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The hybrid model of
autoregressive integrated
moving average and fuzzy time
series Markov chain on
long-memory data

Dodi Devianto*, Kiki Ramadani, Maiyastri, Yudiantri Asdi and

Mutia Yollanda

Department of Mathematics and Data Science, Andalas University, Padang, Indonesia

Introduction: The price of crude oil as an essential commodity in the world

economy shows a pattern and identifies the component factors that influence

it in the short and long term. The long pattern of the price movement of crude

oil is identified by a fractionally time series model where the accuracy can

still be improved by making a hybrid residual model using a fuzzy time series

approach.

Methods: Time series data containing long-memory elements can be

modified into a stationary model through the autoregressive fractional

integrated moving average (ARFIMA). This fractional model can provide better

accuracy on long-memory data than the classic autoregressive integrated

moving average (ARIMA)model. The long-memory data are indicated by a high

level of fluctuation and the autocorrelation value between lags that decreases

slowly. However, a more accurate model is proposed as a hybridization time

series model with fuzzy time series Markov chain (FTSMC).

Results: The time series data collected from the monthly period of West Texas

Intermediate (WTI) oil price as the standard for world oil prices for the 2003–

2021 time period. The data of WTI oil price has a long-memory data pattern

to be modeled fractionally, and subsequently their hybrids. The times series

model of crude oil price is obtained as the new target model of hybrid ARIMA

and ARFIMA with FTSMC, denoted as ARIMA-FTSMC and ARFIMA-FTSMC,

respectively.

Discussion: The accuracy model measured by MAE, RMSE, and MAPE shows

that the hybrid model of ARIMA-FTSMC has better performance than ARIMA

and ARFIMA, but the hybrid model of ARFIMA-FTSMC provides the best

accuracy compared to all models. The superiority of the hybrid time series

model of ARFIMA-FTSMC on long-memory data provides an opportunity for

the hybrid model as the best and more precise forecasting method.

KEYWORDS

autoregressive integrated moving average, autoregressive fractionally integrated

moving average, fuzzy time series Markov, hybrid time series model, model accuracy
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1. Introduction

Crude oil is a commodity that plays an essential role in

the economy. Fluctuations in crude oil prices can impact the

health of the world economy, especially in crude oil-producing

countries. This condition occurs because countries that import

crude oil are more susceptible to price changes with transactions

carried out in US dollars (USD). One of the crude oil types

used as a benchmark in determining oil prices is West Texas

Intermediate (WTI). WTI oil, according to the U.S. Energy

Information Administration (EIA) website, is included as a type

of petroleum that is low in density. WTI oil contains about

0.24% sulfur and a gravity of 39.6◦. This oil is usually considered

of good quality for processing into gasoline. Therefore, this

high-quality WTI oil is used as the standard price for world oil.

The fluctuation of crude oil prices shows a pattern and

identifies the component factors that influence it in the short

and long term. The classical time series model of autoregressive

integrated moving average (ARIMA) is often used to produce

accurate short memory modeling [1]. In nonlinear time series

data, the accuracy of the ARIMA model in forecasting is

quite good than the recurrence quantification analysis (RQA)

predictive model [2]. However, the heteroscedasticity in the

ARIMA model can be corrected by using a variance model, that

is the GARCH model [3] or the GARCH exponential [4] or the

mixed memory MMGARCH [5].

Oil price movements are very volatile and tend to be affected

for a long time. Thus, there are some cases of time-series

data showing a long-memory pattern. In brain stimulation,

for instance, this volatility problem as the dynamical pattern

is extended through stimulation for long-term targeting and

control of post-stimulation [6]. This long-memory case is

characterized by decaying correlation slowly over time at infinity

[7]. As a result, the value of the differentiating coefficient in the

form of an integer number cannot provide an accurate estimate

in the ARIMA model, so the fractional differentiating number

of the ARFIMA model is used instead [8]. The method for

estimating the value of the fractional differentiating coefficient

in the ARFIMA model that is often used is the Geweke and

Porter-Hudak (GPH) method to estimate the differentiating

coefficient parameter directly without knowing the value of the

autoregressive (AR) or the moving average (MA) order [9].

In addition, the Whittle estimator is provided for obtaining

the parameter estimates for the stationary time series model

of ARMA and ARFIMA, which is the basis of the Jackknifed

empirical likelihood inference [10].

Classical time series data modeling require many

assumptions. Thus, many have developed time-series data

modeling using a fuzzy logic approach, the fuzzy time series

(FTS) method. The simple arithmetic operations on time series

data were applied to develop the early period of FTS, while

a fuzzy logic was proposed by using weighting and adaptive

modeling [11]. Finally, the FTS model has been applied in

forecasting oil production and consumption [12]. Further

developments in 2012, the fuzzy time series Markov chain

(FTSMC) was first proposed as a new concept to analyze the

accuracy of currency exchange rate predictions. This FTSMC

method gives quite good results compared to the FTS method

[13]. Furthermore, the forecasting method of FTSMC was also

carried out on gold prices as the investment information [14]. In

addition, three FTSmethods, namely FTS Chen, FTS Segmented

Chen, and FTSMC are compared to forecast bitcoin prices [2].

Based on the mean absolute percentage error (MAPE) accuracy

value, the FTSMC method still gave better results. These results

confirmed that the FTSMC method provides a pretty good

modeling accuracy than other FTS methods.

Time series data modeling with FTS has many parameters

because the model changes in each iteration process. A simple

structure has been proposed to overcome this model change.

Parsimony FTS is used in forecasting prices for liquid bulk cargo

carriers and secondhand ships [15]. In advanced financial cases,

the time series data of the Indonesian Composite index price was

analyzed by using the nonlinear artificial intelligence method,

which produced the best accuracy based on the MAPE value

[16]. Meanwhile, a development of the hybrid ARIMA model

and a wavelet-based artificial intelligence model gave more

accurate results than the ARIMA model or artificial intelligence

model [17]. However, ARIMA, ARFIMA, and FTS models have

something in common: using past values to produce modeling

in the future period. The difference is in the residual assumption

test that must be met using the classical ARIMA and ARFIMA

models. These assumptions are not a concern for modeling with

the FTS method. Meanwhile, the residual of model ARIMA and

ARFIMA can be adjusted in their value and residual assumptions

by combining the model of ARIMA and ARFIMA with the

numerical data processing of the fuzzy time series Markov

chain. This study proposes the best modeling for West Texas

Intermediate (WTI) crude oil prices using the hybrid model

of ARIMA-FTSMC and the hybrid model of ARFIMA-FTSMC

hybrid models, compared to the classical ARIMA and ARFIMA

models based on the level of accuracy measured using mean

absolute percentage error (MAPE), mean absolute error (MAE),

and root mean square error (RMSE).

2. Materials and methods

This study uses available data fromWest Texas Intermediate

Oil (WTI) on the U.S. Energy Information Administration

(EIA) website with the monthly period during the 2003–2021

time period, consisting of 18 years selected as many as 217

data. The time series data used are long-memory which will be

modeled into classical time series models and hybrid models.

Furthermore, in this section, theories and processes related to

the formation of target models will be explained, namely the

model of ARIMA, the model of ARFIMA, the hybrid model of

ARIMA-FTSMC, and the hybrid model of ARFIMA-FTSMC.
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2.1. Autoregressive integrated moving
average

A time series {Xt} has the properties of white noise if

a sequence of uncorrelated random variables with a specific

distribution is identified by constant mean, usually assumed to

be 0, a constant variance Var(Xt) = σ 2 and Cov(Xt+h,Xt) =

0 for k 6= 0. In time series analysis, there are some time

series models such as ARIMA which is a combined two models

between autoregressive (AR) and moving average (MA) after

differencing. The common form of the ARIMA model is

expressed as follows:

φp(B)(1− B)dXt = θq(B)εt (1)

with

φp(B) = (1− φ1B− φ2B
2 − · · · − φpB

p)

θq(B) = (1− θ1B− θ2B
2 − · · · − θqB

q)

where φp(B) is the autoregressive components, θq(B) is the

moving average components, B is the operator of backward shift,

and (1−B)dXt is stationary of time series in d-order differencing.

This process is denoted by ARIMA(p,d,q).

For detecting the stationarity of data, graph analysis can

not be proposed to determine whether the time series data

are already stationary, but it helps to know how the pattern

of the data. The basic properties are still needed to determine

the next decision. If the data have a constant mean and

variance, the data are already stationary. If the variance of the

data is non-stationary, it can be solved by using the power

transformation, namely the Box–Cox transformation. Let T(Xt)

be the transformation function of Xt . The following formula is

used to stabilize the variance

T(Xt) =
Xλ
t − 1

λ
(2)

for λ 6= 0 and λ called transformation parameter. After the data

are stationary in variance, it is followed by testing the stationary

in the mean by using augmented Dickey–Fuller (ADF) test. The

randomwalk equation with drift for the differenced-lag model is

regressed to be:

∇Xt = µ + δXt−1 +

k∑

i=1

φi∇Xt−i + et (3)

for ∇Xt = Xt − Xt−1, k is the number of lags, δ is the slope

coefficient, µ is a drift parameter, φi is the parameter of random

walk equation, and et is the white noise error term. The test

statistic is used as follows:

ADF =
δ̂

SE(δ̂)
(4)

for δ̂ as the estimated δ which is obtained by using ordinary least

squares and SE(δ̂) as the standard error of δ. The initial or null

hypothesis of δ = 0 means that the stationarity has not been

fulfilled. The conclusion of the ADF hypothesis test is rejecting

the null hypothesis if the ADF value is less than the test statistics.

The model of autoregressive integrated moving average

(ARIMA) can be built by using the following steps.

1. Checking the stationarity of the data against the variance

with Box–Cox transformation and the stationarity of the

mean value by differencing and augmented Dickey–Fuller

(ADF) test.

2. Identifying possible ARIMAmodels by determining orders

based on lag correlation analysis on ACF and Partial ACF

(PACF) plots.

3. Estimating significance parameter on ARIMA model with

significant level α = 5%.

4. Choosing the best ARIMA model that has the smallest

value of Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC) values using the formulation

below

AIC = n ln(σ̂ε
2)+ 2k (5)

BIC = n ln(σ̂ε
2)+ kln(n) (6)

for n is the number of observations, σ̂ 2
ε is the maximum

likelihood estimator of σ 2
ε , and k is the number of

parameters estimated.

5. Testing the ARIMA model residual assumptions using

non-autocorrelation, homoscedasticity, and normality

tests.

a. Non-autocorrelation test using QLjung-Box test with

the equation:

QLB = n(n+ 2)
k∑

i=1

ρ2i

n− i
(7)

where k is the number of lag, n is the number of

observations, and ρ2i is the autocorrelation of the i-th

residual for i = 1, 2, ..., k. The value of QLB follows

χ2 distribution with a degree of freedom k − p − q

where p and q are the order in the ARIMA model. If

QLB < χ2
α(k − p − q), then the residual in the model

is non-autocorrelation.

b. The homoscedasticity test was carried out using the

Lagrange multiplier test with the test statistic,

LM = nR2 (8)

where n is the number of observations and R2 is the

coefficient of determination of the quadratic residual

regression model. The LM value follows χ2 distribution

with a degree of freedom q which is one order in the
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ARIMA model. If LM < χ2
α(q), then the residual in the

model is homoscedasticity.

c. The normality test was carried out using the Jarque–Bera

hypothesis with the test statistic

JB =
n

6

(
S2 +

(K − 3)2

4

)
(9)

where n is the number of observations,

S =

1

n
(εi − ε̄)3

(
1

n

∑n
i=1(εi − ε̄)2

) 3
2

K =

1

n
(εi − ε̄)4

(
1

n

∑n
i=1(εi − ε̄)2

)2 ,

and ε̄ =

∑n
i=1 εi

n

The JB value follows χ2 distribution with a degree of

freedom of 2. If the JB < χ2
α(2), then the residual in

the model is normally distributed.

2.2. Autoregressive fractional integrated
moving average

Autoregressive fractionally integrated moving average

(ARFIMA) was first introduced by Grager and Joyeux in 1980

which is the development of the autoregressive integrated

moving average (ARIMA) model to model long-term data.

Long memory is a stationary time series that has a long-term

dependence between observations with periods that are far apart

but still have a high correlation. This can also be seen from the

autocorrelation function that decays slowly over a long period.

The ARFIMA(p, d, q) model, where p and q are non-negative

integers and d is a real number in the interval 0 < d < 0.5. The

general model ARFIMA(p, d, q) can be shown as follows Wei

WWS [1]:

φp(B)(1− B)dXt = θq(B)εt (10)

where φp(B) = (1 − φ1B − φ2B
2 − ... − φpB

p), θq(B) =

(1 − θ1B − θ2B
2 − ... − θqB

q), B as backshift operator, d as the

differencing in real number, (1 − B)dXt as the time series that

has been already at differencing, θi as the parameter of MA for

i, i = 1, 2, ..., q, φi as the parameter of AR for i, i, 1, 2, ..., p, and

εt ∼ WN(0, σ 2).

The model building of the autoregressive fractional

integrated moving average (ARFIMA) can be determined by

using the following steps.

1. Checking the stationary of the data against variance.

If the data are not stationary concerning variance,

a transformation is carried out using the Box–Cox

transformation method to obtain a rounded value (λ).

2. Checking the stationary of the data in the mean using

augmented Dickey–Fuller (ADF). If the data are not

stationary concerning the mean, then a differencing is

required.

3. Estimating differencing parameters using the GPHmethod

with the following formula:

d̂GPH =

∑m
j=1

(
xj − x

)
(yj − y)

∑m
j=1

(
xj − x

)2 . (11)

where yj = lnI(λj) and xj = −ln(2sin(
λj
2 ))

2. The I(λj)

function is a periodogram with a frequency of Fourier

λj =
2π j
T , j = 1, 2, . . . ,m, and T is the number of

observation data, while m is the limit of the number of

Fourier frequencies.

4. Differentiating data that have been transformed using the

value of d̂GPH .

5. Identifying the ARFIMA model by determining the

combination of the ARFIMA model by making ACF and

PACF plots from the differencing of data. The ACF plot

shows the order ofMA(q), and the plot of the PACF shows

the order of AR(p).

6. Parameter estimation and significance test of the ARFIMA

model have been declared significant if the model

parameter’s probability value is smaller than α = 5%.

7. Choosing the best ARFIMA model is the model that has

the smallest AIC and BIC values.

8. Testing the best ARFIMA model residual assumptions,

namely non-autocorrelation, heteroscedasticity, and

normality tests.

2.3. Proposed model of hybrid
ARIMA-FTSMC

The ARIMA-FTSMC hybrid model is a proposed model by

combining the ARIMA model for initial data and the FTSMC

model for residual data. The first step is to model the time

series data with the best ARIMA model. In improving the

ARIMA model, the residual ARIMA model is analyzed by

using Geweke and Porter–Hudak (GPH) in Equation (11) to

determine whether there still contains long-memory properties.

The improvement of the residual ARIMA can apply the FTSMC

model as the alternative method because the FTSMCmodel does

not require stationary data and regression assumption. Finally,

residual modeling results from the FTSMC model are entered

into the ARIMA model to obtain the ARIMA-FTSMC hybrid

modeling. The steps for modeling ARIMA residuals using the

FTSMC model are as follows:

1. Definition of the union of sets U. In the first stage,

determine themaximum value (Dmax) andminimum value

(Dmin) from ARIMA data residual. Choose any positive
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value for D1 and D2 so that they can be used in the

formation of the union of sets U with the following

conditions:

U = [Dmin − D1,Dmax + D2), (12)

2. Interval formation and interval length. The union of sets

U will be partitioned into parts with equal intervals (n). By

using the Sturges formula as follows:

n = 1+ 3.322 log N, (13)

whereN is the number of ARIMA residual data. Here is the

formula for determining the length of the interval:

l =
[(Dmax + D2)− (Dmin − D1)]

n
, (14)

and l is the length of the interval and n is the number of

intervals. Each interval can be calculated as follows:

un = [D∗ + (n− 1)l,D∗ + nl). (15)

where D∗ = Dmin − D1.

3. The definition of fuzzy sets for each interval. If the ARIMA

residual data are in the interval ui, then the fuzzy set of the

data is denoted as Ai.

4. Determination of fuzzy logic relations (FLRs). If F(t) = Ai

and F(t − 1) = Aj, then the relationship between F(t) and

F(t − 1) is called a fuzzy logical relationship (FLR). This

relationship can be expressed by Ai → Aj, where Ai is the

left-hand side (LHS) and Aj is the right-hand side (RHS)

from FLR.

5. Determination of fuzzy logic relations group (FLRG). If

two FLRs have the same fuzzy set (LHS Ai → Aj1, Ai →

Aj2), then it can be grouped into fuzzy logical relationship

groups (FLRGs) Ai → Aj1,Aj2.

6. Markov transition probability matrix formation.

Pij =
Mij

Mi
, i, j = 1, 2, 3, ..., n, (16)

Transition probability of state Ai to Aj in one step is Pij.

The number of data from stateAi isMi. The transition time

of state Ai to Aj in one step is Mij. Transition probability

matrix R using n× n dimension can be written as:

R =




P11 P12 . . . P1n

P21 P22 . . . P2n

...
...

. . .
...

Pn1 Pn2 . . . Pnn




. (17)

7. Calculation of the initial modeling results based on the

transition probability Rmatrix with the following rules:

a. If FLRG from Ai transitions to the empty set, Ai → φ

, then the modeling results of F(t) is mi, where mi is the

median of ui, with equation:

Ft = mi. (18)

b. If FLRG Ai transitions to, Ai → Ak and Pik = 1, j 6= k,

the modeling result of F(t) is mk as the median of uk,

with equation:

Ft = mkPik = mk. (19)

c. If FLRG Aj makes a one-to-many transition, Ai →

A1,A2, . . . ,An, j = 1, 2, . . . , n, and datasets Xt−1 when

t − 1 is in state Aj, then the modeling results of F(t) are

as follow:

Ft =m1Pj1 +m2Pj2 + · · · +mj−1Pj(j−1) + Xt−1Pjj

+mj+1Pj(j+1) + · · · +mn−1Pj(n−1) +mnPjn,

(20)

where m1,m2, . . . ,mj−1,mj+1, . . . ,mn is the median

of u1, u2, . . . , uj−1, uj+1, . . . , un. The mj value was

substituted by Xt−1 in order to obtain information from

the state Aj when t − 1.

8. Calculation of modeling adjustment values that aim to

correct modeling errors. This is due to the biased transition

probability R matrix. The calculation of the modeling

adjustment value is as follows:

a. If state Ai when t − 1 as Ft−1 = Ai, and t with equation

(1 ≤ s ≤ n − i) there is a forward transition jump to

state Ai+s, then Dt as the adjustment value is defined as

Dt =
(
l
2

)
s where 1 ≤ s ≤ n − i, l is the length of the

interval, and s is the number of forwarding transition

displacement jumps.

b. If state Ai when t − 1 as Ft−1 = Ai, and when t as (1 ≤

v ≤ i) there is a transition jump backward transition to

state Ai−v, then Dt as the adjustment value is defined as

Dt = −
(
l
2

)
v, where 1 ≤ v ≤ i, l is the length of the

interval, and v is the number of jumps of the backward

transition displacement.

9. Calculation of the final modeling results. The general form

of the final modeling result is the form:

FMt = Ft + Dt . (21)

2.4. Proposed model of ARFIMA-FTSMC

In building the model for long-memory data, the ARFIMA

model is already enough required. In this section, the proposed

model of ARFIMA-FTSMC is built by combining the algorithms
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of ARFIMA and FTSMC, where the FTSMC is applied for

adjusting the residual of the ARFIMA model. Therefore, the

new proposed model of ARFIMA-FTSMC will have better

performance than the ARFIMA model.

2.5. Modeling accuracy and
goodness-of-fit

Error calculation is a way to determine the level of accuracy

of the model that has been obtained with the observation data.

The use of modeling techniques with the smallest error rate is

a good modeling technique. Methods to calculate the size of this

error include themean absolute percentage error (MAPE), mean

absolute error (MAE), and root mean squared error (RMSE). In

selecting the best model, the smallest value of MAPE, MAE, and

RMSE is required. Calculation accuracy using Xt as observation

data and X̂t asmodeling data, where the formula for determining

the MAPE value is as follows:

MAPE =
1

n

n∑

t=1

|Xt − X̂t|

Xt
× 100% (22)

The MAPE accuracy criteria are as follows Zhang et al.

[10]:

a. The modeling accuracy is perfect when the MAPE value is

less than 10%

b. The modeling accuracy is good when the MAPE value is

between 10 and 20%

c. The modeling accuracy is fair when the MAPE value is

between 20 and 50%

d. Modeling accuracy is not accurate when the MAPE value is

greater than 50%.

The determination of the RMSE and MAE values is given by

the following formula:

RMSE =

√√√√ 1

n

n∑

t=1

(Xt − X̂t)2 (23)

MAE =
1

n

n∑

t=1

|Xt − X̂t| (24)

In measuring the goodness of fit, the most popular

coefficient determination R2 is required. This measure is

obtained by computing the ratio of sums of squares of regression

(SSR) to the sums of squares total (SST). The coefficient of

determination R2 has the proper range of 0 to 1 the low values

indicating poor fit, while the large values indicate well fit. Let ȳ

as the mean of data set yi, i = 1, 2, . . . , n so the R2 can be defined

as follows:

R2 =

∑n
i=1(y

′
i − ȳ)2

∑n
i=1(yi − ȳ)2

(25)

The value of R2 is defined as the proportion of variance in the

response variable accounted for by knowledge of the predictor

variable(s). R2 is also simultaneously the squared correlation

between observed values on yi and predicted values y′i based on

the data processing [18].

3. Results and discussions

In this section, the model building is related to the theory

so that the model processing of WTI oil prices using three

FIGURE 1

WTI oil price monthly data plot.

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2022.1045241
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Devianto et al. 10.3389/fams.2022.1045241

methods of the model of ARIMA, the model of ARFIMA, the

hybrid model of ARIMA-FTSMC, and the hybrid model of

ARFIMA-FTSMCwill be explained in the following subsections.

3.1. The ARIMA model of WTI oil price

The first step in identifying a time series model is to identify

it visually. This step can be figured by plotting the monthly data

on WTI oil prices. This data plot aims to observe whether the

data pattern has a trend, or seasonal component, and can also see

the stationary of data. The plotting of monthly data on WTI oil

prices from January 2003 to January 2021 is shown in Figure 1.

Figure 1 indicates that the monthly data on WTI oil prices

has an uptrend and a downtrend at certain times. The data

do not fluctuate around the mean, and the variance is not

constant during observation. The data can be stationary to the

variance and mean by performing a Box–Cox transformation

and differentiating the data, respectively. The result of parameter

Box–Cox, that is 0.3839, means that the data will be transformed

as exponential with that parameter once to get the new data.

At the same time, the uptrend and a downtrend fluctuation at

certain times indicated that the ADF test is required. The result

of the ADF test is shown in Table 1.

TABLE 1 Augmented Dickey–Fuller test.

Critical value ADF test

Statistic value p-value

1% :−3.4611

5% :−2.8751 −2.8060 0.0574

10% :−2.5740

It indicates that the mean of the data is not stationary yet.

Furthermore, the exchange rate data have to make a difference.

The plot of the transformed data on WTI oil prices is shown in

Figure 2.

Based on Figure 2, it shows that the data have spread around

the mean and variance. In other words, the data are stationary

concerning the mean and variance. Next, identify the order of

the ARIMA model by looking at the ACF and PACF plots as

follows:

From Figure 3, it shows that the significant values of the

ACF and PACF coefficients are the same at lag 1, so the

ARIMA(p,d,q) model can be chosen with the order p and q

equal to 1. And because differencing is carried out once, the

order differencing is equal to 1. Thus, the possible models are

ARIMA(1,1,0), ARIMA(1,1,1), and ARIMA(0,1,1). Next, the

results of the estimation of the parameters for each model are

shown in Table 2.

Then the parameter significance test is carried out by

determining the probability value of the model parameters.

The model is indicated to be significant if the probability

value of the model is smaller than 0.05, which means that

the ARIMA(1,1,0) and ARIMA(0,1,1) models are significant

and ready to be applied. After testing the significance

of the parameters, the next step is to choose the best

model from the significant model by comparing the AIC

and BIC values for each model which is presented in

Table 3.

From the comparison of AIC and BIC values in Table 3 for

the three models, it can be observed that the ARIMA(1,1,0)

model has the smallest AIC and BIC values among other models.

So it can be concluded that the best model is the ARIMA(1,1,0)

model. The residual assumption test of the ARIMA (1,1,0)model

is shown in Table 4.

FIGURE 2

WTI oil data plot after transformation and di�erencing.
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FIGURE 3

ACF and PACF plots of WTI oil data.

TABLE 2 Parameter estimation ARIMA(p,d,q) model with its

probability value.

Model ARIMA(1,1,0) ARIMA(1,1,1) ARIMA(0,1,1)

φ 0.2391 0.2722 -

(0.0003*) (0.2453)

θ - –0.0351 0.2187

(0.8841) (0.0004*)

*Indicates the significant parameter.

Based on Table 4, it shows that the p-value of the non-

autocorrelation and homoscedasticity test is p-value greater than

0.05. It means that there is no correlation between the data

residuals, and the variance of the residuals is the same every

time (homoscedasticity). Meanwhile, in the normality test, the

p-value which is greater than 0.05 identifies that the residual

data are normally distributed. So, the ARIMA(1,1,0) model is

obtained as the best model that fulfills the residual assumptions.

3.2. The ARFIMA model of WTI oil price

The first step is to check that WTI oil data are stationary

against variance. Next, consider the ACF plot of the stationary

TABLE 3 Comparison of AIC and BIC values ARIMA(p,d,q) model.

Model ARIMA(1,1,0) ARIMA(0,1,1)

AIC 1419.2900 1420.3750

BIC 1426.0410 1427.1250

TABLE 4 Residual assumption test ARIMA(1,1,0) model.

Non-autocorrelation Homoscedasticity Normality

p-value 0.9508 0.3490 0.0882

WTI oil data against the variance to see the long-memory

pattern as shown in Figure 4.

Based on Figure 4, it shows that the data decrease slowly

over time, which means that the data have a long-memory

pattern. Furthermore, the estimation of differencing parameters

is determined by using the GPH method in order to obtain the

dGPH value of d. Then, differencing the stationary data on the

variance with a value of dGPH has been obtained. Furthermore,

the ARFIMA model was identified by looking at the ACF and

PACF plots as follows:

Figure 5 indicates that the significant ACF coefficient value

reaches lag 5, while the significant PACF coefficient value is at

lag 1. Thus, there are 11 possible ARFIMAmodels. The next step

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2022.1045241
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Devianto et al. 10.3389/fams.2022.1045241

FIGURE 4

ACF plot of stationary WTI oil data against variance.

is to estimate the parameter and its probability value for each

model, whose results are shown in Table 5.

Based on Table 5, the significant models have a smaller

probability value than the significant level. There are

ARFIMA(0, d, 1), ARFIMA(0, d, 2), ARFIMA(0, d, 3),

ARFIMA(0, d, 4), and ARFIMA(1, d, 0) which are included as

significant models and already used for forecasting new data.

The next step is to choose the best model by comparing the AIC

and BIC values for each model presented in Table 6.

From the comparison of AIC and BIC values in Table 7 for

the five models, it can be observed that the ARFIMA(1,d.0)

model has the smallest AIC and BIC values among other models.

So it can be concluded that the best model is the ARFIMA(1,d,0)

model. The following residual assumption test of the ARFIMA

model (1,d.0) is shown in Table 8.

Based on Table 8, it describes that the non-autocorrelation

test has a p-value greater than 0.05. It means that there is no

correlation between the data residuals. Moreover, the normality

test obtained a p-value greater than 0.05, which shows that

the residuals are normally distributed. So the ARFIMA(1,d.0)

model is obtained as the best model that fulfills the residual

assumption.

3.3. The hybrid ARIMA-FTSMC model of
WTI oil price

The hybrid ARIMA-FTSMC model is a combination of the

ARIMA and FTSMCmodels. The first step is to build a model of

time series data with the ARIMA model. The results show that

the ARIMA(1,1,0) model is selected to be the best model. Thus,

the residual data of the ARIMA(1,1,0) model, denoted by εt , are

built using the FTSMCmodel. In the form of a negative number,

the transformation is carried out so that the data become a non-

negative number. The data transformation is used to determine

the minimum data from the residual data. Then, the residual

data are subtracted from the minimum data to become a non-

negative number. Based on the residual data, the result shows

the minimum residual data is dmin = −29.2866. Suppose the

residual data at the time t = 3, which is ε3 = −6.2987

so that the residual transformation data obtained is 22.9878.

The first step in the modeling residual data using the FTSMC

model is to determine the union of set U. Based on the residual

transformation data, it is obtained that Dmax = 46.3287 and

Dmin = 0. Then, the values are set as D1 = 0 and D2 = 0.6713

that is associated with Dmin and Dmax so that the lower and

upper bound in the interval will always include the data to ignore

the outlier data. The union of set U is defined as an interval

below:

U = [Dmin − D1,Dmax + D2) = [0− 0, 46.3287+ 0.6713)

= [0, 47). (26)

The union of sets U is divided into n intervals with the same

interval length using the Sturges formula so that the value is

obtained n = 9 and interval length of l = 5.2222. The obtained

intervals are u1 = [0.0000, 5.2222), u2 = [5.2222, 10.4444),

u3 = [10.4444, 15.6667), u4 = [15.6667, 20.8889),

u5 = [20.8889, 26.1111), u6 = [26.1111, 31.3333),

u7 = [31.3333, 36.5556), u8 = [36.5556, 41.7778), and
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FIGURE 5

ACF and PACF plots of WTI oil data.

u9 = [41.7778, 47.0000). The next step is transforming the

residual data into linguistic values, which are also in the

form of intervals. Suppose the residual transformation data

at the time t = 1 is 29.3201. It goes into the interval u6. As

a result, the transformation data at t = 1 after fuzzyfication

are A6.

Then, in the fuzzy logic relation (FLR) step, there is a

relationship between the order of the data to the transformed

data. This relationship is expressed by Ai → Aj, where Ai is

the left-hand side (LHS), and Aj is the right-hand side (RHS)

from FLR. For example, FLR on a fuzzy set with value A4 has

a displacement relationship to A4 or A4 → A4. Therefore,

the appearance of FLR A4 → A4 is 3 on the data obtained

so that fuzzy logic relation group (FLRG) from A4 to A4 can

be written as A4 → 3(A4). FLRG for all data is shown in

Table 8.

The fuzzy set relation above shows that FLR is in one group.

The purpose of the relation states that the fuzzy set on the left

side only has a relationship with the fuzzy set on the right side.

For example, by using FLRG in Table 8, the transition probability

matrix R, which has order 9, can be obtained as follows:

R =




0 0 0 0 1 0 0 0 0

0 0 0 0
1

2
0

1

2
0 0

0 0 0 0 0 0 1 0 0

1

12
0 0

3

12

2

12

2

12

2

12

1

12
0

0
1

42
0

2

42

8

42

11

42

12

42

7

42

1

42

0 0 0
2

69

11

69

25

69

25

69

4

69

2

69

0 0
1

65

4

65

13

65

20

65

22

65

4

65

1

65

0
1

20
0

1

20

6

20

7

20

2

20

3

20
0

0 0 0 0 0
3

4

1

4
0 0




. (27)

The next step is to calculate the initial modeling value using
the R matrix above. Using Equation 15, the initial modeling
values for the residual transformation data at t = 2 are as

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2022.1045241
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Devianto et al. 10.3389/fams.2022.1045241

TABLE 5 Parameter estimation ARFIMA(p,d,q) model with d = 0.4943.

Model φ θ1 θ2 θ3 θ4 θ5

ARFIMA(0,d,1) - –0.5642 - - - -

(< 2.2e−16)

ARFIMA(0,d,2) - –0.6915 –0.3159 - - -

(< 2.2e−16) (1.1630e−8)

ARFIMA(0,d,3) - –0.6858 –0.4208 -0.2067 - -

(< 2.2e−16) (1.6827e−10) (0.0023)

ARFIMA(0,d,4) - -0.7203 -0.4740 -0.2970 0.1605 -

(< 2.2e−16) (8.3659e−9) (9.5250e−5) (0.0105)

ARFIMA(0,d,5) - –0.7199 –0.4739 –0.2980 –0.1638 –0.0062

(< 2.2e−16) (9.3468e−9) (0.0001) (0.0297) (0.9369)

ARFIMA(1,d,0) 0.6928 - - - - -

(< 2.2e−16)

ARFIMA(1,d,1) 0.6779 –0.0292 - - - -

(< 2e−16) (0.7681)

ARFIMA(1,d,2) 0.6883 –0.0185 0.0134

(2.3446e−11) (0.8819) (0.8923)

ARFIMA(1,d,3) 0.6968 -0.0101 0.0201 0.0067

(9.6578e−6) (0.9528) (0.8836) (0.9465)

ARFIMA(1,d,4) 0.6748 -0.0331 0.0052 –0.0036 -0.0120

(0.0128) (0.9081) (0.9795) (0.9801) (0.9179)

ARFIMA(1,d,5) 0.8916 0.1787 0.1609 0.1040 0.06590 0.0936

(3.0606× 10−7) (0.3406) (0.2738) (0.3668) (0.5193) (0.2803)

follows:

F2 = m4P64 +m5P65 + X1P66 +m7P67 +m8P68 +m9P69

= (18.2778)

(
2

69

)
+ (23.5000)

(
11

69

)
+ (29.3201)

(
25

69

)

+ (33.9444)

(
25

69

)
+ (39.1667)

(
4

69

)
+ (44.3889)

(
2

69

)

= 30.7553.

Then the modeling adjustment value for the residual

transformation data at t = 2 is

Dt =

(
l

2

)
s =

(
5.2222

2

)
(1) = 2.6111.

Final modeling values for residual transformation data at

time t = 2 are:

FM2 = F2 + Dt = 30.7553+ 2.6111 = 33.3664.

Transformation returns to return the final modeling residual

transformation data to the initial modeling residual data. This is

done by adding the minimum residual data to the final modeling

residual transformation data. For example when t = 2, the final

modeling value of residual data with FTSMC is 33.3664+ (−−

29.2866) = 4.0798. The results of the ARIMA-FTSMC hybrid

modeling were obtained by adding the ARIMA(1,1,0) model

TABLE 6 Comparison of AIC and BIC values ARFIMA (p,d,q) model

with d = 0.4943.

Model AIC BIC

ARFIMA(0,d,1) –3.388.140 –3.252.950

ARFIMA(0,d,2) –3.657.100 –3.488.110

ARFIMA(0,d,3) –3.728.870 –3.526.080

ARFIMA(0,d,4) –3.771.410 –3.534.810

ARFIMA(1,d,0) –3.842.370 –3.707.170

TABLE 7 Residual assumption test ARFIMA(1,d,0) model with

d = 0.4943.

Residual assumption Non-autocorrelation Normality

p-value 0.8271 0.0627

data with the final ARIMA(1,1,0) residual modeling data. For

example, when t = 2, the hybrid modeling value is 33.5996 +

4.0798 = 37.6794.
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TABLE 8 The fuzzy logic relation group (FLRG).

No FLRG

1 A1 → A5

2 A2 → A5 , A7

3 A3 → A7

4 A4 → A1 , 3(A4), 2(A5), 2(A6), 2(A7), 2(A8)

5 A5 → A2 , 2(A4), 8(A5), 11(A6), 12(A7), 7(A8), A9

6 A6 → 2(A4), 11(A5), 25(A6), 25(A7), 4(A8), 2(A9)

7 A7 → A3 , 4(A4), 13(A5), 20(A6), 22(A7), 4(A8), A9

8 A8 → A2 , A4 , 6(A5), 7(A6), 2(A7), 3(A8)

9 A9 → 3(A6), A7

3.4. The hybrid ARFIMA-FTSMC model of
WTI oil price

The hybrid ARFIMA-FTSMC model is a combination of

the ARFIMA and FTSMC models. The first step is to build

a model of time series data with the ARFIMA model. The

results show that the ARFIMA(1,d,0) model is selected to be

the best model. Thus, the residual data of the ARFIMA(1,d,0)

model, denoted by ǫt , is built using the FTSMC model. In the

form of a negative number, the transformation is carried out

so that the data becomes a non-negative number. The data

transformation is used to determine the minimum data from

the residual data. Then, residual data are subtracted from the

minimum data to become a non-negative number. Based on the

residual data, the result shows the minimum residual data is

dmin = −26.8005. suppose the residual data at the time t=3,

which is ǫ3 = −6.2003 so that the residual transformation data

obtained is 20.6002. The first step in modeling residual data

using the FTSMC model is to determine the union of set U.

Based on the residual transformation data. It is obtained that

Dmax = 43.6958, Dmin = 0 and the determination of value

D1 = 0, D2 = 1.3042. The union of set U is defined as an

interval below:

U = [Dmin − D1;Dmax + D2) = [0− 0; 43.6958+ 1.3042)

= [0; 45)

The union of sets U is divided into n intervals with the same

interval length using the Sturges formula so that the value is

obtained n=9 and interval length of l = 5. The obtained intervals

are u1 = [0, 5), u2 = [5, 10), u3 = [10, 15), u4 = [15, 20),

u5 = [20, 25), u6 = [25, 30), u7 = [30, 35), u8 = [35, 40),

u9 = [40, 45). The next step is transforming the residual data

into linguistic values, which are also in the form of intervals.

Suppose the residual transformation data at the time t = 2 is

29.7330 it goes to interval u6. As a result, the transformation data

at time t = 2 after fuzzyfication is A6.

TABLE 9 The fuzzy logic relation group (FLRG).

No FLRG

1 A1 → A5 ,A6

2 A2 → A7

3 A3 → A4 , A5 , A6 , A7

4 A4 → A1 , 2(A3), 3(A5), 4(A7),A8 ,A9

5 A5 → A1 ,A3 , 3(A4), 12(A5)), 17(A6), 14(A7), 7(A8))

6 A6 → 3(A4), 17(A5)), 31(A6)), 16(A7)),A8 , 3(A9)

7 A7 → A2 , 5(A4), 14(A5), 15(A6), 12(A7), 4(A8)

8 A8 → 6(A5), 5(A6), 2(A7),A8

9 A9 → A3 ,A5 ,A6 ,A7 , 2(A9)

Then, in the fuzzy logic relation (FLR) step, there is a

relationship between the order of the data to the transformed

data. This relationship is expressed by Ai → Aj, where Ai is

the left-hand side (LHS), and Aj is the right-hand side (RHS)

from FLR. For example, FLR on a fuzzy set with value A4 has

a displacement relationship to A4 or A4 → A4. Therefore, the

appearance of FLRA4 → A4 is 3 on the data obtained so that the

fuzzy logic relation group (FLRG) from A4 to A4 can be written

as A4 → 3(A4). FLRG for all data is shown in Table 9:

The fuzzy set relation above shows that FLR is in one group.

The purpose of the relation states that the fuzzy set on the left

side only has a relationship with the fuzzy set on the right side.

For example, by using FLRG in Table 8, the transition probability

matrix R, which has order 9, can be obtained as follows:

R =




0 0 0 0
1

2

1

2
0 0 0

0 0 0 0 0 0 1 0 0

0 0 0
1

4

1

4

1

4

1

4
0 0

1

12
0

2

12
0

3

12
0

4

12

1

12

1

12
1

55
0

1

55

3

55

12

55

17

55

14

55

7

55
0

0 0 0
3

71

17

71

31

71

16

71

1

71

3

71

0
1

51
0

5

51

14

51

15

51

12

51

4

51
0

0 0 0 0
6

14

5

14

2

14

1

14
0

0 0
1

6
0

1

6

1

6

1

6
0

2

6




. (28)

The next step is to calculate the initial modeling value using
the R matrix above. The initial modeling values for the residual
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FIGURE 6

Comparison graph of actual data with ARIMA, ARFIMA, hybrid ARIMA-FTSMC, and hybrid ARFIMA-FTSMC models.

transformation data at t = 4 are as follows:

F4 = m1P51 +m3P53 +m4P54 + X3P55 +m6P56 +m7P57 +m8P58

= (2.5)
1

55
+ (12.5)

1

55
+ (17.5)

3

55
+ (20.6002)

12

55
+ (27.5)

17

55

+ (32.5)
14

55
+ (37.5)

7

55

= 27.2673.

Then the modeling adjustment value for the residual

transformation data at t = 2 is

Dt =

(
l

2

)
s =

(
5

2

)
(0) = 0.

Final modeling values for residual transformation data at

time t = 2 are:

FM4 = F4 + Dt = 27.2673+ 0 = 27.2673.

Transformation return to return the final modeling residual

transformation data to the initial modeling residual data.

This is done by adding the minimum residual data to the

final modeling residual transformation data. For example

when t=4, the final modeling value of residual data with

FTSMC is 27.2673+(-26.8005)=0.4668. The results of the

ARFIMA-FTSMC hybrid modeling were obtained by adding

the ARFIMA(1,d,0) model data with the final ARFIMA(1,d,0)

residual data. For example, when t=4, the hybrid modeling value

is 29.8487+0.4668=30.3156.

3.5. The comparison and discussion

After building the model of ARIMA, ARFIMA, a hybrid

model of ARIMA-FTSMC, and a hybrid model of ARFIMA-

FTSMC, then, we continue to do comparisons among the

models by analyzing graphical and accuracy measurements.

The following is a graphical comparison of the ARIMA,

ARFIMA, hybrid ARIMA-FTSMC, and hybrid ARFIMA-

FTSMC models based on the WTI data presented in Figure 6

below:

From Figure 6, it can be seen that modeling using

ARIMA, ARFIMA, hybrid ARIMA-FTSMC, and hybrid

ARFIMA-FTSMC models provide modeling results that

are close to the actual data. Although graphically, the three

models show good estimation results, it is necessary to

examine the level of accuracy of each model to see a more

precise model with better accuracy that can be used in

predictions.

Calculation of modeling accuracy to see the preferred

model for modeling WTI oil price data from the three

models is presented using MAE, RMSE, and MAPE values. By

using Equations (22)–(24), the modeling accuracy is shown in

Table 10.

Table 10 shows the accuracy measures, the best selection

criteria, and the goodness of fit for each model. Based on the

MAE and RMSE values, all models have accuracy values that

are not too far off. When viewed from the MAPE criteria, all

models have a MAPE value of less than 10%. This means that all

models can model WTI oil data very well. Based on the accuracy

of the model, the ARFIMA-FTSMC has the best performance

than the rest model, and so does the best selection and the
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TABLE 10 The comparison of the ARIMA model with GARCH, FFNN, and GARCH-FFNN using model accuracy, the best model selection, and

goodness of fit R2.

Model Model accuracy The best model selection measurement R2

MAE RMSE MAPE Log-Likelihood AIC BIC

ARIMA 4.8201 6.3901 7.9257 3.7095 806.9615 810.3414 0.9285

ARIMA-FTSMC 3.6533 4.7863 6.1219 3.1315 681.5355 684.9154 0.9608

ARFIMA 4.7973 6.3275 7.8612 3.6898 802.6866 806.0665 0.9299

ARFIMA-FTSMC 3.5268 4.5777 6.0762 3.0424 662.2008 665.5807 0.9633

goodness of fit criterion. Table 10 shows that the ARFIMA-

FTSMC has the smallest value of MAE, RMSE, MAPE, Log-

likelihood, AIC, and BIC. Then, the second one is ARIMA-

FTSMC which has the model accuracy and goodness of fit

that is closer to ARFIMA-FTSMC. It shows that if the FTSMC

model adjusts the residual model of ARIMA or ARFIMA then

the accuracy and goodness of fit of the new proposed model

will be better than the model without improvements using

FTSMC. Therefore, the hybrid model of ARFIMA-FTSMC gives

better results in modeling monthly WTI oil prices than the

rest models.

4. Conclusion

Based on the data analysis that has been done, it can be

seen that the WTI oil data have a long-memory data pattern.

This value is detected from the ACF plot, which decreases

slowly over time. This shows the influence of past data on the

current data is still strong and will decrease over time. Therefore,

time series data for WTI oil prices can be formed into the

model of ARIMA, the model of ARFIMA, the hybrid model of

ARIMA-FTSMC, and the hybrid model of ARFIMA-FTSMC.

The four models provide reasonable parameter estimates and

high accuracy, which shows their closeness to the actual data.

This is obtained based on the accuracy value of each model

obtained not too far from the actual data. However, the proposed

new model, the hybrid model of ARFIMA-FTSMC, provides the

smallest MAE, RMSE, and MAPE values. It can be concluded

that the hybrid model of ARFIMA-FTSMC has better accuracy

than other models.
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