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This paper presents a composite fuzzy learning finite-time prescribed

performance control (PPC) approach for uncertain nonlinear systems with

dead-zone inputs. First, a finite-time performance function is constructed by

a quartic polynomial. Subsequently, with the help of an error transformation

function, the restriction problem of the tracking error performance is

transformed into a stability problem of an equivalent transformation system.

In order to ensure that all signals of the closed-loop system are bounded,

a finite-time PPC method combined with fuzzy logic systems (FLSs) is

proposed. Although the tracking error can be guaranteed to be limited

within a predefined range, the proposed finite-time PPC method only uses

instantaneous data, which cannot guarantee the accurate estimation of

unknown functions under the influence of dead-zone inputs. Therefore, based

on the persistent excitation (PE) condition, a predictive error is defined by using

online recorded data and instantaneous data, and a corresponding composite

learning finite-time PPC method with parameter updating the law, which can

not only achieve the control aim of the former method but also improve the

control e�ect, is designed. The simulation results verified that the composite

learning finite-time PPC method is more e�ective than the finite-time PPC

method without learning.

KEYWORDS

nonlinear system, performance function, partial persistent excitation, dead-zone

input, finite-time

1. Introduction

The traditional control methods, such as adaptive control [1–3], feedback control

[4–6], active control [7–9], impulsive control [10, 11], can ensure that the tracking error

converges to a residual set whose size is usually unknown. Although these controllers

can achieve satisfactory steady-state error performance, the transient error performance

(including settling time and maximum overshoot) cannot be guaranteed. Thus, many

researchers focused on the transient performance of control systems, and a lot ofmethods

were proposed, for example, in Bechlioulis and Rovithakis [12], Niu and Zhao [13], Li

and Tong [14], Yao and Tomizuka [15], and Zhi and Xu [16]. In order to ensure that the
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tracking error satisfies certain transient performance, a

prescribed performance control (PPC) method was proposed

by Bechlioulis and Rovithakis [12]. It is concluded that the

characteristic of the PPC method is that the tracking error is

limited within a small pre-defined range, and its convergence

rate is not less than a predefined constant. Thus, the PPCmethod

can ensure that the tracking error satisfies both steady-state

performance and transient performance. Some recent research

works on PPC can be referred to Kostarigka et al. [17], Zhang

et al. [18], Zhang and Cheng [19], Bu et al. [20], Xiang and Liu

[21], and Liu et al. [22]. Kostarigka et al. [17] designed a PPC

method for the flexible joint robot with unknown or possibly

variable elasticity in order to make the link position error meet

the pre-set performance index. In Zhang et al. [18] proposed

a PPC control strategy for a generic flexible air-breathing

hypersonic vehicle, which ensures that the velocity and altitude

tracking errors of the vehicle have ideal transient performance.

For non-strict feedback systems with unmeasurable states, an

observer-based neural adaptive prescribed performance control

approach [19] was proposed to achieve expected output tracking

performance. The PPC methods in Kostarigka et al. [17], Zhang

et al. [18], Xiang et al. [23], and Zhang and Cheng [19] can not

achieve the convergence of tracking error with sufficiently small

overshoot. To solve this problem, an improved PPC control

strategy combined with backstepping technology is proposed

by Bu et al. [20] to guarantee the convergence of tracking error

with small overshoot for uncertain nonlinear dynamic systems.

Using a similar PPC strategy, the transient performance of

tracking errors for uncertain systems with unknown control

gain signs was discussed by Xiang and Liu [21]. In order to

realize the finite-time control of tracking error, a finite-time

performance function and a corresponding finite-time PPC

method were proposed for strict-feedback nonlinear systems

by Liu et al. [22]. However, it should be pointed out that the

above PPC methods mainly focus on driving the tracking error

to meet certain transient performances, in addition, although

fuzzy logic systems (FLSs) or neural networks (NNs) are used to

approximate the nonlinear functions of the controlled system,

the approximation errors are not further discussed.

In practical control systems, using FLS or NN to deal

with system uncertainty has brought us great help. However,

if the parameter updating law of FLS or NN is designed

based on instantaneous data, it may not guarantee the accurate

estimation of the unknown function. To obtain an accurate

estimation of system uncertainty, a valid strategy is to define

a prediction error by using online recorded data together

with instantaneous data, and then design a composite learning

parameter updating law [24–32]. Based on a partial persistent

excitation (PE) condition, an NN composite learning control

scheme was proposed by Wang and Hill [24], which can

accurately approximate the unknown function. In Pan and

Yu [32], a composite learning robot control approach was

developed to achieve accurate parameter estimation under an

interval excitation (IE) condition. To the best of our knowledge,

most of the composite learning control methods only consider

linear input, and the existing results are not valid for nonlinear

input, such as dead-zone and saturation. In addition, the

composite learning control method can achieve the steady-

state performance of the tracking error; however, whether it

can be combined with PPC technology to achieve transient

performance will become an interesting topic.

Inspired by the above discussion, a composite learning

finite-time PPC was proposed for an uncertain multi-input

multi-output (MIMO) nonlinear second-order system.

Compared with Xiang et al. [23], the highlights of this paper

are presented as follows: 1) The proposed method in this paper

ensures that the tracking error is limited within the predefined

region at the settling time. 2) By using online recorded data and

instantaneous data, composite learning parameter updating laws

are designed. 3) The proposed control method overcomes the

influence of dead-zone inputs and realizes accurate estimation

of unknown functions.

The paper is arranged as follows. The control problem and

some preliminaries are presented in Section 2. The composite

learning finite-time PPC method is designed in Section 3. Some

simulation results are shown in Section 4. The conclusion is

provided in Section 5.

2. Preliminaries

2.1. System description

Consider a MIMO nonlinear second-order system whose

dynamics can be described as

ξ̈ξξ = FFF(ξξξ , ξ̇ξξ , t)+ŴŴŴ(uuu(t)), (1)

where ξξξ = [ξ1, ξ2, · · · , ξn]T ∈ R
n is a state vector,

ξ̇ξξ = [ξ̇1, ξ̇2, · · · , ξ̇n]
T and ξ̈ξξ = [ξ̈1, ξ̈2, · · · , ξ̈n]T

are the first derivative and the second derivative

of ξξξ , respectively. FFF(ξξξ , ξ̇ξξ , t) = [f1(ξξξ , ξ̇ξξ , t), f2(ξξξ , ξ̇ξξ , t),

· · · , fn(ξξξ , ξ̇ξξ , t)]T ∈ R
n is the nonlinear function vector;

uuu(t) = [u1(t), u2(t), · · · , un(t)]T ∈ R
n is the control input

vector and ŴŴŴ(u(t)) = [Ŵ1(u1(t)),Ŵ2(u2(t)), · · · ,Ŵn(un(t))]T ∈
R
n is the output of dead-zone function vector in the actuator,

which is described as

ŴŴŴi(uuui(t)) =











mi1(ui(t)− b̄i), if ui(t) ≥ b̄i,

0, if − bi < ui(t) < b̄i,

mi2(ui(t)+ bi), if ui(t) ≤ −bi,

(2)

where mi1 and mi2 represent the right and the left slopes of the

dead-zone and are assumed to satisfy that mi1 = mi2 = mi. b̄i
and bi stand for the breakpoints of the dead-zone.

From Equation (2), the equivalent form of ŴŴŴ(uuu(t)) can be

expressed as

ŴŴŴ(uuu(t)) =MMMuuu(t)+△uuu(t), (3)
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where MMM = diag(m1,m2, · · · ,mn), △uuu(t) =
[△u1(t),△u2(t), · · · ,△un(t)]

T and△ui(t) is described as

△ui(t) =











−mib̄i, if ui(t) ≥ b̄i,

−miui(t), if − bi < ui(t) < b̄i,

mibi, if ui(t) ≤ −bi.

(4)

where ξ̄ξξ is defined as ξ̄ξξ = [ξξξT1 ,ξξξ
T
2 ]

T = [ξξξT , ξ̇ξξ
T
]T .

Substituting (Equations 3–1), the system (Equation 1) can be

rewritten as
{

ξ̇ξξ1 = ξξξ2,

ξ̇ξξ2 = F̄FF(ξ̄ξξ , t)+MMMuuu(t),
(5)

where F̄FF(ξ̄ξξ , t) = [f̄1(ξ̄ξξ , t), f̄2(ξ̄ξξ , t), · · · , f̄n(ξ̄ξξ , t)]T = [f1(ξξξ , ξ̇ξξ , t) +
△u1(t), f2(ξξξ , ξ̇ξξ , t)+△u2(t), · · · , fn(ξξξ , ξ̇ξξ , t)+△un(t)]

T .

The following assumptions and lemmas are provided to

facilitate control analysis.

Assumption 1. State vectors ξξξ and ξ̇ξξ are measurable.

Assumption 2. f̄i(ξ̄ξξ , t), i = 1, 2, · · · , n is an unknown

continuous function.

Remark 1. Assumptions 1 and 2 are common assumptions for

the second-order nonlinear system [8, 23].

Lemma 1. Assume that f (xxx) is a continuous function, which is

defined on a compact set �xxx, then there exists an optimal FLS

ϕϕϕT(xxx)θ∗ satisfies

sup
xxx∈�xxx

|f (xxx)− ϕϕϕT(xxx)θ∗| ≤ ε∗f , (6)

where θ∗ = [θ∗1 , θ
∗
2 , · · · , θ∗m]T ∈ R

m is the ideal weight vector,

m ∈ N is the number of the fuzzy rules, ε∗
f
is the desired level, and

ϕ(xxx) is a basis function vector, which can be expressed as

ϕϕϕ(xxx) = [ϕ1(xxx),ϕ2(xxx), · · · ,ϕm(xxx)]T
m
∑

j=1
ϕj(xxx)

(7)

where ϕj(xxx) = exp



−
‖xxx− cccj‖2

bbbTj bbbj



 is a Gaussion function, cccj =

[cj1, cj2, · · · , cjm]T , and bbbj = [bj1, bj2, · · · , bjm]T are the center

vector and the width of ϕj(xxx), respectively.

According to Lemma 1, the unknown function f̄i(ξ̄ξξ , t) can be

written as

f̄i(ξ̄ξξ , t) = ϕϕϕT
f̄i
(ξ̄ξξ )θθθ∗

f̄i
+ ε

f̄i
(ξ̄ξξ ), (8)

where ϕϕϕ
f̄i
(ξ̄ξξ ) is the basis function vector and ε

f̄i
(ξ̄ξξ ) is the

estimation error satisfying |ε
f̄i
(ξ̄ξξ )| ≤ ε∗

f̄i
, ε∗

f̄i
is a positive

constant. θθθ∗
f̄i
can be defined as

θθθ∗
f̄i
= arg min

θ̂f̄i
∈Rm







sup
ξ̄ξξ∈Dξ̄ξξ

|f̄i(ξ̄ξξ , t)− ϕϕϕTf̄i (ξ̄ξξ )θ̂θθ f̄i |







, (9)

where θ̂θθ
f̄i

is an adjustable parameter vector. In this paper,

ϕϕϕT
f̄i
(ξ̄ξξ )θ̂θθ

f̄i
is applied to approximate f̄i(ξ̄ξξ , t).

Let ϕϕϕT
F̄
(ξ̄ξξ )θθθ∗

F̄
= [ϕϕϕT

f̄1
(ξ̄ξξ )θθθ∗

f̄1
, ϕϕϕT

f̄2
(ξ̄ξξ )θθθ∗

f̄2
, · · · ,ϕϕϕT

f̄n
(ξ̄ξξ )θθθ∗

f̄n
]T ,

ϕϕϕT
F̄
(ξ̄ξξ )θ̂θθ F̄ = [ϕϕϕT

f̄1
(ξ̄ξξ )θ̂θθ

f̄1
,ϕϕϕT

f̄2
(ξ̄ξξ )θ̂θθ

f̄2
, · · · , ϕϕϕT

f̄n
(ξ̄ξξ )θ̂θθ

f̄n
]T ,

ϕϕϕT
F̄
(ξ̄ξξ )θ̃θθ F̄ = [ϕϕϕT

f̄1
(ξ̄ξξ )θ̃θθ

f̄1
,ϕϕϕT

f̄2
(ξ̄ξξ )θ̃θθ

f̄2
, · · · ,ϕϕϕT

f̄n
(ξ̄ξξ )θ̃θθ

f̄n
]T ,

εεεF̄(ξ̄ξξ ) = [ε
f̄1
(ξ̄ξξ ), ε

f̄2
(ξ̄ξξ ), · · · , ε

f̄n
(ξ̄ξξ )]T and θ̃θθ F̄ = θθθ∗

F̄
− θ̂θθ F̄ is the

estimated parameter error, where θθθ∗
F̄

= [θθθ∗T
f̄1

,θθθ∗T
f̄2

, · · · ,θθθ∗T
f̄n

]T

and θ̂θθ F̄ = [θ̂θθ
T
f̄1
, θ̂θθ

T
f̄2
, · · · , θ̂θθTf̄n ]

T . Thus, the system (Equation 5)

can be modified as

{

ξ̇ξξ1 = ξξξ2,

ξ̇ξξ2 = ϕϕϕT
F̄
(ξ̄ξξ )θ̃θθ F̄ + ϕϕϕT

F̄
(ξ̄ξξ )θ̂θθ F̄ + εεεF̄(ξ̄ξξ )+MMMuuu(t).

(10)

The tracking error eee is defined as eee = [e1, e2, · · · , en]T =
ξξξ1−ξξξd and ξξξd = [ξd1 , ξd2 , · · · , ξdn ]

T is a reference signal vector,

where ξdi , ξ̇di , and ξ̈di are continuous, recurrent, and available.

Definition 1. Pan and Yu [27] proposed that if the inequality
∫ t

t−τd
φφφ(τ )φφφT(τ )dτ ≥ µI holds for a bounded signalφφφ(t), then it

is said thatφφφ(t) satisfies the PE condition, where µ, τd are positive

constants and III is an identity matrix.

Lemma 2. Pan and Yu [27] proposed that if xxx is recurrent, then

there exists a regression vector ϕϕϕ(xxx) in Equation (7) such that the

PE condition is satisfied.

Remark 2. In Pan et al. [26, 31], Liu et al. [29], and Pan

and Yu [32], a PE condition criterion for ϕϕϕ
f̄i
(ξ̄ξξ ) in Equation

(8) is given, that is, by calculating the minimum singular

value of

∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )ϕϕϕT

f̄i
(ξ̄ξξ )dτ . If the minimum singular value of

∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )ϕϕϕT

f̄i
(ξ̄ξξ )dτ is greater than zero, ϕϕϕ

f̄i
(ξ̄ξξ ) can be regarded

as satisfying the PE condition, i.e., there exists a positive constant

µi such that

∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )ϕϕϕT

f̄i
(ξ̄ξξ )dτ > µiI, and µi is only used for

the theoretical proof of the proposed control method in this paper.

Remark 3. In Wang and Yang [33], a recurrent trajectory is

described as periodic or period-like trajectory, that is, given a ø-

neighborhood and a constant time T(ø), the return time of the

recurrent trajectory to any point in the ø-neighborhood will not

exceed T(ø). If a recurrent trajectory ξ is given in advance and

|ζ − ξ | < ø holds after a certain time, ζ can also be regarded as a

recurrent trajectory.

Lemma 3. (Boundedness of basis function). There exists a

positive constant ψ , which is independent of xxx, such that ϕϕϕ(xxx) in

Equation (7) satisfiesmax{‖ ϕϕϕ(xxx)‖, ‖ϕ̇ϕϕ(xxx) ‖} ≤ ψ .
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2.2. Prescribed performance

First, a finite-time performance function p(t,α0,α∞,Te) is

introduced as

5i =
pi(t,αi0,αi∞,Te)ṗi(t, ᾱi0, ᾱi∞,Te)− ṗi(t,αi0,αi∞,Te)pi(t, ᾱi0, ᾱi∞,Te)− ei(t)(ṗi(t, ᾱi0, ᾱi∞,Te)− ṗi(t,αi0,αi∞,Te))

pi(t, ᾱi0, ᾱi∞,Te)− pi(t,αi0,αi∞,Te)
. (16)

p(t,α0,α∞,Te) =











α4t
4 + α3t3 + α2t2 + α1t + α0,
0 ≤ t < Te,

α∞, t ≥ Te,

(11)

where α0 and α∞ are the initial value and boundary value of

the performance function p(t,α0,α∞,Te), respectively. Te is the

predefined experienced time of p(t,α0,α∞,Te) than that from

α0 to α∞. To guarantee that p(t,α0,α∞,Te), ṗ(t,α0,α∞,Te),

and p̈(t,α0,α∞,Te) are continuous at t = Te, parameters

α1,α2,α3, and α4 are designed as



























α1 = 4(α∞−α0)
Te

,

α2 = 6(α0−α∞)
T2
e

,

α3 = 4(α∞−α0)
T3
e

,

α4 = α0−α∞
T4
e

.

(12)

For the tracking error eee = [e1, e2, · · · , en]T , assume

that each ei satisfies the following prescribed performance

boundary (PPB):

pi(t,αi0,αi∞,Te) < ei < pi(t, ᾱi0, ᾱi∞,Te), (13)

where pi(t,αi0,αi∞,Te) and pi(t, ᾱi0, ᾱi∞,Te) are the lower

boundary and the upper boundary of ei, respectively. The

designed parameters αi0,αi∞, ᾱi0, ᾱ∞ satisfy αi∞ < αi0 < ᾱi0

and α∞ < ᾱ∞ < ᾱ0.

In this paper, a transformation variable zi is defined as

zi = ln
(

̺i(t)
1−̺i(t)

)

, (14)

where ̺i(t) =
ei−pi(t,αi0,αi∞,Te)

pi(t,ᾱi0,ᾱi∞,Te)−pi(t,αi0,αi∞,Te)
.

Obviously, the following result holds:

Lemma 4. The boundedness of zi can guarantee that ei satisfies

the PPB (13).

Proof. From Equation (14), one obtains that

̺i(t) = ezi
1+ezi

. Since zi is bounded, which means

0 < ̺i(t) = ei−pi(t,αi0,αi∞,Te)
pi(t,ᾱi0,ᾱi∞,Te)−pi(t,αi0,αi∞,Te)

< 1. Obviously,

pi(t,αi0,αi∞,Te) < ei < pi(t, ᾱi0, ᾱi∞,Te). The proof

is completed.

zzz is defined as zzz = [z1, z2, · · ·, zn]T , the derivative of

zzz becomes

żzz = rrr
(

ξξξ2 − ξ̇ξξd +555
)

, (15)

where rrr = diag(r1, r2, · · ·, rn),555 = [51,52, · · ·,5n]
T , and

ri =
1

̺i(t)(1− ̺i(t))(pi(t, ᾱi0, ᾱi∞,Te)− pi(t,αi0,αi∞,Te))
,

Remark 4. If ei is limited within PPB (Equation 13), then 0 <

̺i(t) < 1 and 0 < 1 − ̺i(t) < 1, which implies that ri is

negative and bounded. For t ≥ Te, one has pi(t,αi0,αi∞,Te) =
αi∞, ṗi(t,αi0,αi∞,Te) = 0, pi(t, ᾱi0, ᾱi∞,Te) = ᾱi∞, and

ṗi(t, ᾱi0, ᾱi∞,Te) = 0, then ri =
ᾱi∞−αi∞

(ᾱi∞−ei)(ei−αi∞)
and 5i = 0.

Obviously, there exists a minimum value r∗ = 4
ᾱi∞−αi∞ such that

ri ≥ r∗ during t ∈ [Te,∞).

zzz1 and zzz2 are defined as zzz1 = zzz, zzz2 = żzz, the transformation

system is given as follows:











żzz1 = zzz2,

żzz2 = rrrϕϕϕT
F̄
(ξ̄ξξ )θ̃θθ F̄ + rrrϕϕϕT

F̄FF
(ξ̄ξξ )θ̂θθ F̄ + rrrεεεF̄(ξ̄ξξ )+ rrrMMMuuu(t)− rrrξ̈ξξd

+rrr5̇55+333,
(17)

where 5̇55 = [5̇1, 5̇2, · · · , 5̇n]
T , 333 = ṙrr(ξξξ2 − ξ̇ξξd + 555), and

ṙrr = diag(ṙ1, ṙ2, · · · , ṙn).

3. Composite learning control design

First, introduce a variable σσσ = [σ1, σ2, · · · , σn]T as

σσσ = zzz2 + ccczzz1, (18)

where ccc = diag(c1, c2, · · · , cn), ci is designed as positive

constant. From Equations (15) and (18), the time derivative of

σσσ becomes

σ̇σσ = rrrϕϕϕT
F̄
(ξ̄ξξ )θ̃θθ F̄ + rrrϕϕϕT

F̄
(ξ̄ξξ )θ̂θθ F̄ + rrrεεεF̄(ξ̄ξξ )+ rrrMMMuuu(t)

−rrrξ̈ξξd + rrr5̇55+333+ ccczzz2,
(19)

In order to make variable σσσ and the estimated error θ̃θθ F̄
bounded, the following theorem shows the first main result of

this paper.

Theorem 1. For the MIMO nonlinear second-order system

(Equation 1) with Assumptions 1 and 2, if the controller uuu is

designed as

uuu = (rrrMMM)−1[−rrrϕϕϕT
F̄
(ξ̄ξξ )θ̂θθ F̄ + rrrξ̈ξξd − rrr5̇55−333− ccczzz2 −KKKσσσ ],

(20)

where KKK = diag(k1, k2, · · · , kn), ki is the positive parameter. And

the updating law θ̂θθ
f̄i
is chosen as

˙̂
θθθ
f̄i
= ηF̄(riσiϕϕϕ f̄i

(ξ̄ξξ )− γF̄θ̂θθ f̄i ), (21)
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where ηF̄ and γF̄ are designed positive constants. All signals in

Equation (22) are bounded, and then ei satisfies PPB (Equation

13). Meanwhile, ξξξ1 and ξξξ2 are recurrent after Te.

Proof. Consider the following Lyapunov function

V1 = 1

2

(

σσσTσσσ + 1

ηF̄
θ̃θθ
T
F̄ θ̃θθ F̄

)

, (22)

Substituting Equations (19)–(21) into V̇1, one gets

V̇1 = −KKKσσσTσσσ + σσσTrrrεεεF̄(ξ̄ξξ )+ σσσTrrrϕϕϕTF̄ (ξ̄ξξ )θ̃θθ F̄
−

n
∑

i=1

1
ηF̄
θ̃θθ
T
f̄i
(ξ̄ξξ )

˙̂
θθθ
f̄i

= −KKKσσσTσσσ + σσσTrrrεεεF̄(ξ̄ξξ )+
n
∑

i=1
σiriϕϕϕ

T
f̄i
(ξ̄ξξ )θ̃θθ

f̄i

−
n
∑

i=1

1
ηF̄
θ̃θθ
T
f̄i

[

ηF̄(riσiϕϕϕ f̄i
(ξ̄ξξ )− γF̄θ̂θθ f̄i )

]

= −KKKσσσTσσσ + σσσTrrrεεεF̄(ξ̄ξξ )+
n
∑

i=1
γF̄θ̃θθ

T
f̄i
θ̂θθ
f̄i

= −KKKσσσTσσσ + σσσTrrrεεεF̄(ξ̄ξξ )+ γF̄θ̃θθ
T
F̄ θ̂θθ F̄ .

(23)

By using Young’s inequality, one obtains

σσσTrrrεεεF̄(ξ̄ξξ ) ≤
σσσTσσσ

4
+ ‖ rrrεεεF̄(ξ̄ξξ ) ‖

2,

γF̄θ̃θθ
T
F̄ θ̂θθ F̄ ≤ −

γF̄

2
θ̃θθ
T
F̄ θ̃θθ F̄ +

γF̄

2
‖ θθθ∗

F̄
‖2,

(24)

Because rrr and εεεF̄(ξ̄ξξ ) are bounded, there exists an unknown

upper bound b∗εr such that ‖ rrrεεεF̄(ξ̄ξξ ) ‖≤ b∗εr . Therefore,

V̇1 ≤ −k̄σσσTσσσ − γF̄
2 θ̃θθ

T
F̄ θ̃θθ F̄ + R∗1 (25)

where k̄ = min
i
{ki − 1

4 } > 0, R∗1 = b∗2εr + γF̄
2 ‖ θθθ∗

F̄
‖2. The

following compact sets are defined as follows:

�σσσ =







σσσ

∣

∣

∣

∣

∣

∣

‖σσσ‖ ≤

√

R∗1
k̄







,

�θθθ =
{

‖θ̃θθ F̄‖
∣

∣

∣

∣

∣

‖θ̃θθ F̄‖ ≤
√

2R∗1
γF̄

}

.

(26)

Obviously, ifσσσ /∈ �σσσ or θ̃θθ F̄ /∈ �θ̃θθ F̄ , one has V̇1 < 0. Thus,σσσ and

θ̃θθ
f̄i
are semiglobally uniformly bounded. Notice that zzz2 = żzz1 =

σσσ − ccczzz1, selecting Lyapunov function. Let V2 = 1

2
zzzT1 zzz1, one has

V̇2 = zzzT1 żzz1 = zzzT1 σσσ − zzzT1 ccczzz1

≤ −cminzzz
T
1 zzz1 +

zzzT1 zzz1
4 + ‖ σσσ ‖2

≤ −c̄zzzT1 zzz1 +
R∗1
k̄
,

(27)

where c̄ = cmin − 1
4 > 0, cmin = min

i
{ci}. The compact set is

defined as�zzz1 =
{

zzz1

∣

∣

∣

∣

∣

‖zzz1‖ ≤
√

R∗1
c̄k̄

}

, if zzz1 /∈ �zzz1 , V̇2 < 0. So,

zzz1 is bounded, and then

‖ zzz2 ‖ ≤‖ σσσ ‖ + ‖ ccczzz1 ‖

≤
√

R∗1
k̄

+ cmax ‖ zzz1 ‖

=
√

R∗1
k̄

(

1+ cmax√
c̄

)

,

(28)

where cmax = max
i
{ci}. According to Lemma 4, the boundedness

of zzz1 ensures that all tracking errors ei meet PPB (Equation 13),

which means that α∞ < ξi − ξdi < ᾱ∞ after Te. Because ξdi is

recurrent, according to the description of recurrent trajectory in

Remark 3, we know that ξi is also recurrent.

Form Equation (15), one gets ξ̇i − ξ̇di = żi
ri

− 5i, and

according to Remark 4, one has ri ≥ r∗,5i = 0 after Te. Thus

|ξ̇i − ξ̇di| = |żi|
ri

≤ ‖zzz2‖
r∗ =

√

R∗1
k̄

(

1+ cmax√
c̄

) 1
r∗ , t ≥ Te. (29)

It can be found that ξ̇i is limited within the

√

R∗1
k̄

(

1 + cmax√
c̄

) 1
r∗ -

neighborhood of ξ̇di after Te. Since ξ̇di is recurrent, therefore, ξ̇i

is also recurrent. Therefore, we can conclude that ξξξ1 and ξξξ2 are

recurrent vector after time Te.�

Remark 5. Notice that the parameter updating law (Equation

21) in Theorem 1 only uses instantaneous data, which may not

estimate the unknown function F̄FF(ξ̄ξξ , t) accurately. Therefore, we

need to use online recorded data and instantaneous data to design

composite learning parameter updating law.

Define Gi(t) =
∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )ϕϕϕT

f̄i
(ξ̄ξξ )dτ , t ≥ τd + Te. Notice

that ξ̄ξξ = [ξξξT1 ,ξξξ
T
2 ]

T is recurrent vector after Te, according to

Lemma 2 and Remark 2, if the selected fuzzy basis function

ϕϕϕ
f̄i
(ξ̄ξξ ) in Equation (8) satisfies that the minimum singular value

of Gi(t) is greater than zero, it means that Gi(t) satisfies the

PE condition, i.e. there exists a positive constant µi such that

Gi(t) ≥ µiI.

From Equation (5), one gets

f̄i(ξ̄ξξ , t) = ξ̈i −miui(t). (30)

Multiplying ϕϕϕ
f̄i
(ξ̄ξξ ) to both sides of Equation (30) and

integrating over [t − τd, t], one has
∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )f̄i(ξ̄ξξ , τ )dτ =

∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )(ϕϕϕT

f̄i
(ξ̄ξξ )θθθ∗

f̄i
+ ε

f̄i
(ξ̄ξξ ))dτ

= Gi(t)θθθ
∗
f̄i
+
∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )ε

f̄i
(ξ̄ξξ )dτ

=
∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )(ξ̈i −miui(τ ))dτ .

(31)
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Therefore, one obtains

Gi(t)θ̃θθ f̄i
=
∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )(ξ̈i −miui(τ )− εf̄i (ξ̄ξξ ))dτ . (32)

Because ξ̈i is not measurable, a second-order filter is used to

estimate ξ̈i:

{

ω̇i1 = ωi2,

ω̇i2 = −α(2βωi2 + α(ωi1 − ξ̇i))
(33)

with ωi1(0) = ξ̇i(0) and ωi2(0) = 0, where α denotes the natural

frequency and β stands for the damping factor. According to

Lemma 2 inHu and Zhang [34], ξ̇i and ξ̈i can be estimated byωi1
and ωi2, respectively. Moreover, for any given positive constant

πi, there exist corresponding α and β so that |ωi2 − ξ̈i| <
πi holds.

Define a prediction error ǫi(t) as

ǫi(t) = Gi(t)θ̃θθ f̄i
+ εei (t), (34)

where εei (t) is a lumped approximation error given by

εei (t) =
∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )(ωi2 − ξ̈i + εf̄i (ξ̄ξξ ))dτ . (35)

From Equations (32) and (35), ǫi(t) can be computed by

ǫi(t) =
∫ t

t−τd
ϕϕϕ
f̄i
(ξ̄ξξ )(ωi2 −miui(τ ))dτ . (36)

Obviously, ‖εei (t)‖ ≤
∫ t

t−τd
‖ϕϕϕ

f̄i
(ξ̄ξξ )‖ · (|ωi2 − ξ̈i| + |ε

f̄i
(ξ̄ξξ )|)dτ

≤ ψ(πi + ε∗f̄i )τd by using Lemma 3 and Lemma 2 in Hu and

Zhang [34]. Therefore, we modify the updating law (Equation

21) as follows

˙̂
θ
f̄i
=
{

ηF̄(riσiϕϕϕ f̄i
(ξ̄ξξ )− γF̄θ̂θθ f̄i ), t < τd + Te,

ηF̄(riσiϕϕϕ f̄i
(ξ̄ξξ )+ γ ′

F̄
ǫi(t)), t ≥ τd + Te,

(37)

where γ ′
F̄
is a designed positive constant.

The following theorem shows the second main result of

this paper.

Theorem 2. For the MIMO nonlinear second-order system

(Equation 1) with assumptions 1 and 2, if the selected based

function ϕ
f̄i
(ξ̄ξξ ) in Equation (8) satisfies Gi(t) ≥ µiIII after Te+ τd,

then, the controller (Equation 20) and the composite learning

law (Equation 37) guarantee that each tacking error eeei satisfies

PPB (Equation 13) at t ∈ [0,∞) and θ̃θθ F̄ converges to a small

neighborhood of zero during t ∈ [Te + τd,∞).

Proof. Theorem 1 has proved that ei satisfies PPB (Equation

13) at t ∈ [0,Te + τd] and ξ̄ξξ i = [ξξξTi , ξ̇ξξ
T
i ]

T is recurrent after

Te. If the selected based function ϕ
f̄i
(ξ̄ξξ ) in Equation (8) satisfies

Gi(t) ≥ µiIII after Te+ τd, then we just need to prove the stability

of σσσ and θ̃θθ F̄ at t ∈ [Te + τd,∞).

Consider the following Lyapuonv function

V3 = 1

2

(

σσσTσσσ + 1

ηF̄
θ̃θθ
T
F̄ θ̃θθ F̄

)

, t ≥ Te + τd. (38)

Substituting Equations (19), (20), and (37) into V̇3, one gets

V̇3 = −KKKσσσTσσσ + σσσTrrrεεεF̄(ξ̄ξξ )−
n
∑

i=1
γ ′
F̄
θ̃θθ
T
f̄i
ǫi(t)

= −KKKσσσTσσσ + σσσTrrrεεεF̄(ξ̄ξξ )

−
n
∑

i=1
γ ′
F̄
θ̃θθ
T
f̄i
Gi(t)θ̃θθ f̄i

−
n
∑

i=1
γ ′
F̄
θ̃θθ
T
f̄i
εei (t).

(39)

Substituting Gi(t) ≥ µiIII, t ∈ [Te + τd,∞) to V̇3, one has

V̇3 ≤ −KKKσσσTσσσ + σσσTrrrεεεF̄(ξ̄ξξ )

−
n
∑

i=1

µiγ
′
F̄
θ̃θθ
T
f̄i
θ̃θθ
f̄i
−

n
∑

i=1

γ ′
F̄
θ̃θθ
T
f̄i
εei (t)

= −KKKσσσTσσσ + σσσTrrrεεεF̄FF(ξ̄ξξ )−
µ̄γ ′

F̄

2
θ̃θθ
T
F̄ θ̃θθ F̄

−
n
∑

i=1

µiγ
′
F̄

2
[θ̃θθ

T
f̄i
θ̃θθ
f̄i
+ 2

µi
θ̃θθ
T
f̄i
εei (t)],

(40)

where µ̄ = min
i
{µi}. Applying Young’s inequality, one gets

−
n
∑

i=1

µiγ
′
F̄

2
[θ̃θθ

T
f̄i
θ̃θθ
f̄i
+ 2

µi
θ̃θθ
T
f̄i
εei (t)] ≤

n
∑

i=1

µiγ
′
F̄

2
· ‖εei‖

2

µ2i

≤
n
∑

i=1

γ ′
F̄
[ψ(πi + ε∗fi )τd]

2

2µi
.

(41)

Substituting the first inequality of Equations (24) and (41)

into Equation (40) shows that

V̇3 ≤ −k̄σσσTσσσ − µ̄γ ′
F̄

2 θ̃θθ
T
F̄ θ̃θθ F̄ + R∗2 , (42)

where k̄ = min
i
{ki − 1

4 } > 0, R∗2 = b∗2εr +
n
∑

i=1

γ ′
F̄
[ψi(πi+ε∗fi )τd]

2

2µi
.

Let κ = min{2k̄, µ̄γ
′
F̄

ηF̄
}. From Equation (42), it yields

V̇3 ≤ −κV3 + R∗2 . (43)

Solving the inequality (Equation 43) leads to

V3(t) ≤ V3(Te + τd)e−κt +
R∗2
κ , ∀t ∈ [Te + τd,∞), (44)

whichmeansσσσ and θ̃θθ F̄ tend to

√

R∗2
κ − neighborhood of zero that

can be arbitrarily diminished by properly designed parameters

ki, ηF̄ , and γ
′
F̄
are chosen. Since σσσ is bounded, similar to the

derivation of Theorem 1, we can conclude that ei is limited

within [α∞,α∞].
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Remark 6. Theorem 1 shows a finite-time PPC method without

learning. The parameter adaptive law uses instantaneous data,

which does not guarantee the accurate estimation of the unknown

function (see Figures 2A–D in Section 4). Theorem 2 improves

the parameter adaptive law by using online recorded data

and instantaneous data after the preset time Te. Figures 4A–C

in Section 4 show the control effect. Obviously, the unknown

functions are not affected by the dead-zone inputs and are

accurately estimated.

4. Example

In this section, an inverted double pendulum system [35]

(shown in Figure 1) was studied to illustrate the different control

effectiveness of the proposed two methods. The dynamic model

of the inverted double pendulum system (IBPS) was expressed as

{

θ̈1 = f1(θ1, θ̇1, θ2, θ̇2, t)+ Ŵ1(ςu1(t)),
θ̈2 = f2(θ1, θ̇1, θ2, θ̇2, t)+ Ŵ2(ςu2(t)),

(45)

where θi and θ̇i were the angles and angular velocities of

the inverted double pendulum. f1(θ1, θ̇1, θ2, θ̇2, t) = χθ1 +
h(t)(−α(t)θ1+α(t)θ2−δ1+δ2)+d1(θ1, θ̇1), f2(θ1, θ̇1, θ2, θ̇2, t) =
χθ2 + h(t)(−α(t)θ2 + α(t)θ1 − δ1 + δ2)+ d2(θ2, θ̇2), χ = gr

cml
,

cm = mb
ma+mb

, h(t) = k(α(t)−cml)
mbcml

2 , d1(θ1, θ̇1) = −mb
ma
θ̇21 sin(θ1),

and d2(θ2, θ̇2) = −mb
ma
θ̇22 sin(θ2) were external disturbances for

the IBPS (Equation 45), and control coefficient ς = 1
mbcml

2 . The

parameter values of the IBPS were selected as ma = mb = 50,

L = 2gr = 2k = 2l = 2, δ1 = sin(2t), δ2 = sin(3t) + L.

Let ξξξ1 = [θ1, θ2]
T ,ξξξ2 = [θ̇1, θ̇2]

T , the reference signal ξξξd =

[ξd1, ξd2]
T , ξd1 = −ξd2 = π

6.28 [sin(t) + 0.3 sin(3t)]. The initial

angles and angular velocities were set as ξξξ1(0) = [0.8, − 0.8]T

and ξξξ2(0) = [0, 0]T . The control parameters were chosen as

m1 = m2 = 5, b̄1 = b̄2 = 3, k1 = k2 = 10, and c1 = c2 = 5.

Let f1(ξ̄ξξ , t) = f1(θ1, θ̇1, θ2, θ̇2, t) + 11(ςu1(t)) and f2(ξ̄ξξ , t) =
f2(θ1, θ̇1, θ2, θ̇2, t) + 12(ςu2(t)) and ξ̄ξξ = [θ1, θ̇1, θ2, θ̇2]

T . The

fuzzy membership functions were defined as

ϕ
f
j
1

= ϕ
f
j
2

= exp

(

−
(ξ̄ξξ − ξξξ j)T(ξ̄ξξ − ξξξ j)

0.5

)

, (46)

where ξξξ j = [−2 + j,−2 + j,−2 + j,−2 + j]T , j = 1, 2, and

3. The initial values of θ̂θθ f1 (t) and θ̂θθ f2 (t) were designed as zero,

parameters ηF̄ , γF̄ , and γ
′
F̄
in Equations (21) and (37) were set

as ηF̄ = 10, γF̄ = 0.01, and γ ′
F̄
= 6. The parameters α and β

in Equation (33) were designed as α = 100 and β = 0.7. The

tracking errors were defined as e1 = θ1− ξd1 and e2 = θ2− ξd2,
and the following prescribed performance boundary conditions

were chosen:

{

p1(t, 0.4,−0.05,Te) < e1 < p1(t, 1.2, 0.05,Te),

p2(t,−1.2,−0.05,Te) < e2 < p2(t,−0.4, 0.05,Te),
(47)

where Te = 5. The method in Theorem 1 was denoted as the

TPPC method (Equation 20) without learning. Based on the

above designed parameters and initial values, the simulation

results of the IBPS by using the TPPC method (Equation 20)

without learning are shown in Figures 2A–D.

Figure 2A shows that tracking errors e1 and e2 are limited

within PPBs (Equation 47). However, it was found that ϕT
f̄1
(ξξξ )θ̂

f̄1

and ϕT
f̄2
(ξξξ )θ̂

f̄2
appeared as some large jumps after 10 s in

Figure 2B, indicating that the parameter updating law (Equation

FIGURE 1

The inverted double pendulum system.
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FIGURE 2

(A) Tracking errors e1 and e2, (B) estimation of f1(ξ̄ξξ , t) and f2(ξ̄ξξ , t), (C) control inputs u1 and u2, and (D) states θ1, θ̇1, θ2, and θ̇2 by using the time

prescribed performance control (TPPC) method (Equation 20) without learning.
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FIGURE 3

The minimum singular value λmin of G(t).

21) cannot ensure that the unknown functions f1(ξ̄ , t) and

f2(ξ̄ , t) are accurately estimated. From Figure 2C, one finds

that each jump of controllers u1 and u2 is consistent with

each fluctuation of ϕT
f̄1
(ξξξ )θ̂

f̄1
and ϕT

f̄2
(ξξξ )θ̂

f̄2
, which indicates

that the TPPC method (Equation 20) without learning cannot

overcome the influence of dead-zone inputs Ŵ1(ςu1) and

Ŵ2(ςu2). Meanwhile, Figure 2D shows that states θ1, θ̇1, θ2,

and θ̇2 are recurrent, which also confirms the conclusion

of Theorem 1.

Before using the method in Theorem 2, we need to verify

whether G(t) =
∫ t
t−τd ϕ

T
F̄FF
(ξ̄ξξ )ϕF̄FF(ξ̄ξξ )dτ ≥ µIII is always true after

time Te+τd. According to Remark 2, we only need to verify that

the minimum singular value of G(t) is greater than zero. The

method in Theorem 2 was denoted as the TPPC (Equation 20)

method with learning and let τd = 3 and

λmin =
{

0, t < Td + τd,
λmin{G(t)}, t ≥ Td + τd.

(48)

Figure 3 shows that the selected fuzzy basic vector ϕF̄FF(ξ̄ξξ ) satisfies

λmin{G(t)} > 0 for t ≥ Td + τd, which means that there

is a constant µ such that G(t) ≥ µI holds. The simulation

results of the IBPS by using the TPPC method (Equation 20)

with learning are displayed in Figures 4A–C. By comparing

Figure 2A with Figure 4A, the tracking error control effect of

the TPPC method (Equation 20) with learning is obviously

better than that of the TPPC method (Equation 20) without

learning after Te + τd. By comparing the estimation effect of

unknown functions in Figures 2B, 4B, ϕT
f̄1
(ξξξ )θ̂

f̄1
and ϕT

f̄2
(ξξξ )θ̂

f̄2

do not show big fluctuation in Figure 4 by using the TPPC

method (Equation 20) with learning and unknown functions

f1(ξ̄ξξ , t) and f2(ξ̄ξξ , t) are estimated accurately. Figure 4C shows

that controllers u1 and u2 were stable without large fluctuation

by the TPPC method (Equation 20) with learning. Through

the comparison of simulation results, the control effect of

the TPPC method (Equation 20) with learning was obviously

better than that of the TPPC method (Equation 20) without

learning, which also confirmed the theoretical analysis of

this paper.

5. Conclusion

In this paper, a composite learning finite-time PPC method

was proposed for uncertain nonlinear systems with dead-zone

inputs. A finite-time performance function and a transformation

function were introduced, which can ensure that the racking

error can be limited within a predefined region at a settling

time. Then, in order to improve the accurate estimation effect

of the unknown function, a prediction error was defined and a

corresponding composite learning parameter law was designed.

The simulation comparison of IBPS showed the superiority of

the control effect of the proposed composite learning finite-

time PPC method. Meanwhile, one can notice the limitation

of the proposed method in this paper is that all states must be

measurable. If some states are unmeasurable, the results of this

paper cannot be obtained. Therefore, it is necessary to further

study the problem of effective estimation of uncertainties based

on partially measurable states.
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FIGURE 4

(A) Tracking errors e1 and e2, (B) estimation of f1(ξ̄ξξ , t) and f2(ξ̄ξξ , t), and (C) control inputs u1 and u2 by using the TPPC method (Equation 20) with

learning.
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