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Parkinson’s disease (PD) is the second most common neurodegenerative

disorder worldwide, yet there is no disease-modifying therapy up to this date.

The biological complexity underlying PD hampers the investigation of the

principal contributors to its pathogenesis. In this context, mechanistic models

grounded in molecular-level knowledge provide virtual labs to uncover the

primary events triggering PD onset and progression and suggest promising

therapeutic targets. Multiple modeling e�orts in PD research have focused on

the pathological role of α-synuclein (αsyn), a presynaptic protein that emerges

from the intricate molecular network as a crucial driver of neurodegeneration.

Here, we collect the advances in mathematical modeling of αsyn homeostasis,

focusing on aggregation and degradation pathways, and discussing potential

modeling improvements and possible implications in PD therapeutic strategy

design.
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1. Introduction

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder with currently

no disease-modifying therapy or cure [1]. The high prevalence of PD on the global scale

and its exponential growth over the last few decades suggest the imminent outbreak of

a non-infectious pandemic propelled by aging and industrialization as unconventional

vectors of this rapidly growing neurological disorder [2]. Given the enormous strain

that a pandemic would put on the healthcare system and the resulting human and

economic toll, it is no surprise that investigating PD pathogenesis has rapidly become

a serious public health concern. Since 1817, when the “shaking palsy” was first described

[3], considerable progress has been made in understanding PD, from the clinical

symptoms to the molecular mechanisms. Such progress has yet to translate into effective

treatments that can hamper or even reverse PD progression. The current gold-standard
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therapy (Levodopa or L-Dopa treatment) manages motor

symptoms but cannot stop neurodegeneration [4]. It

counterbalances dopamine (DA) deficiency in the basal

ganglia by relying on the pharmacological input of the DA

precursor L-Dopa. Indeed, impairments in the dopaminergic

pathway and the subsequent neuronal death in the substantia

nigra pars compacta stand out as a primary hallmark of the

disease [1].

Human and molecular genetic research has soon uncovered

PD’s multifactorial nature, thus unveiling a complex molecular

network [1, 5]. In addition to impairments in DA metabolism,

numerous processes such as protein aggregation, defective

degradation, neuroinflammation, and oxidative stress

contribute to disease onset and progression through various

feedback mechanisms (see Fujita et al. [6] for a comprehensive

disease map). The presynaptic amyloidogenic protein α-

synuclein (αsyn) emerges from the intricate molecular

landscape as a key driver of PD pathogenesis [1]. Here, we

focus on two mechanisms governing its homeostasis, i.e.,

the aggregation and degradation pathways. Figures 1A, 2A

display the biological mechanisms involved in these pathways.

Their link to PD neurodegeneration is supported by multiple

experimental and genome-wide association studies [5, 7, 8].

Even though multiple studies have highlighted the significant

contribution of these processes to PD neurodegeneration [9–11],

the interplay between the uncontrolled accumulation of αsyn

aggregates and impairments in the degradation mechanisms

is still unclear [12].

Given the intricate biological picture outlined so far,

identifying the specific role of αsyn aggregation and degradation

pathways would support therapeutic strategies currently

under investigation [13], e.g., small molecule inhibition, αsyn

antibodies, and autophagy stimulation, or even pave the way for

new pharmacological approaches. To this end, the experimental

analysis calls for a quantitative systems pharmacology (QSP)

approach at the interface between pharmacological research

and systems biology [14]. As recently highlighted in Geerts

et al. [15], Abrams et al. [16], Bloomingdale et al. [17], and

Bloomingdale et al. [18], QSPmodels indeed hold great potential

in neuroscience as they provide a systems-level understanding

of complex biological processes and insights into their response

to drugs. Specifically, modeling efforts in PD research are

moving toward multiscale QSP models that describe molecular,

cellular, whole-brain, and organism levels to assess how the

effects of a molecular perturbation can scale up to influence the

clinical outcome [19].

Starting from the molecular level, various mechanistic

models falling within the systems biology framework have
tackled PD complexity. As highlighted by previous studies
on systems biology models for neurodegenerative disorders
[20, 21], they have mainly focused on protein aggregation,

synaptic transmission, apoptosis, oxidative stress, and genetic

components rather than protein degradation. The relatively

small number of models that include degradation processes

is likely to rise along with increasing evidence that supports

the critical role of the protein clearance machinery in PD

[10, 22]. With this in mind, we collect the advances in

mathematical modeling of αsyn aggregation and degradation

by the ubiquitin-proteasome pathway, macroautophagy, and

chaperone-mediated autophagy. As shown in Figures 1, 2, we

divide the mechanistic models into two groups: (i) Single-

pathway models of αsyn aggregation representing the chemical

kinetics of the process (i.e., chemical kinetic models); (ii)

Multiple-pathway models of αsyn homeostasis focusing on

the interplay between αsyn aggregation and degradation

mechanisms (i.e., degradation models). We discuss their

potential improvements and possible implications in PD therapy

development.

2. Mechanistic models of αsyn
aggregation kinetics

Protein aggregation and misfolding are central features in

the molecular network of neurodegeneration [23]. It is therefore

no surprise that a large part of the modeling effort targeting PD

investigates the chain of microscopic events in αsyn aggregation.

These studies fall into a broader line of research devoted to

uncovering the generality of amyloid formation by focusing on

the chemical and physical aspects of this phenomenon [24, 25].

Here, we analyze mechanistic models that extend the formalism

of chemical kinetics to the aggregation process; we thus refer to

them as chemical kinetic models (see Figure 1B). These models

adopt a master equation approach building on the pioneering

work by Oosawa and Kasai [26] to provide a mathematical

formulation of each molecular step in the process and derive the

corresponding rate constants. To gain novel biological insights

and formulate new scientific queries, in silico models evolve

along with increasingly advanced experimental procedures in a

virtuous cycle ofmodel calibration and validation against in vitro

quantitative measurements [23].

2.1. αsyn misfolding and aggregation and
PD neurodegeneration

Soluble αsyn is an aggregation-prone protein with

an intrinsically disordered conformation that prevents its

spontaneous self-assembly [27]. Many factors can trigger αsyn

misfolding and accumulation, such as high αsyn concentrations,

genetic mutations, increased reactive oxygen species (ROS)

levels, and interaction with lipid membranes [28]. The

process initiates upon structural changes that expose the

highly amyloidogenic region of the protein to the cytosol.

Misfolded monomers slowly aggregate into oligomeric species,

thus creating nucleation seeds. In return, seeding-competent

oligomers can rapidly accumulate and elongate by monomer

addition forming protofibrils and insoluble fibrils (Figure 1A).
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FIGURE 1

Chemical kinetic models of αsyn aggregation. (A) A conceptual scheme of the PD molecular landscape underlying models in Section 2. The

kinetic of αsyn aggregation can be represented by either a nucleation-polymerization (NP) process or a nucleation-conversion-polymerization

(NCP) process. The pathway includes homogeneous primary nucleation from monomers, heterogeneous primary nucleation catalyzed by lipid

membranes, aggregate elongation by monomer addition, structural conversion between oligomeric species (type-A and type-B oligomers) and

fibrillar species (if we consider NCP models), fibril fragmentation, and heterogeneous secondary nucleation on fibril surfaces. Reverse processes,

such as monomer dissociation and reverse conversion, are not shown since they are negligible at the early aggregation steps. (B) Table

collecting the chemical kinetic models of αsyn aggregation considered in Section 2 that provide mechanistic insights into PD

neurodegeneration. The studies are based on the master equation approach and focus either on NP or NCP models.

Multiple αsyn species eventually gather into amyloid inclusions

known as Lewy bodies (LBs) and Lewy neurites (LNs), which

represent one of PD’s main molecular hallmarks [29].

A considerable body of research points to the harmful

effect of αsyn aggregation and its crucial contribution to PD

neurodegeneration. For instance, the SNCA gene, encoding

for αsyn, was the first gene associated with PD [30]. Still,

there is no agreement on the specific mechanisms of toxicity.

Seeding and spreading ability and inherent toxicity are the

functional and structural factors that determine the overall

toxicity of aggregates [27, 31]. According to in vitro and in vivo

experimental evidence, the most cytotoxic species are oligomers
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FIGURE 2

Models of αsyn aggregation and degradation. (A) A conceptual scheme of the PD molecular landscape underlying models in Section 3. A

high-level representation of αsyn aggregation (light-blue box) is integrated into a more complex network involving the ubiquitin-proteasome

pathway (UPP) and the autophagy-lysosome pathway (ALP) (green and purple boxes, respectively), reactive oxygen species (ROS) production,

and the corresponding feedback loops. The aggregation process involves αsyn misfolding, the conformational change between type-A and

type-B oligomers, the conversion from oligomers to fibrils, and degradation of αsyn species. Factors triggering αsyn misfolding can be

post-translational modifications (PTMs), αsyn mutations, and high ROS levels. UPP degradation, including ubiquitination and

proteasome-mediated degradation, is impaired by fibrils sequestering the proteasome and oligomers inhibiting proteasomal activity either by

proteasome overload or directly due to their inherent toxicity. Pathogenic αsyn also interferes with ALP components [69]. Fibrils and oligomers

can block CMA degradation by obstructing LAMP2A receptors and inhibiting their assembly [67, 85, 125]. Macroautophagy is the main

degradation route for αsyn aggregates. In return, misfolded αsyn and its aggregates can exert an overall inhibitory e�ect on macroautophagy

and hamper its activity by interfering with autophagosome formation, maturation, and tra�cking, in addition to lysosomal fusion and transport

[126, 127]. (B) Table collecting the models considered in Section 3. The term Generic indicates a generic degradation mechanism, either

proteasome or lysosome-mediated. The models denoted by the symbol (*) incorporate degradation mechanisms either as pseudo-first-order

reactions or enzymatic reactions; the remaining models are characterized by a more detailed representation of the degradation pathways.
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with a partially folded structure similar to mature fibrils [28,

31, 32]. Due to their conformation, some oligomeric species

can create pores within the cell membrane, thus enhancing

its permeability and dysregulating calcium homeostasis [33].

They can also impair mitochondrial function and proteolytic

machinery. On the other hand, small fibril fragments have

been identified as major-spreading agents in PD because

of their high seeding efficiency and internalization ability

[28]. According to one of the leading hypotheses for αsyn

propagation, pathogenic species are assumed to spread in a

prion-like manner [34]; they are released in the extracellular

space and then endocytosed by neighboring neurons, where

they recruit non-native monomers acting as seeds for further

aggregation. As a result, protein aggregates propagate across

interconnected brain areas over decades, eventually resulting in

PD neurodegeneration [1].

Considerable progress has been made in understanding the

kinetic of αsyn misfolding and aggregation, however, there is

no agreement on many aspects of this mechanism. Chemical

kinetic models can provide valuable insights into understanding,

for example, the relative contribution of different microscopic

events to the process, the structural and functional features of

αsyn aggregate species [32], and the relationship between αsyn

aggregation and LB formation and maturation [35, 36].

2.2. The master equation approach

The aggregation pathway of a generic amyloidogenic

protein can be represented by a minimal set of fundamental

reactions, regulating the transition from soluble monomers

to fibrils through various intermediate states. As shown in

Figure 1A, we can differentiate between primary reactions,

i.e., homogeneous primary nucleation and elongation, and

secondary reactions, i.e., heterogeneous secondary nucleation

and fibril fragmentation [37, 38]. Homogeneous nucleation

initiates the aggregation process by combining monomers into

newly formed aggregates that, in turn, elongate by monomer

addition. By integrating these reactions, fibril fragmentation and

heterogeneous nucleation on aggregate surfaces multiply the

aggregate number in a positive feedback loop with elongation,

thus ensuring self-replication. Their relative contribution to the

aggregation process depends on the specific protein considered

[25]. Primary and secondary reactions can incorporate more

complex events, such as interaction with lipid membranes and

multistep nucleation. The master equation approach [26, 39]

translates the reaction network into an infinite system of coupled

non-linear differential equations describing, in probabilistic

terms, the time course of the species involved, from monomers

to filaments identified by their monomer count.

The main goal of this approach is to find an analytical

solution for the system to describe its reaction time course. As

a result, the analytical solution can be fitted to experimental

data to identify kinetic rate constants and provide mechanistic

insights into the aggregation process. Since the master equation

formulation is often analytically and numerically intractable,

specific approximation methods can be employed to reduce

the system to two differential equations describing the time

evolution of aggregate number and mass concentrations, i.e.,

readily available observables. Multiple efforts have channeled

into a formal analysis of this minimal closed system. Knowles

and colleagues [25, 37, 40] proposed fixed-point approaches to

derive explicit solutions for the entire time course of aggregates.

All the identified parameters had a clear physical meaning

related to the underlying molecular events. Furthermore,

analytical solutions exhibited scaling laws used in model fitting

to determine the importance of primary and secondary reactions

[41]. For instance, in the case of breakable fibrils [25], the

authors found that the reaction time course mainly depended

on a parameter combining elongation and fragmentation rate

constants. By analyzing the relationship between this parameter

and the observables, such as half-time and maximal growth

rate, the authors showed that even small perturbations in the

fragmentation reaction significantly affected the aggregation

process. This procedure was implemented in a global fitting

tool for chemical kinetic models of in vitro protein aggregation

(AmyloFit) [38].

Model parsimony and data accuracy are essential

requirements for the fitting protocol. A parsimonious

model can be fitted to a wide range of experimental data

acquired for different initial monomer concentrations and

in the presence and absence of preformed aggregate seeds.

Techniques for measuring aggregate species vary from

fluorescent dyes (e.g., thioflavin T) to mass spectrometry for

aggregate mass concentration and single-molecule fluorescence

for oligomer concentrations [38, 42, 43]. With improvements

in experimental approaches come recent advances in the

mathematical framework, including the investigation of

stochastic aggregation kinetics [44], the spatial dependence of

protein aggregation [45], and the nature of oligomeric species

[32, 46].

2.3. Chemical kinetic models of αsyn
aggregation

A significant number of chemical kinetic models address

αsyn aggregation and its implications in PD.

2.3.1. Nucleation-polymerization models

NP models describe aggregation as fibril formation by

monomer addition, which follows a nucleation event and

escalates by secondary reactions. This process is represented by a

characteristic sigmoidal growth curve, identified by a lag phase,

a growth phase, and a plateau [25]. By relying on the kinetic
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theory of aggregation that revolves around the master equation

approach, multiple studies have combined experimental analysis

with these mechanistic models to investigate underlying

microscopic events and the effect of varying experimental

conditions.

Buell et al. [47] focused on the effect of pH on αsyn

aggregation in the presence and absence of preformed fibril

seeds. Homogeneous and heterogeneous nucleations and

fragmentation were negligible in purely monomeric solutions

at neutral pH. Adding preexisting aggregates to the solution

enhanced the aggregation rate and shortened the lag phase

of the sigmoidal growth curve. To obtain the elongation rate

constant, the authors used a minimal model involving only an

elongation reaction saturating at high monomer concentrations

(i.e., two-step elongation). On the other hand, a mildly acidic

pH uncovered a much faster aggregation, that is, a longer

lag phase and a more rapid growth phase, due to either

surface-catalyzed nucleation or fibril fragmentation. Building

on Buell et al. [47] and Gaspar et al. [48] determined the pH-

dependent role of these two events by relying on the theoretical

analysis of a model that includes primary and secondary

reactions. According to an experimental analysis supported

by a global fitting procedure [38], the autocatalytic nature of

aggregation was mainly determined by secondary nucleations of

monomers on fibril surfaces. These studies provided insightful

information on physiological mechanisms; for example, they

showed that even a slight pH change associated with different

intracellular environments might enhance the production of

toxic aggregates.

Small lipid vesicles can alter αsyn aggregation as much

as pH levels [49]. Upon interaction with lipid membranes,

the protein adopts a stable α-helical conformation [50].

Galvagnion et al. [49] showed that an imbalance between

free and membrane-bound αsyn states can trigger amyloid

formation by enhancing heterogeneous primary nucleation on

lipid surfaces. To confirm and quantify these results, the authors

employed an NP model including this nucleation reaction,

two-step elongation, and the conversion between intermediate

species [42]. Relying on Buell et al. [47] and Galvagnion et
al. [49], Flagmeier et al. [51] investigated how mutations in
αsyn influence the fate of amyloid fibrillation. The authors

performed three experiments to separately analyze initiation,

elongation, and multiplication steps for all αsyn variants. Each

experiment was associated with a mechanistic model: the NP

model fromGalvagnion et al. [49] for lipid-induced aggregation;

and linear polymerization models for strongly and weakly

seeded aggregation processes at neutral and mildly acidic pH.

Experimental and theoretical results agreed that the rate of

surface-catalyzed nucleation on lipid membranes and fibril

surfaces could vary by several orders of magnitude across

different mutations.

2.3.2. Nucleation-conversion-polymerization
models

The NP models are coarse-grained to the extent that

they do not explicitly account for αsyn intermediate species.

The modeling choice mainly relates to the absence of

accurate measurements of oligomer concentrations in the

aggregation process. Oligomers are indeed transient and highly

heterogeneous species. The development of new methods to

report their levels has motivated the transition to NCP models

[46, 52]. These models include the structural interconversion

from disordered clusters to oligomers with a partially formed

fibrillar structure, eventually growing into fibrils.

Multiple studies on αsyn aggregation have provided

experimental and theoretical support to this updated kinetic

theory [53–56]. Single-molecule Förster Resonance Energy

Transfer (FRET) experiments can distinguish two oligomeric

populations associated with low and high FRET levels. Type-A

oligomers are early-formed, disordered, highly degradable, and

mildly toxic species, whereas type-B oligomers are later-forming,

more compact, degradation-resistant, and ROS-promoting

species [42, 55]. Both oligomeric species appear as required

subsequent steps in the aggregation process [57]. As displayed

in Figure 1A, NCP models tailored for αsyn aggregation include

primary nucleation, which generates type-A oligomers from

monomers, and the structural conversion from type-A to type-B

oligomers and then fibrils [42, 55]. Both fibrillar and oligomeric

species increase in size by monomer-dependent elongation.

In this reaction network, the conformational change between

oligomeric species emerges as a crucial step for initiating αsyn

aggregation. Upon fitting the model to experimental data,

Cremades et al. [42] showed that the corresponding kinetic

rate is slow, thus providing a sufficient lag time for the protein

quality control machinery to hamper the pathological process. A

potential therapeutic strategymay employmolecular chaperones

or small molecules to regulate this reaction. A follow-up study

[55] used the NCP model to quantify seeding ability and

conditions for type-B oligomers and fibrils, with implications

on prion-like spreading. Model predictions showed that fibrils

were more prone to seed aggregation, whereas oligomers mainly

contributed to the increase of oxidative stress.

The studies reported above focused on the early stages of

αsyn aggregation; thus, they did not require full-time analytical

solutions. To extend the analysis to the entire time course, Dear

et al. [46] provided a general mathematical framework for NCP

models. The authors proposed a reaction network with a single

oligomeric state. Such a coarse-grainedmodel is suitable to avoid

overfitting in the analysis of experimental data on total oligomer

concentration that, as such, does not account for differences

between oligomeric populations, e.g., see Zurlo et al. [56].

Moreover, the model is instrumental in classifying oligomers

according to theoretically defined metrics: persistence or half-
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life, abundance, and productivity, i.e., the propensity to form

fibrils rather than dissociate. The authors proved that oligomers

were more prone to dissociation than fibrillation as a universal

feature. Results focusing on αsyn oligomers showed that they

were very kinetically stable, more persistent than monomers,

relatively abundant, and highly productive compared to other

proteins.

Overall, chemical kinetic models contribute to a detailed

mechanistic understanding of αsyn aggregation by combining

theoretical results and in vitro data acquired through advanced

techniques. By exploring a wide range of in silico experimental

conditions, these models return coherent predictions that can

be useful for studying PD. Further investigation in this direction

should focus on whether and how these results apply to

in vivo settings to provide insights into the mechanisms of

neurodegeneration and, possibly, inform therapeutic strategy

design [58].

3. Mechanistic models of αsyn
aggregation and degradation
pathways

Given the central role of degradation in regulating αsyn

homeostasis, multiple models have investigated this process

in relation to PD neurodegeneration, including models solely

focused on αsyn aggregation and degradation or miscellaneous

models that include additional pathogenic processes (e.g.,

ROS production and defective dopamine metabolism). These

degradation models offer a heterogeneous picture in terms of

specific mechanisms they consider, granularity, and modeling

approaches [21] (see Figure 2B). The biological processes can

be represented by varying degrees of detail, and the modeling

formalism can range from ordinary differential equations

(ODEs) and algebraic equations to stochastic simulations, partial

differential equations, or flux balance analysis [20, 21].

3.1. Defective protein degradation
machinery and PD neurodegeneration

The proteolytic machinery combined with the molecular

chaperone system ensures the renewal of functional components

and regulates the fate of altered proteins to avoid the build-

up of intracellular damage. In PD and other neurodegenerative

diseases, degradation efficiency declines with age and oxidative

stress [59], thus increasing misfolded αsyn and aggregate

levels. On the other hand, αsyn aggregation can hamper

the proteolytic machinery causing the accumulation of other

cellular components [60]. The interplay of αsyn aggregation

and impairment of degradation in multiple negative feedbacks

poses a causality dilemma [61]: which pathological process

comes first? There is still no clear answer. Degradation defects

and αsyn aggregation can be either primary or secondary

events of neurodegeneration [12, 62]. The investigation of

their role in PD is even more challenging due to interfering

factors such as increased oxidative stress and mitochondrial

dysfunctions [1, 59]. Systems biology models can help elucidate

these contributions by providing in silico benchmarks to assess

these hypotheses.

3.1.1. The ubiquitin-proteasome pathway

UPP is the dominant clearance route for mislocated,

misfolded, damaged, and short-lived proteins. Target substrates

are selectively tagged by polyubiquitin chains through multiple

enzymatic reactions and then transferred to the proteasome.

Ubiquitinating and deubiquitinating enzymes such as PARKIN

and UCH-L1 play a central role in modulating protein

degradation in PD, as indicated by UPP-related familial

cases [8, 60]. For instance, UCH-L1 maintains a stable pool

of monomeric ubiquitin; an imbalance of this pool can

lead to poor substrate labeling with consequent impaired

proteasomal degradation. Furthermore, the presence of LBs as

a PD molecular hallmark corroborates the correlation between

proteasomal dysfunctions and PD pathogenesis. Indeed, LBs

mainly consist of ubiquitin-tagged αsyn aggregate, ubiquitinated

proteins, and UPP components [60, 63, 64]. According to

multiple studies [11, 65], their composition suggests a potential

cytoprotective role for LBs, which may act as sinks for

poorly degraded proteins to reduce the toxic effect of protein

accumulation and slow down neurodegeneration. Still, it is

unclear whether these cytoplasmic inclusions represent a

harmful or defense molecular mechanism for the neuron. UPP

dysfunctions and αsyn aggregation create a negative feedback

loop. Genetic and age-related impairments in UPP may hamper

the proper degradation of misfolded aggregate-prone αsyn.

On the other hand, αsyn species refractory to proteasomal

degradation, such as mutant αsyn forms, oligomers, and fibrils,

can inhibit proteasomal activity by sequestering the proteasome.

In addition, the interaction with oligomers and oxidatively

damaged αsyn may directly alter proteasome subunits, as shown

in the green box in Figure 2A.

3.1.2. The autophagy-lysosome pathway

ALP removes long-lived proteins, lipids, and dysfunctional

organelles, such as aging mitochondria (i.e., mitophagy),

thus maintaining neuronal homeostasis. It includes three

degradation mechanisms: macroautophagy, chaperone-

mediated autophagy (CMA), and microautophagy.

Experimental findings indicate that both UPP and ALP

degradation of αsyn can occur [66]. The autophagic mechanisms

are involved in physiological αsyn turnover and αsyn aggregates

degradation (see the purple box in Figure 2A). Specifically,

wild-type αsyn monomers are degraded mainly by CMA
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[67], which relies on molecular chaperones to recognize a

specific motif on the target substrate. Upon chaperone binding,

the cargo interacts with the membrane receptor LAMP2A,

which assembles into multimeric translocation complexes.

The substrate then enters the lysosome lumen, where it is

rapidly degraded. CMA also clears ALP and UPP-related

proteins, such as LRRK2, UCH-L1, DJ-1, and GCase [68].

Furthermore, macroautophagy represents the main clearance

route for αsyn aggregates due to the inaccessibility of the CMA

degradation motif [62]. This degradation mechanism consists

in the formation of autophagosomes, i.e., double-membrane

vesicles surrounding the cargo and fusing with lysosomes

to allow hydrolase-mediated degradation in the lysosomal

lumen. In selective macroautophagy, specific autophagosome

membrane receptors target protein aggregates. The link between

impaired autophagy and PD neurodegeneration conceals a

complex interaction network between αsyn aggregates and the

lysosomal proteolytic machinery. Growing evidence supports

the negative effect of αsyn aggregation on autophagy acting on

multiple levels [62, 69], as displayed in Figure 2A. At the same

time, defective ALP cannot handle harmful αsyn species, thus

leading to their accumulation. Such defects can originate from

various sources, such as increased oxidative stress, aging, and

dysfunctional proteins related to genetic PD forms, namely,

LRRK2, DJ-1, and GBA [5], and with a physiological role in

ALP.

3.2. Degradation models

3.2.1. UPP models

Relying on experimental evidence pointing to the essential

contribution of UPP to neurodegeneration [70, 71], Sneppen et

al. [72] provided a minimal theoretical model of the interplay

between impairments in proteasomal degradation and αsyn

fibrillation. The proteasome ensured protein homeostasis by

keeping the amount of αsyn aggregates low. On the other hand,

insoluble αsyn fibrils sequestered this proteolytic machinery and

formed a slowly-degraded complex, thus reducing proteasome

function. Computational simulations of this ODE system

supported by stability analysis showed a bifurcation behavior.

When the fibril level exceeded a particular threshold related to

proteasome production capacity, the double-negative feedback

broke αsyn homeostasis in favor of a pulsatile oscillatory

regime characterized by spikes and long periods of low

proteasome concentrations. As a result, the system alternated

between the hypothetical recovery of proteolytic activity and

the uncontrolled accumulation of harmful aggregates and fibrils.

Several oscillations eventually built up toxicity over decades,

thus explaining the slow progression of PD neurodegeneration.

The authors therefore associated proteasome overload and the

subsequent oscillatory regime with the onset of sporadic PD

phenotype. In a follow-up study [73], the stochastic analysis

of the core negative feedback confirmed and generalized the

above phenomenon for the whole protein clearance machinery.

The bifurcation behavior characterized by a healthy homeostatic

state and an oscillatory disease state indeed emerged for both

UPP and ALP degradation. In addition, stochastic simulations

captured dynamical differences between the two degradation

systems, modeled as enzymatic reactions slowly reducing

aggregate concentrations. Lysosomes were assumed to be more

efficient but less abundant than proteasomes. Fibril-mediated

sequestration of the proteasome therefore led to regular and

almost deterministic oscillations, whereas lysosome overload

resulted in irregular fluctuations.

In contrast to the high-level representation of the UPP in

Sneppen et al. [72], Pigolotti et al. [73], and Proctor et al. [74, 75]

proposed a detailed description of this pathway by including

mono- and polyubiquitination, proteasome binding, ATP-

dependent degradation, and proteasome inhibition by protein

aggregates. These studies were devoted to the mathematical

modeling of the aging process, which contributes to the

decline of proteolytic activity and the build-up of oxidative

stress due to flawed mitochondria [76, 77]. Both models

indeed investigated the role of the proteasomal degradation

pathway in age-related neurodegeneration. In Proctor et al.

[74], Proctor and colleagues first presented a stochastic model

for aggregation and proteasomal degradation of a generic

protein under normal homeostasis and aging. The authors

then tailored the system to assess the UPP role in αsyn

aggregation during PD neurodegeneration [75]. The final model

included additional modules representing αsyn metabolism and

UCH-L1 deubiquitination activity in proteasomal degradation.

This stepwise approach relied on the idea that the molecular

landscape of neurodegeneration can be arranged in building

blocks, as most biological processes are assumed to be modular

[20, 78]. Both general and specific models proved to be

functional for investigating the negative feedback of protein

aggregate formation and UPP impairment. Employing the

more general model [74], the authors explored the impact

of various experimental procedures, e.g., shutting down a

ubiquitin-protein ligase or the proteasome activity. The results

suggested that depleted ubiquitin pools might contribute to

proteostasis impairment. In addition, relying on the model

tailored for PD [75], the authors analyzed the effects of

both mutated and oxidatively damaged UCH-L1. Stochastic

simulations indicated that proteasome inhibition might not

be the triggering event for neurodegeneration but rather an

exacerbating factor accelerating αsyn aggregation and inclusion

formation. Both models were validated against data gathered

in ad-hoc designed experiments, in a virtuous cycle of model

refinement and in vitro experiments.
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3.2.2. UPP and ROS models

Since oxidative stress and impairments in UPP degradation

are interconnected, multiple studies have analyzed their

synergistic effect on αsyn homeostasis. Cloutier et al. [79]

provided a mathematical model accounting for the interplay

between αsyn aggregation, ROS production, and proteasome-

mediated degradation. Given the variety of molecular processes

involved, the authors were able to evaluate the impact ofmultiple

risk factors on αsyn metabolism. For instance, perturbations

of system parameters related to oxidative stress and protein

clearance capacity reproduced the high variability of LB

concentration in PD forms [79, 80]. Moreover, supported

by experimental verification [81], deterministic simulations of

the model uncovered a bistable process whereby the system

irreversibly switched from a healthy to a disease state, identified

by high misfolded αsyn and ROS levels, in response to toxin

exposure, genetic mutations, and aging. On the other hand,

the model could not recapitulate the oscillatory regime due

to decreased levels of available clearance machinery obtained

in Sneppen et al. [72] and Pigolotti et al. [73]. To identify

the primary mechanisms determining the bifurcation behavior,

the authors reduced the system to focus only on the double-

positive feedback between αsyn misfolding and ROS production

[82]. This minimal version retained the bistable behavior, thus

associating PD onset with a switch-like transition in response

to enhanced ROS concentrations. In line with [72, 73], the

central idea remained that neurodegeneration results from the

transition between two dynamical behaviors.

Raichur et al. [83] also presented a model targeting

the interplay between oxidative stress, αsyn aggregation, and

UPP dysfunctions. Compared to Cloutier et al. [79], this

system displayed a more granular description of the UPP

pathway, from ubiquitination and proteasome recognition to

degradation. The close molecular detail of ROS production and

UPP degradation provided in the model inevitably hampered

the theoretical analysis. On the other hand, the explicit

representation of proteasome-mediated degradation enabled the

authors to explore different scenarios of UPP-related genetic

predisposition: mutations in UCH-L1, PARKIN, and DJ-1 genes,

combined with age-related oxidative stress. These familial PD

forms determined the accumulation of ubiquitinated proteins,

leading to a more rapid αsyn aggregation than sporadic forms.

Furthermore, the synergistic combination of ROS production

and UPP-related genetic mutations fueled αsyn aggregation.

These results pointed to therapeutic strategies involving restored

UPP functionality or enhanced ALP activity in combination

with antioxidant treatments.

3.2.3. UPP and ALP models

The modeling picture outlined so far focuses on the

ubiquitin-proteasome pathway, while the autophagy-lysosome

pathway is under-represented despite its critical role in αsyn

turnover; when considered, autophagic clearance has often

been incorporated as a pseudo-first-order reaction. This is

not the case of Ouzounoglou et al. [84], who provided a

detailed representation of selective macroautophagy, CMA, and

proteasome-mediated degradation, focusing on the inhibitory

feedback between αsyn oligomers and the CMA receptor

LAMP2A. Upon model calibration and validation against αsyn

overexpression data from human neuroblastoma cells, the

authors performed stochastic simulations to explore different

interventions with neuroprotective potentials, such as shutting

off DA production, increasing LAMP2A levels, and reducing

αsyn synthesis. The resulting predictions of increased cell

viability were in agreement with experimental evidence and

literature [85, 86].

To provide valuable insights into the role of αsyn

degradation in neurodegeneration, a mechanistic model should

integrate ALP and UPP degradation mechanisms, ideally

accounting for the crosstalk between these pathways. In this

direction, Sass et al. [87] proposed a model targeting asyn

aggregation, UPP and ALP degradation, and DA metabolism

and based on the biochemical system theory. A granular

representation of these mechanisms and their interactions

facilitated the analysis of specific system perturbations in both

disease and treated states (e.g., enhanced αsyn fibrillation and

aggregation rate). Including DA metabolism in the model also

enabled the authors to simulate the impairment of DA vesicle

packaging and available treatments related to its shortage,

such as L-Dopa therapy combined with monoamine oxidase

inhibitors. Increasing model complexity even further, Büchel et

al. [88] presented an extended model of a dopaminergic neuron

that includes the highest number of molecular components

among the available PD models of αsyn homeostasis [20].

The model described 11 biological processes, including DA

metabolism and transport, αsyn aggregation, oxidative stress,

UPP and ALP clearance mechanisms, and specific details on

PARKIN and DJ-1 proteins. Here, the modeling approach

adopted was crucial to tackle model complexity. The authors

employed flux balance analysis to investigate the steady-

state behavior of the model rather than deterministic or

stochastic analysis based on mass action kinetics. The qualitative

prediction of multiple in silico experiments pointed to increased

ROS, neurotoxin MPTP, and αsyn levels as crucial factors in PD

neurodegeneration.

3.2.4. αsyn degradation and axonal transport
models

The degradation models analyzed so far do not account for

the spatial dependence of αsyn aggregation and degradation

mechanisms. However, αsyn homeostasis and disease

progression may strongly depend on intraneuronal protein

propagation. Along this line, Kuznetsov and Kuznetsov [89, 90]

investigated αsyn axonal transport and how its perturbation
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between the somatic and synaptic compartments affected

the aggregation and degradation processes. By relying on a

two-compartment ODE model [90], the authors predicted

axonal death due to αsyn accumulation at the synaptic

terminal, pointing to defective protein clearance machinery

as the primary cause for αsyn aggregation onset compared to

reduced αsyn production and transport [90]. Differences in the

degradation of αsyn monomers and aggregates were determined

by assuming distinct half-lives. Furthermore, building on recent

findings on the absence of αsyn fibrils in LB inclusions [36], the

authors proposed a mathematical model of αsyn aggregation,

degradation, and transport to test the hypothetical autocatalytic

nature of LB formation and its impact on protein accumulation

[91]. Here, the authors assumed spatial-dependent proteasomal

and autophagic degradation mechanisms. The study pointed

to the central role of the autophagic clearance pathway in LB

formation and PD progression; defective autophagy may favor

the aggregation of membrane-bound organelles catalyzed by

αsyn aggregates and, thus, LB formation. Most degradation

models do not differentiate between αsyn fibrillation and LB

formation, whereas chemical kinetic models do not even include

these cytoplasmic inclusions. The detailed implementation of

LB formation and maturation would allow for the investigation

of LB neuroprotective role [65, 91].

The wide variety of degradation models reflects the

multifactorial nature of PD. Such a modeling effort has provided

multiple insights into the interplay between αsyn aggregation

and protein degradation by spanning various levels of molecular

detail, from coarse-grained to highly granular representations

(see Figure 2B). Minimal models have been used to uncover

dynamical features of disease progression (e.g., Sneppen et

al. [72], Pigolotti et al. [73], and Cloutier et al. [82]). More

detailed models (e.g., Proctor et al. [75] and Ouzounoglou

et al. [84]) have proven to be suitable for testing the effects

of potential treatments. Overall, degradation models move

toward an integrative representation of PD pathogenesis. Future

work may focus on the crosstalk between UPP and ALP

pathways, the interplay between autophagy and apoptosis

in PD neurodegeneration [92], and the integration of other

control systems for protein homeostasis such as the molecular

chaperone system [93].

4. Discussion

Mechanistic modeling grounded in molecular-level

knowledge is a powerful tool for tackling PD biological

complexity. By exploring the intricate interaction network of

neurodegeneration through in silico experiments, mathematical

models can investigate the key drivers of PD pathogenesis,

discover promising targets, and even simulate the effect of

potential single or combination therapies. Given the pivotal

role of αsyn homeostasis in PD, this review has provided a

collection of available mathematical models of αsyn aggregation

and degradation pathways.

Chemical kinetic models focus on a single molecular

pathway and rely on a unifying kinetic theory that translates into

the consistency of modeling formalism (i.e., master equations

approximated to ODE systems). In contrast, degradationmodels

describe multiple biological processes and adopt a wide range of

approaches to analyze the dynamical features of the system. The

latter are modeled as deterministic and stochastic simulations

based on mass action kinetics; yet, there are some exceptions,

such as flux balance analysis, mainly related to the complexity of

the reaction network considered. Stochastic approaches [94, 95]

have been employed to analyze biological processes with low

molecular counts and capture their inherent fluctuations. Future

investigation may explore the role of intrinsic noise in PD onset

and progression since it can unpredictably affect the system

behavior, for example, by triggering the transition from a healthy

to a disease state leading to PD onset [21, 79].

4.1. Integrating chemical kinetic and
degradation models

Both chemical kinetic and degradation models include a

representation of αsyn aggregation. As shown in Figures 1A,

2A (light-blue box), chemical kinetic models account for each

molecular step separately, whereas degradation models employ

macro-variables for different αsyn aggregate species according

to their size and functional features. The master equation

approach returns parameters that physically relate microscopic

events to macroscopic observables. On the other hand, a higher-

level representation of the process enables the targeting of

additional pathways and the investigation of their interplay

in the molecular network. A modeling opportunity lies at

the intersection of the two groups: degradation models can

be integrated with a chemical kinetic representation of the

aggregation process. In this way, they can benefit from the

kinetic rate constants derived from fitting to the wide variety

of in vitro data available. At the same time, chemical kinetic

models can be extended to include UPP and ALP pathways,

converging toward an in vivo representation. These integrated

models can be employed to determine the relative importance of

each microscopic event in relation to degradation mechanisms

(e.g., the structural interconversion between type-A and type-B

oligomers), thus suggesting specific target species and reactions.

Recent studies have moved a few steps toward model integration

[73, 96]. Here, clearance mechanisms are approximated by

pseudo-first-order reactions to facilitate theoretical analysis.

Further investigation should focus on an explicit representation

of the degradation processes, especially the ALP pathway,

considering the growing interest in the role of autophagy in

neurodegeneration [7, 22, 97]. However, this choice translates
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into an increased complexity of the system itself. Future

work should favor an integrative representation of pathological

mechanisms that balances high granularity and analytical or

computational tractability [98].

4.2. In vitro/in vivo translation

Integrating chemical kinetic and degradation models is

part of the modeling efforts currently chasing the mechanistic

representation of αsyn aggregation in vivo. To this end, both

groups of models would benefit from calibration and validation

against measurements of aggregate levels in living systems.

However, the availability of this quantitative information is

limited by technical difficulties in monitoring the time evolution

of aggregates and addressing the heterogeneous and elusive

nature of oligomers [58]. As a result, chemical kinetic models

have been trainedmainly on in vitro data. Among the limitations

of using this type of data is the unclear relevance of the results

on a disease time scale, moving from the few hours or days

of test-tube experiments to the decades of PD progression

[21]. In addition, in vitro aggregation assays typically rely

on initial protein concentrations that far exceed αsyn levels

detected intracellularly and in post-mortem brain extracts

from PD patients and controls [99–101]. On the other hand,

concentrations used in vitro are comparable to those estimated

in vivo at presynaptic terminals [102–105]. Such a potential

discrepancy in αsyn concentrations may hamper translatability

due to the strong dependence of aggregation rates on initial

protein levels [58, 106]. Nevertheless, studying aggregation

mechanisms in silico can bridge in vitro and in vivo settings. For

example, in vitro studies paired with chemical kinetic models

showed that adding lipid vesicles to the solution accelerates in

vitro aggregation, which occurs at lower bulk concentrations

[47, 48]. This result may suggest a similar mechanism in living

systems, given αsyn intracellular localization at presynaptic

terminals and its physiological role in vesicular trafficking.

Moreover, according to a recent perspective paper [58], the late

onset of amyloid formation in sporadic PD may emerge from

the intrinsic properties of aggregation kinetics, specifically from

a combination of dominant secondary processes and prion-

like spreading. Age-related defects in protein degradation may

also work in concert with secondary events in the aggregation

process to drive amyloid formation. Qualitative similarities

between in vitro and in vivo aggregation mechanisms support

this scenario. Indeed, biophysical features of amyloid formation

detected in test-tube experiments seem to be preserved in

living systems [58, 107]. On the other hand, a quantitative

analysis of the aggregation kinetics in vivo is lacking. Current

studies focus on the applicability of in vitro molecular-level

mechanistic studies to living systems and the related modeling

limitations and opportunities, as extensively discussed in Meisl

et al. [108]. Molecular models combining the kinetic of αsyn

aggregation and multiple biological pathways underlying PD

neurodegeneration can assist in vitro to in vivo translation [109].

4.3. Modulating the protein aggregation
pathway

PD research efforts seek to provide a solid foundation for

therapeutic strategy design in PD. Not only can mechanistic

models of αsyn homeostasis identify candidate target

mechanisms, but they can also support the development

of various anti-aggregation treatments currently under

study. In this context, chemical kinetic models provide a

theoretical framework for analyzing the inhibitory effect of

multiple compounds on the aggregation process. Employing a

nucleation-polymerization model that accounts for interactions

with a new general component, Michaels et al. [110] identified

different regimes of inhibition related to specific combinations

of kinetic rate constants and binding affinities, thus optimizing

the inhibitor efficacy of the compound. Furthermore, a follow-

up study simulated the impact of therapeutic interventions

on key oligomeric features by tuning specific rate constants

[111]. This analysis suggested that inhibiting the primary

nucleation event that dominates lipid-induced αsyn aggregation

strongly reduces the peak and overall concentration of the

oligomeric population. As shown in [112], this mechanism of

action characterizes the natural aminosterol compound known

as trodusquemine, which interferes with αsyn aggregation

by blocking its interaction with lipid membranes and thus

inhibits lipid-induced primary nucleation and fibril-mediated

secondary nucleation. Also, it can suppress aggregation-related

cytotoxicity by hampering oligomer interaction with cell

membranes [113]. In addition to small molecules, potential

therapeutic strategies targeting different αsyn species and

reactions include peptides and peptidomimetics, antibodies,

and molecular chaperones [13]. In this respect, chemical kinetic

studies have recently investigated the mechanism of action

of specific molecular chaperones [114, 115] and antibodies

[116] on amyloid beta aggregation in Alzheimer’s disease (e.g.,

Brichos and Aducanumab, respectively); the results were in

good agreement with clinical outcomes. These studies should be

extended to Parkinson’s disease, e.g., supporting clinical trials

that involve anti-αsyn antibodies such as prasinezumab and

cinpanemab.

4.4. Targeting protein degradation
pathways

Inhibiting specific molecular steps of the aggregation

pathway is not the only possible intervention targeting impaired

αsyn homeostasis. Genetic-based strategies reducing protein
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synthesis have been proposed to avoid aggregation in the

first place, such as employing antisense oligonucleotides, RNA

interference, and β2-adrenoreceptor agonists [13]. However,

side effects may arise from protein downregulation due to αsyn

physiological role in presynaptic vesicle trafficking. Mechanistic

models should be employed to determine a critical range for

αsyn expression levels, facilitating the transition from preclinical

to clinical trials. However, currently available models do not

include a genetic level representation; thus, transcription and

translation inhibitions can be simulated only by varying the

rate constant associated with αsyn production. Another strategy

consists in modulating UPP and ALP degradation mechanisms

to hamper αsyn aggregation and PD neurodegeneration.

Autophagy can be enhanced selectively or as a whole. An

overall ALP enhancement driven by chemical compounds such

as rapamycin and trehalose has limited applicability in PD

since it may interfere with essential physiological processes

and the homeostasis of proteins other than αsyn [62]. The

same limitations hold for therapeutic strategies focusing on

overall UPP degradation [117]. In contrast, selective targeting

of specific molecular steps in proteasomal degradation, CMA,

and macroautophagy may be a promising strategy [62]. UPP-

related candidate treatments include stimulating ubiquitination

and regulating the activity of chaperone systems. In addition,

selective ALP activators may act by modulating LAMP2A

assembly and translocation, enhancing autolysosome fusion,

and targeting lysosomal function. Ideally, mechanistic models

can support the development of current and future interventions

of this type. However, further research is needed to reach this

goal. Most degradation models analyzed here lack a granular

representation of autophagic pathways that would allow the

simulation of these selective strategies. Still, they can provide

insightful information on the role of UPP and ALP degradation

pathways in neurodegeneration as the first step toward in silico-

aided therapeutic strategies against PD.

4.5. Toward multiscale QSP models for
PD

The points discussed above highlight the need for multiscale

QSP models that can link molecular mechanisms to cellular

and tissue-level events and, finally, clinical manifestations.

These models would leverage the large amount of available

data associated with neuroimaging techniques and disease-

rating scales for motor symptoms (MDS-UPDRS) and cognitive

impairment (MoCa and MMSE) [1, 118]. This type of data

has already been employed by quantitative models that address

the heterogeneity of the PD clinical picture by accounting only

for physical symptoms [119]. In addition to quantitative tools

supporting PD diagnosis, a mechanistic understanding of the

molecular processes underlying PD pathogenesis and how they

connect to the clinical endpoints is essential to inform drug

discovery and development. The models in this review represent

a starting point in this sense. Being confined at the molecular

level, they have to settle for surrogate endpoints such as ROS,

αsyn aggregate, and LB levels to identify disease phenotypes.

Moving to the cellular, tissue, and organ levels through network-

based, epidemiological, and compartmental PK/PD approaches

[120–123], these models can account for αsyn prion-like

propagation between neurons and across multiple brain areas,

using potential PD biomarkers such as αsyn concentrations

in plasma and CSF [124] and magnetic resonance imagining

measurements.

Overall, this review makes a case for using mechanistic

models of αsyn homeostasis as valuable tools to uncover PD

pathogenesis, suggesting their integration into a QSP framework

to provide blueprints for therapeutic interventions.
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