal elements are negative. Then,

the disease-free equilibrium, DFE X0 = (Xt , 0) is globally

asymptotically stable if R0 < 1.

Lemma 4.6. From Bassey and Atsu [29] and Chien and Shateyi

[30], let

D =

[

d11 d12

d21 d22

]

be a 2 × 2 matrix. Then, D is Voltera-

Lyapunov stable if and only if d11 < 0, d22 < 0,

and Det(D) = d11d22 − d12d21 > 0.

Definition 4.7. Using Bassey and Atsu [29] and Chien and

Shateyi [30], a non-singular n × n matrix A is diagonally stable

if there exists a positive diagonal n × n matrix M such that

MA+ ATMT > 0.

4.5.1. Global stability of monkeypox-free
equilibrium

In this subsection, the comparison theorem by Castillo-

Chavez et al. [31] is employed in the MPX disease model

(Equation 9) to prove the global stability of MPXV-FE, E0, since

the model (Equation 9) exhibits forward bifurcation at R0H = 1

in the absence of infected rodents. Refer to Castillo-Chavez et

al. [31] for the conditions and application of the comparison

theorem.

Theorem 4.8. Provided R0H < 1 and IR = 0, the monkeypox-

free equilibrium state,

E0 =
( 3Hq

pq− φǫ
,

3Hǫ

pq− φǫ
, 0, 0, 0, 0,

3R

µR
, 0, 0

)

of the model (Equations 1–9) is globally asymptotically stable,

otherwise it is unstable when R0H > 1.

Proof: Based on the first condition (i) of the comparison

theorem, the uninfected compartments of the model (Equations

1–9), can be written as

dX

dt
= F(X, 0), (26)

where

F(X, 0) =











3H + φVH − pSH

ǫSH − qVH

−µHRH

3R − µRSR











with XT = [SH ,VH ,RH , SR] as the uninfected state variables

(compartments) and all the infected variables (EH ,QH , IH , IR,B)

are all zero. The Jacobian matrix of F(X, 0) is given as

JF(X,0) =











−p φ 0 0

ǫ −q 0 0

0 0 −µH 0

0 0 0 −µR











.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2022.1061546
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Madubueze et al. 10.3389/fams.2022.1061546

System (Equation 26) is globally asymptotically stable when the

eigenvalues of the Jacobian matrix, JF(X,0), are all negative real

roots and the eigenvalues are−µH ,−µR and the roots of

λ2 + (p+ q)λ + pq− φǫ = 0. (27)

Equation (27) has negative real roots by Hurwitz criteria if

p + q > 0 and pq − φε > 0 and these are true. Thus, the

system (Equation 26) is globally asymptotically stable since the

eigenvalues are negative.

By the second condition (ii), the infected compartments of

the model (Equations 1–9) can be written as

















E
′

H

Q
′

H

I
′

H

I
′

R

B
′

















= (F − V)















EH

QH

IH

IR

B















− Ĝ(X,Z) (28)

where

Ĝ(X,Z) =































β1IH

( S0H

N0
H

−
SH

NH

)

+ β2IR

( S0H

N0
R

−
SH

NR

)

+β3B
(S0H
K

−
SH

K + B

)

0

0

β4IR

(

1−
SR

NR

)

0































with ZT = [EH ,QH , IH , IR, and B] as infected variables and F,

V , S0H , S
0
R, N

0
H , and N0

R are defined in Section (4).

Here, it is clear that Ĝ(X,Z) ≥ 0 since

S0H

N0
H

≥
SH

NH
,
S0H

N0
R

≥
SH

NR

and
S0H
K

−
SH

K + B
=

S0HB+ (S0H − SH)K

K(K + B)
≥ 0. So, Equation (28)

becomes

Z
′
≤ (F − V)Z,

where

F − V =

















−f1 0
β1S

0
H

N0
H

β2S
0
H

N0
R

β3S
0
H

K

σ −f2 0 0 0

τ α −f3 0 0

0 0 0 β4 − µR 0

0 0 ρ1 ρ2 −µB

















with S0H , S
0
R, N

0
H , and N0

R defined in Section (4). The dominant

eigenvalues of F−V are β4−µR = µR(R0R−1) and the solutions

of the polynomial

C0λ
4 + C1λ

3 + C2λ
2 + B3λ + C4 = 0 (29)

where Ci, i = 0, 1, ..., 4 are defined in terms of reproduction

numbers as

C0 = 1,

C1 = µB + f1 + f2 + f3,

C2 = f1f2 + f1µB + f2f3 + f2µB + f3µB + f1f3(1− R02),

C3 = f2µB(f1 + f3)+ f1f2f3(1− R01 − R02)

+ f1f3µB(1− R02 − R04), and

C4 = f1f2f3µB(1− R0H). (30)

The roots of (29) are all negative real roots according to Routh-

Hurwitz criteria and conditions in Heffernan et al. [28] and this

means that F−V isM-matrix and satisfies the second condition

of the comparison theorem. Thus, the MPXV-free equilibrium,

E0, of themodel (Equations 1–9) is globally asymptotically stable

if R0H < 1, otherwise it is unstable. This implies that with regard

to the number of people and animals that are initially infected,

the MPX disease will be eliminated in the host populations

provided R0H < 1 otherwise, it persists in the host populations

if R0H > 1.

4.5.2. Global stability of IRF-EE

At infected rodent-free endemic equilibrium, E∗IRF =

(S∗H , V
∗
H , E

∗
H , Q

∗
H , I

∗
H , R

∗
H ,

3R
µR

, 0,B∗) with assumption that

β̂1 =
β1
N∗ , where N = N∗ = 3H

µH
as t → ∞, the system

(Equations 1–9) reduces to

dSH
dt

= 3H + φVH + γQH − (ǫ + µH)SH − β̂1SHIH −
β3BSH
K+B ,

dVH
dt

= ǫSH − (φ + µH)VH ,
dEH
dt

= β̂1SHIH +
β3BSH
K+B − f1EH ,

dQH
dt

= σEH − f2QH ,
dIH
dt

= τEH + αQH − f3IH ,
dRH
dt

= ωIH − µHRH ,
dSR
dt

= 3R − µRSR, and
dB
dt

= ρ1IH − µBB.
(31)

Using the Voltera-Lyapunov matrix theory and approach

described in Chien and Shateyi [30] and Zahedi and Kargar

[32], the global stability of IRF-EE is established by constructing

a Lyapunov function and adopting Voltera- Lyapunov matrix

conditions in Bassey and Atsu [29]. We state the following

theorem for global stability of IRF-EE, E∗IRF , based on the

biologically feasible region of the system given in Subsection

[3.1], and the theorem is given as follows.

Theorem 4.9. The global stability of IRF-EE, E∗IRF , holds if time

derivative
dL

dt
< 0, where L is a Voltera-Lyapunov function

defined for the reduced system (Equation 31) in the region, �.
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Proof: We construct the Voltera-Lyapunov function, given by

L = a1(SH − S∗H)
2 + a2(VH − V∗

H)
2 + a3(EH − E∗H)

2

+ a4(QH − Q∗
H)

2 + a5(IH − I∗H)
2

+ a6(RH − R∗H)
2 + a7(SR − S∗R)

2 + a8(B− B∗)2,

where ai > 0, i = 1, 2, . . . , 8 are constant parameters. Taking

the time derivative of L along the trajectories of the system

(Equation 31) yields

L
′
(t) = 2a1(SH − S∗H)S

′

H + 2a2(VH − V∗
H)V

′

H

+ 2a3(EH − E∗H)E
′

H + 2a4(QH − Q∗
H)Q

′

H

+2a5(IH − I∗H)I
′

H + 2a6(RH − R∗H)R
′

H

+ 2a7(SR − S∗R)S
′

R + 2a8(B− B∗)B
′
. (32)

Upon substituting system (Equation 31) into Equation (32) and

simplifying at IRE-EE yields

L
′
(t) = 2a1(SH − S∗H)

[

φ(VH − V∗
H)+ γ (QH − Q∗

H)

− p(SH − S∗H)+ β̂1I
∗
HS

∗
H − β̂1IHSH +

β3B
∗S∗H

K + B∗

−
β3BSH

K + B

]

+ 2a2(VH − V∗
H)

[

− q(VH − V∗
H)+ ǫ(SH − S∗H)

]

+ 2a3(EH − E∗H)
[

− f1(EH − E∗H)

+β̂1SHIH − β̂1S
∗
HI

∗
H +

β3BSH

K + B
−

β3B
∗S∗H

K + B∗

]

+ 2a4(QH − Q∗
H)

[

σ (EH − E∗H)− f2(QH − Q∗
H)

]

+2a5(IH − I∗H)
[

− f3(IH − I∗H)+ τ (EH − E∗H)

+ α(QH − Q∗
H)

]

+ 2a6(RH − R∗H)
[

ω(IH − I∗H)

− µH(RH − R∗H)
]

+ 2a7µR(SR − S∗R)
2 + 2a8(B− B∗)

×
[

− µB(B− B∗)+ ρ1(IH − I∗H)
]

.

Adding and subtracting β̂1IHS
∗
H and

β3BS
∗
H

K + B
into the first and

third square brackets and simplifying gives

L
′
(t) = 2a1(SH − S∗H)

[

φ(VH − V∗
H)+ γ (QH − Q∗

H)

− p(SH − S∗H)− β̂1S
∗
H(IH − I∗H)

− β̂1IH(SH − S∗H)−
β3S

∗
HK(B− B∗)

(K + B)(K + B∗)
−

β3B(SH − S∗H)

K + B

]

+ 2a2(VH − V∗
H)

[

− q(VH − V∗
H)+ ǫ(SH − S∗H)

]

+ 2a3(EH − E∗H)
[

− f1(EH − E∗H)+ β̂1S
∗
H(IH − I∗H)

+ β̂1IH(SH − S∗H)+
β3S

∗
HK(B− B∗)

(K + B)(K + B∗)
+

β3B(SH − S∗H)

K + B

]

+ 2a4(QH − Q∗
H)

[

σ (EH − E∗H)− f2(QH − Q∗
H)

]

+ 2a5(IH − I∗H)
[

− f3(IH − I∗H)+ τ (EH − E∗H)

− α(QH − Q∗
H)

]

+ 2a6(RH − R∗H)
[

ω(IH − I∗H)

+ µH(RH − R∗H)
]

− 2a7µR(SR − S∗R)
2 + 2a8(B− B∗)

×
[

− µB(B− B∗)+ ρ1(IH − I∗H)
]

,

which can be written in matrix form as

L
′
= Y(WP + PTWT)YT (33)

where Y = [SH − S∗H , VH − V∗
H , EH − E∗H , QH − Q∗

H , IH −

I∗H , RH − R∗H , SR − S∗R,B− B∗],W = diag(a1, a2, a3, . . . , a8)

and

P =





























−(p+ n1) φ 0 γ −β1S
∗
H 0 0 −n2

ǫ −q 0 0 0 0 0 0

n1 0 −f1 0 β1S
∗
H 0 0 n2

0 0 σ −f2 0 0 0 0

0 0 α τ −f3 0 0 0

0 0 0 0 ω −µH 0 0

0 0 0 0 0 0 −µR 0

0 0 0 0 ρ1 0 0 −µB





























(34)

with n1 = β̂1IH +
β3B

K + B
and n2 =

β3S
∗
HK

(K + B)(K + B∗)
.

We need to prove that matrix P is a Volterra-Lyapunov stable

or −P is a diagonally stable matrix. This will involve finding

the inverse of matrix P that requires 48 sub-determinants of the

matrix, P, which is difficult to compute manually. We, therefore,

adopt the approach of Bassey and Atsu [29] by stating the

following Lemmas.

Lemma 4.10. Let D = −P, then D is a diagonal stable for the

matrix P defined in Equation (34).

Lemma 4.11. If D is a diagonal matrix, then the inverse E =

−P−1 is also a diagonal stable matrix.

We prove Lemmas 4 and 5 by solving the following Lemma.

Lemma 4.12. Let D = [dij] be a non-singular 8 × 8 matrix and

M = diag(m1, m2, . . . , m8) be a 8× 8 positive diagonal matrix.

Let E = D−1, then M̂Ē + (M̄Ē)T > 0 and M̄D̄ + (M̄D̄)T > 0

if d88 > 0 and m8 is chosen such that m8 > 0 yields MD +

DTMT > 0. Hence, the following theorem holds.

Note that Ē is a 7× 7 matrix obtained from E by deleting the last

row and last column of matrix−P.

Theorem 4.13. The matrix P defined by Equation (34) is a

Volterra-Lyapunov stable.

Proof: Since d88 > 0 from matrix D and Lemmas 5 and 6 are

satisfied, there exists a positive 8× 8 diagonal matrix such that

W(−P)+ (−P)TWT > 0

implies thatWP + PTWT < 0.

Thus, applying LaSalle’s invariant principle, the global stability

of IREE is stated as follows:
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FIGURE 3

Backward bifurcation plot for the transmission dynamics of the

MPX infection at the rodent-rodent reproduction number (R0R)

= 1.

Theorem 4.14. When R0H > 1, IRF-EE, E∗IRF =

(S∗H , V
∗
H , E

∗
H , Q

∗
H , I

∗
H , R

∗
H ,

3R

µR
, 0,B∗) of the model of Equations

(1–9) is globally asymptotically stable but unstable when

R0H < 1.

Proof: By Theorem (4.13),
dL

dt
< 0 whenever E0 6= E∗IRF and E0

is not a set ofmeasure zero. This implies that the largest invariant

set in � is a singleton, E∗IRF . Therefore, by LaSalle’s invariant

principle, the IRF-EE, E∗IRF , is globally asymptotically stable in

� if E0 6= E∗IRF . This completes the proof.

For the global stability of the CO-EE, the same analytic

approach for the global stability of IRF-EE may be applied.

5. Sensitivity analysis

Sensitivity analysis is an important tool used to measure the

impact and contribution of each model parameter to the model

output. We carried out sensitivity analysis on all parameters of

R0H to ascertain which parameter(s) have a great influence on

either increasing or decreasing the magnitude of R0H . This in

turn will reveal the biological significance of each parameter

of R0H and this will enable public health practitioners and

decision-makers to know the best intervention strategies to

adopt in the prevention and control of MPXV in both host

populations. R0H is considered for sensitivity analysis as it

affects the human population and also involves many model

parameters that make it easy to apply intervention strategies

and know the impacts of many model parameters. The Latin

hypercube sampling (LHS) scheme and partial rank correlation

coefficient (PRCC) technique used by Blower and Dowlatabadi

[33] and Rodrigues et al. [34] are employed to determine the

biological implication of each model parameter in relation to the

disease threshold, R0H . For more detail on the method used in

current research, refer to Rodrigues et al. [34], Madubueze et al.

[35], Chukwu et al. [36], Chazuka et al. [37], and Njagarah et

al. [38]. The signs of PRCCs indicate the degree of relationship

each model parameter has withR0H . When the parameters with

positive PRCC values increase, the value of R0H also increased

and thereby contribute to the spread of the MPX infection in the

population. While the parameters with negative PRCC values

will decrease the value of R0H when they are increased and in

turn will reduce the spread of the MPX epidemic.

The tornado plot of Figure 4A displays a visual

representation of PRCCs of the model parameters while

Table 3 presents the PRCCs of some model parameters and their

corresponding p-values. It is observed from the plot (Figure 4A)

and Table 3 that the environmental transmission rate, β3, the

shedding rate of infectious individuals to the environment, ρ1,

the quarantine rate, σ , and the decay rate of MPXV within

the environment, µB, have relatively larger PRCC values.

This means that these parameters have a significant impact

on the transmission dynamics of the MPXV infection in the

population. The parameters, β1, β3, α, and ρ1, have positive

PRCC values and increasing them consequently increases the

value of R0H , which in turn increase the spread of the MPXV

infection in the population. On the other hand, the parameters

σ , ω, ǫ, and µB, have negative PRCC values and increasing

them will reduce the value of R0H and consequently halt the

spread of MPXV in the population. For the box plot (Figure 4B),

it is revealed that the human-human and environment

transmission reproduction number, R0H , is within the range

[0.4538, 4.063] with a mean value of R0H = 1.522. This

indicates that there is a possibility of the MPXV infection

outbreak in the population as currently witnessed globally,

and R0H > 1 implies that whenever an infected human is

introduced into the wholly susceptible population, the MPXV

infection will persist in the population.

Furthermore, the Monte Carlo simulations of the most

sensitivity parameters are displayed as scatter plots in Figure 5.

They show how the most sensitivity parameters are affecting

R0H positively or negatively. From Figure 5, the parameters,

β3, ω, µB, and ρ1, have a strong force to reckon with

in the transmission dynamics of the MPXV infection and

should be targeted by public health practitioners and decision-

makers in order to curtail the MPX infection in the

population.

The pairwise PRCC comparison of some model parameters

whose p-values are less than 0.05 is presented in Tables 4, 5.

The pairwise PRCC comparison is carried out to determine

which of the compared parameter processes are different. Table 4

is for unadjusted p-values while Table 5 is for false discovery

rate (FDR) adjusted p-values. In Tables 4, 5, the compared pair

of significant parameters that are less than 0.05 means that
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FIGURE 4

(A) Tornado plot of Partial Rank Correlation Coe�cient (PRCC) values for some important parameters of R0H. The parameter values (ranges)

used are given in Table 2. (B) Box plot of R0H. The parameter values (ranges) used are given in Table 2.
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they are significantly different (TRUE) otherwise they are not

different (FALSE). We notice that the pairs σ − ǫ and β3 −

ρ1 are not significantly different in both Tables 4, 5. This is

TABLE 3 Parameter partial rank correlation coe�cient (PRCC)

significance (unadjusted p-values).

Variable PRCC p-value Keep

σ –0.28031571 0.000000 TRUE

α 0.43517357 0.000000 TRUE

ω –0.56723023 0.000000 TRUE

ǫ –0.27314380 0.000000 TRUE

β1 0.08206782 0.009653 TRUE

β3 0.76757805 0.000000 TRUE

µB –0.76662403 0.000000 TRUE

ρ1 0.78240955 0.000000 TRUE

further shown in Table 6 that all the most sensitive compared

pairs are significantly different, except the pairs σ − ǫ and

β3 − ρ1. The pair β3 − ρ1 is related as they contribute to the

environmental transmission that aggravates the spread of MPX

infection. Meanwhile, the pair σ − ǫ is not related as σ is the

quarantine rate and ǫ is the vaccination rate but their processes

are significant to halt the spread of MPX infection. The impacts

of insignificant pairs ( σ − ǫ and β3− ρ1) onR0H are displayed

in Figures 6A,C.

Figure 6A depicts that the value of R0H increases as the

environmental transmission rate (β3) and infectious human

shedding rate (ρ1) increase and when they are close to 0,

when R0H < 1, it means there is a high degree of

sensitivity of these parameters to R0H . This implies that

the MPXV infection can be eliminated in the population

if susceptible humans avoid contact with MPX-contaminated

environment while the infected humans stop shedding the

infection within the environment. In the absence (or very

FIGURE 5

Monte Carlo simulations for the most sensitive parameters of the model generated using the parameter values in Table 2.

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

https://doi.org/10.3389/fams.2022.1061546
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Madubueze et al. 10.3389/fams.2022.1061546

TABLE 4 Pairwise PRCC comparison (unadjusted P-values).

σ α ω ǫ β1 β3 µB ρ1

σ 0 2.665E-15 0.8628 2.22E-16 0 0 0

α 0 0 0 0 0 0

ω 6.661E-16 0 0 2.22E-16 0

ǫ 6.661E-16 0 0 0

β1 0 0 0

β3 0 0.4236

µB 0

ρ1

TABLE 5 Pairwise PRCC comparisons (FDR adjusted P-values).

σ α ω ǫ β1 β3 µB ρ1

σ 0 2.87E-15 0.8628 2.703E-16 0 0 0

α 0 0 0 0 0 0

ω 7.46E-16 0 0 2.703E-16 0

ǫ 7.46E-16 0 0 0

β1 0 0 0

β3 0 0.4236

µB 0

ρ1

TABLE 6 Parameters di�erent after FDR adjustment.

σ α ω ǫ β1 β3 µB ρ1

σ TRUE TRUE FALSE TRUE TRUE TRUE TRUE

α TRUE TRUE TRUE TRUE TRUE TRUE

ω TRUE TRUE TRUE TRUE TRUE

ǫ TRUE TRUE TRUE TRUE

β1 TRUE TRUE TRUE

β3 TRUE FALSE

µB TRUE

ρ1

low level) of ρ1, R0H < 1 provided that the decay

rate of the contaminated environment (µB) keeps increasing

(Figure 6B). This implies that the more the monkeypox-

contaminated environment is cleaned and the shedding rate of

infectious individuals in the environment is reduced (keeping

at a very low level), the more the monkeypox infection will

be eradicated within the population. Figure 6C shows that

increasing the vaccination and quarantine rates (ǫ and σ )

reduces the value of R0H . Thus, this implies that the MPXV

infection will be curtailed within the human population if more

susceptible humans are vaccinated and exposed humans are

quarantined.

FIGURE 6

(A) Three-dimensional plot depicting the relationship between

R0H and environmental transmission rate (β3), infected human

shedding rate (ρ1), and R0H. The plot shows the sensitivity of the

R0H to the changes (variation) of the parameters β3 and ρ1. (B)

Three-dimensional plot depicting the relationship between the

decay rate of MPXV in the environment (µB), ρ1 and R0H. The

graph shows the sensitivity of the R0H to the changes (variation)

of the parameters µB and ρ. (C) Three-dimensional plot

depicting the relationship between quarantine rate (σ ), ǫ, and

R0H. The graph shows the sensitivity of the R0H to the changes

(variation) of the parameters σ and ǫ. The parameter values used

are given in Table 2.
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6. Numerical simulations

Numerical simulations for the model system (1–9) are

performed using MATLAB ODE45 solver and the parameter

values used are in Table 2, except where they are stated

otherwise. The simulations illustrate and support the analytical

results already established in Section 4. The following initial

conditions, SH(0) = 8000, VH(0) = 5000, EH(0) =

300, QH(0) = 100, IH(0) = 50, RH(0) = 0, SR(0) =

3000, IR(0) = 100, and B(0) = 50 are used for the

simulations. Figure 7 demonstrates the impacts of the most

sensitive parameters. This is based on the result of sensitivity

analysis. Figure 7A illustrates the effect of the decay rate

of MPXV in the environment, µB, on the infected human

population. From Figure 7A, as the value of µB increases from

0.003 to 1, R0H reduces from 1.6487 (forµB = 0.003) to

0.005 (forµB = 1.0), respectively. This indicates that increasing

the decay rate of MPXV in the environment will drastically

reduce the number of infected humans in the population and

this supports the scatter plot in Figure 5. From Figure 7B, we

observe that the more infected humans shed the infection in the

environment, the more people get infected and this may lead to

an endemic situation of MPXV in the population. The dynamics

of the infected human population when varying environmental

transmission rate (β3), is shown in Figure 7C. We noticed that

as β3 increases from 0.001 to 0.5, it increases the value of R0H

from 0.1649 to 82.4364, which leads to an increase in the number

of infected humans in the population. In particular, when β3 is

0.001 (or close to zero),R0H < 1, and this consequently results

in the elimination of the MPXV infection in the population

after the first 150 days. This reveals that susceptible humans

contract the MPXV disease more when they have frequent

contact with MPXV contaminated environment. On the other

hand, Figure 7D presents the effect of quarantining the exposed

humans in the population. We observe that as the quarantine

rate (σ ) is increasing from 0.02 to 2.0, it reduces value of R0H

from 5.1072 to 1.6487. It initially drops the number of infected

humans to below 50 before shooting up after 10 days and reduces

again after 45 days which leads to the persistence and spread of

MPXV in the human population as R0H > 1. This reveals that

quarantine intervention alone cannot halt the spread of MPXV

within the population but it can be complemented with other

interventions to achieve complete eradication of MPXV in the

population.

This study is in agreement and consistent with the results of

Somma et al. [8] and Emeka et al. [14] that quarantine (isolation)

can only reduce the MPXV disease transmission but does not

eliminate the infection within the population. Furthermore,

the combined effect of quarantine rate (σ ) and environmental

transmission rate (β3) is considered in Figure 7E. It shows that

in the absence of the environmental transmission rate (β3 = 0)

for any quarantine rate (σ = 0, or σ = 2.0), the number of

infected humans reduces rapidly to 0 after 100 days leading

to a monkeypox-free population. Whereas, whenever there is

environment transmission rate (β3 = 0.01) for any rate of

quarantine, (σ = 0, or σ = 2.0), the number of infected humans

increases in the population which is more in the absence of

quarantine intervention (σ = 0). The implication of Figure 7E is

that aMPX-free population can be achieved if there is no contact

with MPX contaminated environment.

7. Conclusion

An epidemiological model for the transmission dynamics

of the MPX disease is formulated and rigorously analyzed

for human and rodent populations. Using the next-generation

approach, we computed R0 that results in two R0 for the

two host populations, namely R0R and R0H . The local and

global stabilities of the MPXV-FE are established in terms of

R0H . The formulated model exhibits three equilibria, namely

MPXV-FE, IRF-EE, and CO-EE. The global stability of the

IRF-EE is proved using the Volterra-Lyapunov matrix theory.

Furthermore, sensitivity analysis of (R0H) is performed using

the LHS/PRCC techniques to examine the model parameters

with the greatest impact on R0H . The results from the

sensitivity analysis indicated that the environmental parameters

(environmental transmission rate, decay rate of MPXV in the

environment, and infected humans shedding rate) played an

important role in the spread of the MPX disease among host

populations. This is further supported by numerical simulations

and the results revealed that quarantine intervention should be

complemented by other interventions to curtail the spread of the

MPX disease in the population. It also suggests that health care

practitioners and policy-makers should focus more on how to

increase the environmental decay rate of the monkeypox virus,

as well as, reduce the environmental transmission rate and the

shedding rate of infectious individuals into the environment.

Since it is very difficult to control the rodent population, we

observed from our study that the best way to prevent, mitigate,

and control the MPX disease is to avoid contact with infected

humans and the monkeypox contaminated environment. This

is done through educating the human population about the

disease, observing personal hygiene, sterilization of medical

equipment, and wearing personal protective equipment (PPE)

when treating an infected human and promoting vaccination

against the MPX infection in highly endemic areas of the MPX

infection as an additional intervention measure.

There are some limitations to our studies. One of them

is using real-life data to estimate the parameters of the

model rather than sourcing the parameter values from existing

literature on the dynamics of the MPX disease. Second, the

climate change effect is not considered in this study even though

it possibly affects the rodent population.
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FIGURE 7

Simulation results showing (A) the e�ect of µB on the infected human population, (B) the e�ect of ρ1 on the infected human population, (C) the

e�ect of β3 on the infected human population, (D) the e�ect of quarantine rate (σ ) on the infected human population, and (E) the combined

e�ect of σ and the environmental transmission rate β3 on the infected human population. The parameter values used are given in Table 2.
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The formulated model may be extended by incorporating

the interaction between susceptible rodents and the

environment using half saturation function and a logistic

growth function of the pathogens in the environment. It may

also subdivide the infected humans into mildly infected humans,

symptomatically infected humans, and isolated humans. The

optimal control analysis of the formulated model in the

presence of different intervention strategies may be considered

for future work.
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