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This paper investigates the partial integro-di�erential equation of memory

type numerically. The di�erential operator is discretized based on θ-finite

di�erence schemes, while the integral operator is approximated using

Simpson’s rule. The mesh points of an integral part are adapted to coincide

with the nodes of the computational domain using the Heaviside function.

The stability of the proposed numerical methods is established based on

Gerschgoren’s theorems. Also, its consistency is investigated to guarantee the

numerical solutions’ convergence. Several examples are provided to discuss

the e�ciency of the used finite di�erence schemes and compare them with

previous studies.
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1. Introduction

The realm of differential equations is full of various categories of differential

equations. When the differential equation has one independent variable is called an

ordinary differential equation (ODE). In comparison, it hasmore than one called a partial

differential equation (PDE). An equation contains an unknown function in the integral

operator, known as an integral equation (IE). An integro-differential equation (IDE) is an

equation that includes the derivatives and integration of the unknown function with one

independent variable. For an unknown function with several independent variables, it is

called a partial integro-differential equation (PIDE). Besides that, there is a classification

based on the linearity of the unknown function. Partial differential equations (PDEs)

are used to model several complicated phenomena in physics, chemistry, biology,

and finance. They exhibit versatility in various models. However, there are so many

phenomena in these fields that PDEs fail to model them. Because they need to consider

their hierarchical status, we can split them into two main categories; the first requires

considering its status in past time, and the second demand considering the accumulation

behavior for one of its variables (spatial variable). The first category is represented by a

convolution on the time variable by Yanik and Fairweather [1], while the second uses the

convolution in the spatial variable [2].
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Moreover, some phenomena use nonlocal operators in non-

convolution forms, such as options under the Lévy process and

Bates models [3–5]. Here comes the importance of integro-

differential equations (IDEs) and partial integro-differential

equations (PIDEs), which use the nonlocal operator to capture

the behaviors of these phenomena. There are enormous physical,

economic, and biological phenomena modeled based on these

equations. For instance, neural IDEs are used to model brain

dynamics, and it has been investigated based on the deep

learning framework, see Zappala et al. [6]. The population

dynamics are modeled based on nonlinear PIDEs and solved

using the pseudo-spectral technique [2]. Various categories

of IDEs are studied using different numerical techniques, see

Mirzaee and Rafei [7], Mirzaee and Piroozfar [8], and Sakran [9].

Many researchers solved PIDEs using different

mathematical techniques, which can be classified into two

main categories: numerical [10–12] and spectral techniques

[2, 13, 14]. The collocation method has been adapted to solve a

broad class of PIDEs, see Yüzbaşı and Yıldırım [15] and Xu [11].

The Pell-Lucas collocation method is used to solve the parabolic

PIDEs [15]. A space-time Sinc collocation technique is applied

to obtain numerical solutions of a PIDE with a weak-singular

integral-kernel [11]. In Kumar and Vijesh [16], the authors

solved a two-spatial dimension PIDE of the memory type based

on the Legendre wavelet iterative method. Also, the numerical

methods are extended to solve fractional PIDEs [14, 17]. For

instance, Caputo-Fabrizio fractional Volterra PIDEs are solved

using Legendre-Gauss-Lobatto quadrature incorporated with

shifted Hahn polynomials, see Dehestani and Ordokhani [14].

Here, we consider a one spatial dimension parabolic partial

differential equation with a source term and incorporated with

a nonlocal integral part, given by

∂τV = ∂2xV + F(x, τ )−
∫ τ

0
K(x, τ − s)V(x, s)ds, x ∈ �, τ > 0,

(1)

subjected to initial and boundary conditions

V(x, 0) = g(x), x ∈ �, V(x, τ ) = φx(τ ), x ∈ Ŵ, τ > 0, (2)

where, F(x, τ ) represents the source function, K(x, τ − s) is

the kernel of integration, and � ∪ Ŵ = [0, L]. The problem

(Equations 1, 2) is used to describe the behavior of a continuous

medium nuclear reactor such that the unknown function

represents the total reactor power and also a wide class of models

in thermoelasticity, viscoelasticity, refer to Lakshmikantham

[18, Chap. 5]. Most mathematical techniques that are used to

solve the problem (Equations 1, 2) treat the discretization of the

unknowns in an integral part by applying additional expansion

tomake them coincide with the unknowns of the differential part

consequently, increasing the computational time cost. Here, we

introduce a mathematical treatment to overcome this issue.

The outline of the paper is as follows. Section 2 is dedicated

to constructing the corresponding finite difference scheme of

the problem (Equations 1, 2). The differential part is discretized

using θ-finite difference approximations, while the integral

part is discretized using Simpson’s rule incorporated with the

Heaviside step function. It is used to convert the variable

upper bound of an integral part into a constant without adding

any numerical computational cost, which is discussed in detail

next section. To the best of our knowledge, we are the first

authors who introduced this idea. The stability analysis of

the proposed scheme is studied based on the second norm

of matrices and Gerschgoren’s theorems in Section 3. The

consistency is discussed in Section 4. In Section 5, several

examples are implemented to reveal the versatility and reliability

of the proposed technique.

2. The finite di�erence scheme
establishment

We start this section with the construction of the numerical

grid of the computational domain (x, τ ) ∈ [0, L]× [0,T], where

T is the total elapsed time, the time variable τ is discretized

using uniform mesh-points τn = n1τ , 1τ = T/Nτ , and the

spatial variable x is divided into subintervals of equal length

using the spatial nodes xk = k1x, 1x = L/Nx, Nτ , and Nx is

the total number of subintervals. Let Vn
k
be the approximation

of V at the point (xk, τn). The first-time partial derivative is

approximated by

∂τV ≈
Vn+1
k

− Vn
k

1τ
, (3)

and the second spatial derivative is discretized based on the θ-

method, which incorporates a combination of explicit-implicit

discretization, given by

∂2xV ≈ θ

(1x)2

(

Vn+1
k+1

− 2Vn+1
k

+ Vn+1
k−1

)

+ (1− θ)

(1x)2
(

Vn
k+1 − 2Vn

k + Vn
k−1

)

. (4)

The θ-parameter is responsible for the ratio between explicit

and implicit finite difference schemes, and its value θ ∈ [0, 1].

When θ = 0, then we have an explicit scheme, while it is a

fully implicit scheme for θ = 1. For θ ∈ (0, 1), it represents a

combination of explicit and implicit schemes. From Equations

(3) and (4) into Equation (1), we have

A[Vn+1
k

] = B[Vn
k ]+1τFnk −1τ

∫ τn

0
Kk(τn− s)Vk(s)ds, (5)

k = 1, 2, . . . ,Nx − 1, and n = 0, 1, . . . ,Nτ − 1,

where, A and B are difference operators, given by

A[Vn+1
k

] = (1+ 2θr)Vn+1
k

− θr(Vn+1
k+1

+ Vn+1
k−1

),

B[Vn
k
] = (1− 2θ̃r)Vn

k
+ θ̃r(Vn

k+1
+ Vn

k−1
),

r = 1τ
(1x)2

, θ̃ = 1− θ .
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To obtain the first time-level, we put n = 0 into Equation (5),

then the lower and upper bounds become equal; consequently,

the integral part vanishes, and the first time-level becomes

A[V1
k ] = B[V0

k ]+ 1τF0k . (6)

The integral part of Equation (5) has two drawbacks; the

first one is the upper bound of the integration changing as the

index n changes, so, for each time level, we have a different

integral interval. The second drawback appears when we try

to apply a suitable substitution that converts the interval of

variable length into an interval with a fixed size. It leads to the

discretization of Vk(s) does not coincide with the unknowns Vn
k

at the constructing mesh points; in other words, it gives new

unknowns other than Vn
k
. To overcome the first drawback, we

use the Heaviside step functionH(τ − a), which is defined by

H(τ − a) =
{

0, 0 ≤ τ < a,

1, τ ≥ a,

consequently, the integral part of Equation (5) is rewritten as

Ik(τn) =
∫ τn

0
Kk(τn − s)Vk(s)ds

=
∫ 1

0
Kk(τn − s)Vk(s)

(

1−H(s− τn)
)

ds. (7)

Next, we approximate the integration based on Simpson’s

rule

Ik(τn) ≈ Ink = 1s

3

(

Kk(τn − s0)V
0
k

+4

Nτ /2
∑

j=1

Kk(τn − s2j−1)V
2j−1
k

(

1−H(s2j−1 − τn)
)

+

2

Nτ /2−1
∑

j=1

Kk(τn − s2j)V
2j
k

(

1−H(s2j − τn)
)



 . (8)

Here, we discretize the interval of integration as the same

as the discretization of the time variable, i.e., 1s = 1τ , and

sj = τj, j = 0, 1, . . . , Nτ to guarantee the resultant unknowns

V
j
k
coincide with the original unknowns Vn

k
, consequently,

Equation (8) becomes

Ink = 1τ

3



Kk(τn − τ0)V
0
k + 4

Nτ /2
∑

j=1

Kk(τn − τ2j−1)

V
2j−1
k

(

1−H(τ2j−1 − τn)
)

+

2

Nτ /2−1
∑

j=1

Kk(τn − τ2j)V
2j
k

(

1−H(τ2j − τn)
)



 . (9)

The discretization of initial and boundary conditions is

given by

V0
k = gk, Vn

0 = φn
0 , Vn

Nx
= φn

Nx
.

Hence, the finite difference problem becomes

A[V1
k
] = B[V0

k
]+ 1τF0

k
,

A[Vn+1
k

] = B[Vn
k
]+ 1τFn

k
− 1τ In

k
, n = 1, 2, . . . ,Nτ − 1,

V0
k
= gk, Vn

0 = φn
0 , Vn

Nx
= φn

Nx
.

(10)

Note that from Equation (10), the values of the unknown

function V at time level n + 1 are obtained as a linear

combination of all its values from 0 to n.

We mention Lax’s equivalence theorem [19, p. 72] before

commencing investigating the stability and consistency of the

proposed finite difference scheme (Equation 10).

Theorem 1. For a linear finite-difference scheme that yields

from a discretization of a given well-posed linear initial-

value problem, when the numerical approximation satisfies

the consistency condition and stability are the necessary and

sufficient conditions for convergence.

In light of Lax’s equivalence theorem, when stability and

consistency are established for a linear finite difference scheme,

the resultant approximations are guaranteed to converge to the

solution of the given initial value problem regardless of whether

the exact solution is known or not. Moreover, this fact is valid

for the discretization of the integral part [20]. Based on that fact,

we will investigate the stability and consistency of the proposed

finite difference scheme (Equation 10).

3. Stability analysis

To investigate the stability of the proposed finite difference

scheme, we rewrite the problem (Equation 10) in the following

matrix form

AV1 = BV0 + F0,

AVn+1 = BVn + Fn −
n
∑

j=0

3(n,j)Vj, n = 1, 2, . . . ,Nτ − 1,

(11)

where, A, B ∈ R
(Nx−1)×(Nx−1) are tridiagonal matrices, given

by

A =



















1+ 2θr −θr

−θr 1+ 2θr −θr

. . .
. . .

. . .

. . .
. . . −θr

−θr 1+ 2θr



















, (12)
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B =



















1− 2θ̃r θ̃r

θ̃r 1− 2θ̃r θ̃r

. . .
. . .

. . .

. . .
. . . θ̃r

θ̃r 1− 2θ̃r



















, (13)

the vectors Vn, Fn ∈ R
(Nx−1)×1 are vectors of the unknowns

and the discretization of the source term combined with the

boundary conditions, given by

Vn = [Vn
1 , V

n
2 , . . . ,V

n
Nx−1]

T ,

Fn = [1τFn
1 + θrφn

0 + θ̃rφn+1
0 , 1τFn

2 , . . . , 1τFn
Nx−2,

1τFNx−1 + θrφn
Nx

+ θ̃rφn+1
Nx

]T ,

(14)

and {3(n,j)}nj=0 are a sequence of diagonal matrices such that

3(n,0) = (1τ )2

3 diag
(

λ
(n,0)
11 , λ

(n,0)
22 , . . . , λ

(n,0)
Nx−1,Nx−1

)

,

3(n,j) = 4
3 (1τ )2 diag

(

λ
(n,j)
11 , λ

(n,j)
22 , . . . , λ

(n,j)
Nx−1,Nx−1

)

, j is odd,

3(n,j) = 2
3 (1τ )2 diag

(

λ
(n,j)
11 , λ

(n,j)
22 , . . . , λ

(n,j)
Nx−1,Nx−1

)

, j is even,

λ
(n,j)

kk
= K(xk, τn − τj).

(15)

To investigate the stability of Equation (11), first, we show

that the inverse matrix of A exists. Based on the following

theorem, we use a generic matrixM with entries like the entries

of matrix A.

Theorem 2. For a tridiagonal symmetric matrix M ∈ R
N×N

and its entries are

mii = 1+ 2α, mij = −α, |j− i| = 1, mij = 0, |i− j| > 1,

where α ∈ R
+. We introduce the sequence {µp}Np=1, N ∈ N,

such that µp = det(M), M ∈ R
p×p. Then the following

properties hold

1. {µp}Np=1 is a strictly monotone increasing sequence.

2. µp > 0, ∀p ∈ N.

3. The ratio between any two successive elements is greater than

1+ α, i.e.,
µp+1

µp
> 1+ α, ∀p ∈ N.

Proof. For M ∈ R
p×p, p = 1, 2, we have µ1 = 1 + 2α, and

µ2 = 1+ 4α + 3α2 ⇒

µ2

µ1
= 1+ (2+ 3α)α

1+ 2α
> 1+ α.

For p > 2, we use the following recurrence relation [21] to

obtain the determinant µp

µp = (1+ 2α)µp−1 − α2µp−2. (16)

Using the mathematical induction, we assume
µp

µp−1
> 1+α

holds. For the next ratio, we substitute p+ 1 into Equation (16),

we have

µp+1

µp
= (1+ 2α)− α2 µp−1

µp
> 1+ 2α − α2

1+ α

= (1+ α)+ (2+ α)α

1+ α
> 1+ α.

Based on Theorem 2, the inverse of matrix A of the

system (Equation 11) exists. Next, we recall some useful

definitions and properties that relate the norm of symmetric

tridiagonal and its inverse with its eigenvalues. First, we start

with the eigenvalues (denoted by m̃) of a symmetric tridiagonal

matrix M with entries given in Theorem 2 is given by Smith

[19].

m̃j = 1+ 2α

(

1+ cos
jπ

N + 1

)

, j = 1, 2, . . . ,N. (17)

Since

−1 < cos
jπ

N + 1
< 1, ∀j ∈ {1, 2, . . . ,N} ⇒ 1 < m̃j < 1+ 4α,

which means that all its eigenvalues are positive and greater

than 1. Moreover, the maximum and minimum eigenvalues are

obtained when j = 1, and N, respectively. Let us denote the

maximum eigenvalue by m̂ and the minimum by m̆, then

m̂ = m̃1 = 1+ 2α

(

1+ cos
π

N + 1

)

,

m̆ = m̃N = 1+ 2α

(

1+ cos
Nπ

N + 1

)

.

The second norm of a matrix is defined by the square root

of the spectral radius of the matrix M
T
M. Let us denote the

spectral radius of a matrixM by ρ(M). Based on the properties

of symmetric tridiagonal matrices [22, 23], we have

‖M‖2 = m̂, and ‖M−1‖2 = 1

m̆
< 1. (18)

The stability analysis of scheme (Equation 11) is investigated

based on Gerschgoren’s theorems [19, 24]. First, we rewrite the

matrixB in the following form

B = A− rC, C =



















2 −1

−1 2 −1

. . .
. . .

. . .

. . .
. . . −1

−1 2



















. (19)
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Next, by substitution Equation (19) into Equation (11),

multiplying both sides by A
−1, and rearranging the elements,

one gets

V1 = (I− rA−1
C)V0 + A

−1F0,

Vn+1 =
(

I− rA−1
C− A

−13(n,n)
)

Vn + A
−1Fn

−A
−1





n−1
∑

j=0

3(n,j)Vj



 , n = 1, 2, . . . ,Nτ − 1,

(20)

where I ∈ R
(Nx−1)×(Nx−1) is the identity matrix. The

necessary condition that guarantees the stability of the scheme

(Equation 20) is that the eigenvalues of I − rA−1
C, and

(

I− rA−1
C− A

−13(n,n)
)

, must be less than or equal to 1.

The sequence {3(n,j)}nj=0 are diagonal matrices with entries

representing the discretization of the integral kernel. Here,

we deal with differentiable kernels; consequently, they are

continuous and bounded over closed intervals. Let K =
maxx,τ |K(x, τ )| then any eigenvalue of 3(n,j) lies in the interval

(−2K(1τ )2, 2K(1τ )2). For the first time level, we have

∣

∣

∣

∣

1− r
max eigC

max eigA

∣

∣

∣

∣

≤ 1 ⇒
∣

∣

∣

∣

∣

∣

1− r





2
(

1+ cos π
Nx

)

1+ 2θr
(

1+ cos π
Nx

)





∣

∣

∣

∣

∣

∣

≤ 1 ⇒ (21)

r ≤ 1

(1− 2θ)
(

1+ cos π
Nx

) , θ ∈ [0, 0.5),

by applying the limit as Nx → +∞, yields

r ≤ 1

2(1− 2θ)
, θ ∈ [0, 0.5), (22)

while for θ ∈ [0.5, 1], the inequality (Equation 21)

unconditionally holds. For all n ≥ 1, we have

∣

∣

∣

∣

∣

∣

1− r





2
(

1+ cos π
Nx

)

1+ 2θr
(

1+ cos π
Nx

)



−max eig
(

A
−13(n,n)

)

∣

∣

∣

∣

∣

∣

≤ 1.

(23)

When we say a given function is bounded, there is a constant

such that all its absolute values over the given domain are less

than that constant. However, this constant may be of the order

less than O(10), or greater than this value. For instance, when

K(x, τ ) = exτ , or ex
2τ 2 , and x ∈ [0, 5], τ ∈ [0, 1], then

the maximum values become greater than or equal to e5 ≈
148.41, and e25 ≈ 7.2 × 1010, which means the magnitude

K(1τ )2 cannot be neglected, while for bounded kernels with

K < O(10), it can be neglected. For the case when K <

O(10), inequality (Equation 23) reduces to the same condition

as inequality (Equation 21). We investigate inequality (Equation

23) when K >> 1, it can be written as

∣

∣

∣

∣

∣

∣

1− r





2
(

1+ cos π
Nx

)

1+ 2θr
(

1+ cos π
Nx

)





∣

∣

∣

∣

∣

∣

≤ 1+ 2K(1τ )2

1+ 2θr
(

1+ cos π
Nx

) ,

(24)

by simplifying inequality (Equation 24), and applying the limit

as Nx → +∞ one gets

r = 1τ

(1x)2
≤ 1+ K(1τ )2

2(1− 2θ)
, (25)

K(1τ )2

2(1− 2θ)
− 1τ

(1x)2
+ 1

2(1− 2θ)
≥ 0. (26)

In order to discuss the inequality (Equation 26), we use the

deterministic 1̂ of the quadrature equation such that

1̂ = 1

(1x)4
− K

(1− 2θ)2
.

When 1̂ ≤ 0, the inequality (Equation 26) unconditionally

holds. For 1̂ > 0, i.e., (1x)2 <
(1−2θ)√

K
, then we have

two real roots say δ1, and δ2, between them the inequality

(Equation 26) is broken, while outside this interval the inequality

holds. Consequently, we have two choices for 1τ , either 1τ ∈
(0, δ1) or 1τ ∈ (δ2,+∞). In other words, we can find a

suitable 1τ that is not necessarily to be so small to satisfy the

inequality (Equation 26). Finally, for the remaining terms of an

integral part, i.e., {A−13(n,j)}n−1
j=0 , to investigate its stability, it is

sufficient to show that the norm or A−1 is less than 1. Based on

Equation (18), we have

‖A−1‖2 = 1

1+ 2θr
(

1+ cos (Nx−1)π
Nx

) < 1.

We summarize the stability of scheme (Equation 10) in the

following theorem.

Theorem 3. Given a PIDE problem (Equation 1) with integral

kernel K(x, τ ) bounded by K and subjected to initial and

boundary conditions (Equation 2) with the corresponding

finite difference scheme (Equation 10). Based on Gerschgoren’s

theorems [19, 24], for θ ∈ [0, 0.5), we have a conditional stable

finite difference scheme such that

1τ ≤ (1x)2

2(1− 2θ)
,

K(1x)4

(1− 2θ)2
> 1,K > O(103), (27)

1τ <
1√
K

∧ (1x)2 ≤ 1− 2θ√
K

, O(10) < K < O(102), (28)

1τ ≤ (1x)2

2(1− 2θ)
,K < O(10). (29)

For θ ∈ [0.5, 1], the finite difference scheme (Equation 10) is

unconditionally stable.
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4. Consistency

Here, we study the consistency of the proposed finite

difference scheme to guarantee the convergence of the obtained

numerical solutions. It is said that a finite difference scheme

is consistent with a PIDE problem if the absolute difference

between the exact theoretical solution and its corresponding

numerical solution obtained from the used finite difference

scheme tends to zeros as the discretization stepsizes tend to zero

[19, 20]. Let vn
k
= V(xk, τn) represent the exact solution at the

point (xk, τn) and it is smooth enough, the local truncation error

T n
k
(V) is given by

T n
k
(V) = vn+1

k
−vn+

k
1τ

− θ
(1x)2

(

vn+1
k+1

− 2vn+1
k

+ vn+1
k−1

)

+ (1−θ)
(1x)2

(

vn
k+1

− 2vn
k
+ vn

k−1

)

+ In
k
(V)

−
(

∂τV − ∂2xV +
∫ τ
0 K(x, τ − s)V(x, s)ds

)n
k = 0

= Ln
k
(V)+ J n

k
(V),

(30)

where Ln
k
(V), and J n

k
(V) are the local truncated errors of the

differential, and integral operators, respectively. Our aim is to

show that T n
k
(V) tends to 0, as 1x, and 1τ approach 0. We

start with the differential part, by applying Taylor’s expansion of

a single valued function on vn
k+1

, vn
k−1

, and vn+1
k

around the

point (xk, τn), and the expansion of a function of two variables

[25] on vn+1
k−1

, and vn+1
k+1

around the same point, one gets

Ln
k (V) = 1τ

(

1

2
∂2τV − θ∂3

τx2
V

)∣

∣

∣

∣

n

k
− (1x)2

12
∂4xV

∣

∣

∣

n

k

− θ

2
(1τ )2 ∂4

τ 2x2
V

∣

∣

∣

n

k
, (31)

and the local truncated error of an integral part is given by

J n
k (V) = − 1

180

(

1τ

2

)4
(

K(x, τ − ζ )V(x, ζ )
)(4)

∣

∣

∣

n

k
. (32)

By applying the modulus and taking the limits on Equations

(31) and (32), as 1x, 1τ → 0, then the principal part of the

local truncated error is

∣

∣T n
k

∣

∣ = O((1x)2)+
∣

∣

∣

∣

1

2
− θ

∣

∣

∣

∣

(

O(1τ )
)

+O((1τ )2). (33)

Based on Equation (33), we obtain a local truncated error or

order (1τ + (1x)2), for θ ∈ [0, 1]\{ 12 }, while for θ = 1
2 , its

order ((1τ )2 + (1x)2). In other words, the proposed θ-finite

difference scheme is unconditionally consistent.

5. Numerical experiments

Here, we present three examples that solve three different

problems; two have exact solutions, while the exact solution

of the last problem is unknown. In Example 1, we plot the

numerical solutions for different values of the parameter θ

since it represents the ratio between explicit and implicit

finite difference schemes to explore the behavior of the

numerical solutions comparable to the exact solution. Next,

we investigate three aspects of the error associated with the

numerical computations; first, the related maximum absolute

errors are computed for each value of θ , and their orders

are examined in view of Equation (33). Second, the orders

of absolute errors are plotted. Third, the rate of convergence

due to the change of spatial and time stepsizes is calculated,

and the elapsed time to obtain the numerical solutions is

tabulated for various values of mesh grids and θ . After that,

the behavior of the spatial and time stepsizes are investigated

when they violate the stability conditions. Example 2 is

dedicated to comparing the performance of the proposed finite

difference scheme with other works. To reveal the importance

of Lax’s equivalent theorem 1, we select a PIDE problem

(Example 3) that its exact solution is unknown and obtain the

numerical approximations when the stepsizes satisfy the stability

conditions, and also when the stability conditions are broken.

These examples are done using a 2.7GHz Xeon processor and

Matlab simulation.

Example 1. Consider the PIDE problem (Equation 1), its kernel

of integration K(x, τ ) = e−τ cosh τ

cosh x
, subjected to boundary

conditions; V(0, τ ) = 0, and V(L, τ ) = 0, and initial condition

V(x, 0) = 5 sin x

1+ x4
, x ∈ [0, 2π]. The source function is given by

F(x, τ ) = 30

(x4+1)
3
cosh x

(

(

x
2 + 1

4

)

(

x4 + 1
)2

e2 τ sin x

+
(((

τ 2

2 x9 + τ
3 x

8 − 2 τ3x7 − 10
3

(

τ2 + 1
)

x6+
τ2x5 + 2

3 τx4 + 10
3 τ3x3 + 2

(

τ2 + 1
)

x2 + τ 2

2 x+ τ
3

)

cosh x−
((

τ 2

2 + 1
)

x+ τ
3

)

(x4 + 1)2
)

eτ +
(

x
2 − 1

4

)

(

x4 + 1
)2
)

sin x+ e−τ
(

x4 + 1
)

(

τ3x4 + 4
3

(

τ2 + 1
)

x3 − τ 3

3

)

cosh x cos x

)

.

Here, the time domain is τ ∈ [0, 4]. Figure 1 shows the

numerical solutions Vn
k

of Equation (10) that are obtained

when (Nx, Nτ ) = (32, 256) for several values of parameter

θ ∈
{

0, 16 ,
1
3 ,

1
2 ,

2
3 , 1

}

. Where θ = 0, 12 , 1 are explicit,

Crank-Nicolson, and fully implicit finite difference schemes,

respectively. For θ = 1
6 ,

1
3 ,

1
2 ,

2
3 , represent a combination of

explicit-implicit finite difference schemes. The exact solution to

this PIDE problem is given by

V(x, τ ) = 5(1+ τ2 + xτ3)e−τ sin x

1+ x4
.

In Figure 2, the associated absolute errors E(x, τ ) (E(x, τ ) =
∣

∣V(x, τ )− V(x, τ )
∣

∣) are plotted for each value of θ as a
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FIGURE 1

(A–F) The numerical solutions of Example 1 for several values of θ ∈
{

0, 1
6
, 1
3
, 1
2
, 2
3
, 1
}

.

FIGURE 2

(A–F) The associated absolute error E(x, τ ) of Example 1 for each value of θ .

function in x, and τ . It has been observed that the numerical

solution approximations are enhanced when θ ≥ 0.5.

Moreover, the accumulated maximum absolute error over

the computational domain at the maximum value of Nτ

reduces with convergent rate 3 for θ = 1 relative to θ =
0.

We examine the properties of the maximum absolute error

associated with the numerical computations from two aspects;
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TABLE 1 The order of the consistency of the absolute maximum

errors Emax of Example 1 for all values of θ .

θ = 0 θ = 1
6

θ = 1
3

O

(

Emax
1τ

)

2.16 0.864 0.2176

θ = 1
2

θ = 2
3

θ = 1

O

(

Emax

(1τ )2

)

5.734 2.8125 0.28125

TABLE 2 The absolute maximum errors for various grids (Nx , Nτ ) and

their convergence rates for all cases of θ-parameter of Example 1.

(Nx,Nτ ) θ = 0 θ =
1
6 θ =

1
3

Emax ratio Emax ratio Emax ratio

(32, 256) 3.38e-2 – 1.35e-2 – 3.4e-3 –

(40, 400) 1.345e-2 2.51 4.952e-3 2.73 1.744e-3 1.95

(50, 550) 3.872e-3 3.47 1.556e-3 3.18 5.210e-4 3.35

(64, 1, 024) 8.450e-4 4.58 3.763e-4 4.13 1.344e-4 3.88

θ =
1
2 θ =

2
3 θ = 1

Emax ratio Emax ratio Emax ratio

(32, 256) 1.4e-3 – 6.75e-4 – 6.75e-5 –

(40, 256) 5.641e-4 2.48 1.828e-4 3.69 2.916e-5 2.31

(50, 300) 1.581e-4 3.57 8.071e-5 2.27 1.032e-5 2.83

(64, 512) 3.711e-5 4.26 1.765e-5 4.57 2.777e-6 3.72

its consistency based on Equation (33) and its convergence rates

as the computational domain get finer. First, the order of the

consistency of Emax is calculated when (Nx,Nτ ) = (32, 256)

for each value of the θ-parameter as shown in Table 1 which

matches with Equation (33). The maximum absolute error is

computed for various mesh grids of (Nx,Nτ ); after that, the

ratio between two successive maximum errors is calculated

to reveal the associated convergence rates as illustrated in

Table 2. On the other hand, the order of the absolute error

(ln E(x, τ = T)) is plotted as a function of the spatial variable

x for various values of θ , as shown in Figure 3. The behavior of

its order under the explicit, Crank-Nicolson, and fully implicit

are grouped in Figure 3A. Figure 3B represents its behavior

under the mixed schemes θ = 1
6 ,

1
3 ,

2
3 . It has been observed

that the maximum error is of order 10−3 when x = xp

around the value 1. The computational interval [0, 2π], can

be written as the union of two intervals �̂p = [0, xp], and

�̂c
p = [xp, 2π]. In the first interval �̂p, the order of error

swiftly increases, while it gradually decreases in the second

interval �̂c
p, and it reaches to 10−7, 10−9, 10−13 at some points

for θ = 0, 1
2 , and 1, respectively as shown in Figure 3A.

Moreover, the order of the absolute error significantly decreases

as θ increases.

Next, we discuss the behavior of the associated absolute error

(AE) of the proposed finite difference scheme with respect to the

change of time-discretization, while the spatial discretization is

fixed and vice versa. The absolute errors at x = π/8, 5π/8, 5π/4,

and 27π/16 are listed in Table 3 for various values ofNτ together

with the corresponding convergence rates β , which is defined

by

β =
ln
(

E1
E2

)

ln
(

N2
N1

) ,

and its computational cost in seconds, while the value of

Nx is selected as 16. Table 4 is dedicated to revealing the

convergence rates and computational cost of the absolute error

at τ = 1, 2, 3, 4, due to the change of the number of

spatial mesh points Nx, while Nτ remains constant and equals

1,024 for the mixed finite difference scheme θ = 1
6 ,

1
3 ,

2
3 .

Finally, we investigate the importance of the stability

conditions (Equations 27–29). The computational domain is

(x, τ ) ∈ [0, 2π] × [0, 4], which implies K = max
x,τ

|K(x, τ )| = 1,

consequently, we investigate the last condition (Equation 29)

for explicit scheme θ = 0, and a mixed scheme θ = 1
3 .

The number of mesh points is selected to be Nx = 16,

Nτ = 32, which implies r = 0.81 violates the stability

condition

r ≤
{

0.5, θ = 0.5,

0.75, θ = 1
3 .

On the one hand, Figure 4 represents the surface

solution as a function in x, and τ , when the stability

condition is broken. On the other hand, Figure 5

shows a cross-section of the solution when τ =
T.

Example 2. The goal of this example is to compare the behavior

of the proposed finite difference scheme with other techniques,

such as the Legendre-collocation method [26]. Problem 1 is

chosen [26], where the PIDE problem has kernel K(x, τ ) = exτ ,

boundary conditions; V(0, τ ) = sin τ , V(1, τ ) = 0, and initial

condition V(x, 0) = 0, and source function

F(x, τ ) = (1−x2) cos τ+2 sin τ−
(

1− x2

1+ x2

)

(cos τ+x sin τ−exτ ).

The problem has the exact solution

V(x, τ ) = (1− x2) sin τ , x ∈ [0, 1], τ ∈ [0, 1].

Here, the numerical solutions are obtained for explicit,

Crank-Nicolson, and fully implicit cases, also their

corresponding absolute errors are calculated for mesh grid

points (Nx, Nτ ) = (16, 512) as illustrated in Figure 6.

For more investigation of the error behavior associated with

the computational solutions, we calculate the maximum errors
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FIGURE 3

(A,B) The order of absolute error lnE(x, τ = T) for all used finite di�erence schemes in Example 1.

TABLE 3 Absolute errors, their convergence rates, and CPU time for several values of Nτ , while Nx = 16 of Example 1.

x π/8 5π/8 5π/4 27π/16 CPU

Nτ AE β AE β AE β AE β in sec

64 3.439e-3 – 9.399e-4 – 4.038e-5 – 4.905e-7 – 1.32e-2

128 1.636e-3 1.07 4.622e-4 1.02 2.099e-5 0.94 2.428e-7 0.97 1.84e-1

256 8.599e-4 0.93 2.226e-4 1.05 1.064e-5 0.98 1.270e-7 0.93 3.99e-1

θ
=

0

512 4.355e-4 0.98 1.138e-4 0.98 5.134e-6 1.05 6.200e-8 1.05 1.51

1024 2.146e-4 1.02 5.742e-5 099 2.529e-6 1.02 3.159e-8 1.01 9.81

32 8.792e-4 – 9.105e-5 – 4.574e-6 – 1.944e-8 – 4.02e-3

64 4.331e-4 1.02 4.845e-5 0.91 2.344e-6 0.96 9.623e-9 1.01 1.26e-2

128 2.189e-4 0.98 2.378e-5 1.03 1.251e-6 0.91 5.034e-9 0.94 2.72e-1

θ
=

1 2

256 1.156e-4 0.92 1.238e-5 0.94 6.156e-7 1.02 2.457e-9 1.04 2.02e-1

512 5.587e-5 1.05 6.272e-6 0.98 3.108e-7 0.99 1.238e-9 0.99 1.11

16 6.625e-6 – 8.373e-6 – 3.220e-7 – 2.519e-9 – 1.20e-3

32 3.180e-6 1.06 4.066e-6 0.92 1.708e-7 0.92 1.215e-9 1.05 5.12e-2

64 1.683e-6 0.92 2.015e-6 0.97 8.712e-8 0.97 6.468e-10 0.91 1.28e-2

θ
=

1

128 8.231e-7 1.03 1.049e-6 1.02 4.291e-8 1.02 4.227e-10 1.03 6.06e-2

256 4.227e-7 0.96 5.368e-7 0.99 6.478e-8 0.99 2.126e-10 1.01 2.13e-1

for several grids, the ratios of consecutive Emax, and the CPU

time as reported in Table 5. It has been observed that for a

given mesh grid, the absolute maximum error can be reduced

by increasing the value of the θ-parameter. Furthermore, for

a given value of θ , the associated error can be reduced by

increasing the number of space and time mesh points. However,

their increments have different effects; for instance, a modest

increase in spatial node number enhances the related error but

with a higher computational cost than the same increment in

time nodes. Decreasing the space and time stepsizes together

leads to second-order convergence. To wrap up, Figure 6 and

Table 5 illustrate the performance of the proposed θ-finite
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TABLE 4 Absolute errors, their convergence rates, and CPU time for several values of Nx , when Nτ = 1024 for the problem given in Example 1.

τ 1 2 3 4 CPU

Nx AE β AE β AE β AE β in sec

8 4.826e-5 – 1.645e-4 – 4.799e-3 – 1.264e-2 – 4.17

16 1.281e-5 1.91 4.206e-5 1.97 1.327e-3 1.85 3.075e-3 2.04 9.18

θ
=

1 6

32 3.279e-6 1.97 1.039e-5 2.02 3.240e-4 2.03 8.668e-4 1.83 18.72

64 8.116e-7 2.01 2.627e-6 1.98 8.407e-5 1.95 2.272e-4 1.93 27.35

8 9.590e-6 – 2.735e-5 – 4.053e-4 – 5.129e-3 – 2.96

16 2.420e-6 1.99 7.365e-6 1.89 1.121e-4 1.85 1.435e-3 1.95 6.28

θ
=

1 3

32 5.900e-7 2.04 1.820e-6 2.02 2.982e-5 1.91 3.665e-4 2.04 15.33

64 1.638e-7 1.85 4.601e-7 1.98 7.309e-6 2.03 9.471e-5 1.92 24.16

8 1.028e-6 – 2.172e-6 – 3.073e-5 – 5.386e-5 – 1.68

16 2.545e-7 2.01 5.647e-7 1.94 8.152e-6 1.91 1.460e-5 1.88 4.10

θ
=

2 3

32 6.615e-8 1.94 1.505e-7 1.91 1.973e-6 2.05 3.595e-6 2.02 12.17

64 1.662e-8 1.99 3.813e-8 1.98 5.092e-7 1.95 9.158e-7 1.97 22.59

FIGURE 4

(A,B) The behavior of V(x, τ ) of Example 1 when the stability condition (Equation 29) is broken for θ = 0, and θ = 1
3
.

difference scheme considering the stability and consistency

in solving this problem. On the other hand, the maximum

absolute error associated with solving the same problem based

on the Legendre-collocation method is available in Table 1

[26, p. 7].

Example 3. This example aims to obtain numerical

approximations of a PIDE problem based on the proposed finite

difference scheme whose exact solution is unknown. The kernel

isK(x, τ ) = ex
2τ 2 , initial and boundary conditions are

V(x, 0) = x(L− x), V(0, τ ) = τ

1+ τ2
, V(L, τ ) = sinπτ ,

in the absence of the source function, i.e., F(x, τ ) = 0.

The computational domain is selected such that (x, τ ) ∈
[0,

√
6]× [0, 1]. Figures 7A–C represent the numerical solutions

of explicit, Crank-Nicolson, and fully implicit schemes when

the grid nodes (Nx,Nτ ) = (16, 128), Figures 7D–F show

the corresponding absolute error. To calculate the associated
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FIGURE 5

(A,B) The plot of V(x, τ = T) when the stepsizes 1x, and 1τ do not satisfy the stability condition (Equation 29) for θ = 0, and θ = 1
3
.

FIGURE 6

(A–F) The numerical solutions of V(x, τ ) of Example 2 for θ = 0, 1
2
, 1 and their corresponding absolute errors.

absolute error; a numerical solutions of V(x, τ ) are calculated on

a refine grid (Nx,Nτ ) = (64, 2048), when θ = 1
2 , and considered

as reference values. Consequently, the absolute error is the

absolute difference between the corresponding values of Vn
k
.

Next, we discuss the behavior of the errors associated with

the numerical solutions by calculating the numerical solutions

at five spatial nodes; x = 0.191, 0.612, 0.995, 1.416, and 1.799

using the refine grid (Nx,Nτ ) = (64, 2048). After that, the
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TABLE 5 The maximum absolute errors, their consecutive ratios, and CPU time for several values of θ of Example 2.

(Nx,Nτ ) θ = 0 θ =
1
6 θ = 1

3

Emax ratio CPU in (sec) Emax ratio CPU in (sec) Emax ratio CPU in (sec)

(8, 128) 1.727e-2 – 3.99e-2 5.571e-3 – 3.82e-2 7.227e-4 – 3.57e-2

(16, 512) 4.185e-3 4.13 5.36 1.696e-3 3.29 4.25 1.988e-4 3.64 2.38

(16, 1024) 2.006e-3 2.09 9.16 8.176e-4 2.07 8.20 1.012e-4 1.96 3.49

θ =
1
2 θ =

2
3 θ = 1

Emax ratio CPU in (sec) Emax ratio CPU in (sec) Emax ratio CPU in (sec)

(8, 64) 1.717e-4 – 2.15e-2 1.505e-5 – 1.10e-2 1.788e-6 – 9.73e-3

(16, 512) 3.714e-5 4.62 1.15 3.926e-6 3.83 1.09 4.036e-7 4.43 9.9e-1

(32, 512) 9.173e-6 4.05 7.48 9.701e-7 4.05 5.26 1.034e-7 3.90 3.35

FIGURE 7

(A–F) The numerical approximations and their absolute errors of Example 3 when θ = 0, 1
2
, 1.

numerical solutions at these points are calculated for various

computational grids. Therefore, we calculate so-called the root

mean square relative error (RMSRE) such that

RMSRE =

√

√

√

√

√

1

5

5
∑

i=1

(

Vrefi (τ = T)− V
Nτ
i

Vrefi (τ = T)

)2

, (34)

where Vrefi (τ = T), and V
Nτ
i are the numerical solutions

at the refine grid and the corresponding values of other

grids, respectively. Based on these calculations, we present the

RMSRE, its ratio of convergence and CPU time in Table 6.

Finally, we show that the stability conditions (Equations 27–

29) cannot be neglected. The computational domain (x, τ ) ∈
[0,

√
6] × [0, 1], consequently, the maximum value of the

integral-kernel is K = e6 ≈ 403.429 >> 1. So that we

investigate the stability condition (Equation 28). Note that it

consists of two inequalities; one for the time stepsize and the

other for the spatial stepsize. In light of this fact, we consider

two cases. The first case is when 1τ satisfies its condition, while

the inequality of 1x does not hold. In the second case, when

1τ breaks its inequality, while 1x satisfies its inequality. For the
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TABLE 6 The RMSRE of five distinct spatial nods, their ratios, and elapsed time computations for all cases of the θ-parameter of Example 3.

(Nx,Nτ ) θ = 0 θ =
1
6 θ =

1
3

RMSRE ratio CPU in (sec) RMSRE ratio CPU in (sec) RMSRE ratio CPU in (sec)

(4, 32) 2.536e-3 – 2.41e-2 1.918e-3 – 2.90e-2 1.135e-3 – 2.56e-3

(8, 128) 1.176e-3 2.16 1.43e-1 6.809e-3 2.82 1.26e-1 6.287e-4 1.81 3.66e-2

(10, 200) 3.385e-4 3.47 1.78e-1 2.140e-4 3.18 1.35e-1 1.878e-4 3.35 9.15e-2

θ =
1
2 θ =

2
3 θ = 1

RMSRE ratio CPU in (sec) RMSRE ratio CPU in (sec) RMSRE ratio CPU in (sec)

(4, 16) 2.205e-3 – 1.50e-3 1.722e-3 – 1.47e-3 1.139e-3 – 1.76e-3

(8, 32) 6.095e-4 3.62 3.01e-3 6.029e-4 2.86 4.38e-3 4.387e-4 2.60 3.43e-3

(16, 64) 1.883e-4 3.24 9.63e-2 2.806e-4 2.12 1.25e-2 2.009e-4 2.18 1.31e-2

FIGURE 8

(A,B) The behavior of numerical solutions of Example 3 when the stability condition (Equation 28) is broken with respect to 1x for θ = 0.

first case, the number of spatial and time nodes are (Nx,Nτ ) =
(10, 128), then we have

1x = L

Nx
≈ 0.245 ⇒ K(1x)4 = 1.452 > 1,

consequently, the stability condition (Equation 28) is broken

for 1x, while 1τ = 7.8 × 10−3 < 1√
K

= 0.0498. On the

one hand, Figure 8 shows the surface of numerical solutions,

and a cross-section when τ = T of case one, i.e., 1x, does

not satisfy its stability condition. On the other hand, Figure 9

describes the numerical solution behavior under the second

case when (Nx,Nτ ) = (10, 20) (i.e., 1τ = 0.05 > 1√
K
).

Therefore, stability conditions have a crucial role in obtaining

reliable approximations.

6. Conclusion

The PIDE of memory type has been investigated based on

a suitable finite difference scheme. Here the differential part is

discretized using the θ-approximation that combines explicit-

implicit discretization of the second-order spatial derivative,

while the time derivative is approximated using explicit forward

discretization. The integral part has two obstacles; first, the
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FIGURE 9

(A,B) A 3D surface of numerical solutions and a 2D-cross section for τ = T when 1τ does not satisfy the stability condition (Equation 28) for

θ = 0.

upper boundary of the integration is variable, and second, the

discretization of an integral part produces more unknowns

other than the unknowns of the differential part. We implement

the Heaviside step function to convert the upper variable

boundary into a constant without changing the independent

variables of the unknown function. Consequently, it enables us

to discretize it on the same mesh points of the computational

domain. The stability of the resulting finite difference scheme

has been investigated based on the properties of the matrix

norm and Gerschgoren’s theorems. Also, consistency has been

considered to guarantee the convergence of the numerical

approximation. In light of consistency and stability analysis, we

have a conditional stable finite difference scheme for θ ∈ [0, 0.5),

while it is unconditionally stable for θ ∈ [0.5, 1]. Moreover,

it is unconditional consistency. Finally, three examples have

been studied to examine the accuracy and stability of the

used scheme.

For future research, we will extend the technique used to

solve this category of partial integro-differential equations in

higher dimensions. Also, we will introduce nonstandard finite

difference schemes and investigate their numerical properties.
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