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With the enormous usage of digital media in almost every sphere from

education to entertainment, the security of sensitive information has been a

concern. As images are themost frequently usedmeans to convey information,

the issue related to the privacy preservation needs to be addressed in each

of the application domains. There are various security methods proposed by

researchers from time to time. This paper presents a review of various image

encryption schemes based on fractional integral transform. As the fractional

integral transforms have evolved through their applications from optical signal

processing to digital signal and digital image processing over the decades.

In this article, we have adopted an architecture and corresponding domain-

based taxonomy to classify various existing schemes in the literature. The

schemes are classified according to the implementation platform, that may

be an optical setup comprising of the spatial modulators, lenses, and charge-

coupled devices or it can be a mathematical modeling of such transforms.

Various schemes are classified according to the methodology adopted in

each of them and a comparative analysis is also presented in tabular form.

Based on the observations, the work is converged into a summary of various

challenges and some constructive guidelines are provided for consideration

in future works. Such a narrative review of encryption algorithm based on

various architectural schematics in fractional integral transforms has not been

presented before at one place.

KEYWORDS

fractional integral transform, image encryption, double random phase encoding,

discrete fractional Fourier transform, robust encryption

Introduction

Fractional transforms are the generalization of full transforms which we refer to as

ordinary transforms in a more generic sense. Interestingly, the idea of fractional order

in a transform first came into existence in 1695 during discussions between Leibnez

and L’ Hospital [1]: “Can the meaning of derivatives with integer order be generalized

to derivatives with non-integer orders?” The question that was put up more than 300

years ago did not get a solution till the work on fractional calculus got explored. Later

Jean-Baptiste Joseph Fourier in 1807 made important contributions to the study of
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trigonometric series and claimed that a periodic signal could

be represented by a series of harmonically related sinusoids

for the solution of 1D problems. Thus, the well-known Fourier

transform is named in honor of Joseph Fourier for his significant

contribution and application of the Fourier transform (FT) in

many scientific disciplines. However, with the ever-expanding

scope of research, it was found that FT has some shortcomings.

As it is a holistic transform, the time domain signal is converted

to the frequency domain and therefore is able to analyze only

time-invariant signals. In other words, it is not possible to obtain

a local time-frequency analysis which is pivotal for processing

a time-variant or nonstationary signal. Thus, fractional Fourier

transforms (FrFT), Short time Fourier transform (STFT),

Wigner-Ville distribution, Wavelet transform, Gabor transform

etc. were proposed as an alternative.

The initial work on fractional transform by Namias [2]

presented a theory on fractional powers of Fourier transform

and its application to quantum mechanics. The formal

mathematical elaboration to Namias’s theory was given by Mc

Bride and Kerr [3]. Later, Lohmann [4] illustrated the relation

of FrFT to Wigner rotation and image rotation. Almeida [5]

further elaborated the concept by proposing a time-frequency

representation of FrFT. Further, Ozakatas and Mendelovic

proposed optical implementation and interpretation of FrFT

[6–8]. With the evolution of digital channels, the digital

computation of FrFT [9] and its discrete version [10] gave

a new perspective to the application of FrFT in optical

signal processing and related applications [11]. Pei et al.

[12] established a relationship between FrFT and Discrete

fractional Fourier transform (DFrFT) using Hermite eigen

vectors based on the postulate in [13]. Various methods of

DFrFT representations are given [14–16] with the extension to

other similar transform domains [17–20]. We won’t elaborate

much on the mathematical details of the transforms here,

interested readers may refer to above-mentioned references

for the mathematical aspect of integral transforms and more

specifically fractional Fourier transform and its variants.

However, we give a conceptual description of the definition

of fractional integral transforms. The term “fractional” in a

transform indicates that some parameter has non-integer value.

We can define any integral transform of the input function, f (x)

using any transform operator, as:

T
[

f (x)
]

(u) =
∫ ∞

−∞
K (x, u) f (x) dx (1)

where K (x, u) is operator kernel. For example, in Fourier

transform, K (x, u) = exp (−i2πux) . If it is a fractional

transform then the operator is denoted as Tα with ‘α’ as a

parameter of fractionalization. Therefore,

Tα
[

f (x)
]

(u) =
∫ ∞

−∞
K (α, x, u) f (x) dx (2)

For instance, continuous fractional Fourier transform is the

generalization of a continuous Fourier transform. The ath order

continuous fractional Fourier Transform of a function, y(t), is

given as:

Yα (u) =
∫ +∞

−∞
Qa (u, t) y(t)dt (2.a)

where Qa (u, t) is transform kernel given by

Qa (u, t) =
√

1− jcotα.ejπ(t
2cotα−2tucsc(α)+u2cotα)

=
∞
∑

k=0

exp

(

− jkαπ

2

)

ψk (t) .ψk (u) (2.b)

ψk (t) is kth-order Hermite Gaussian function , α = aπ/2

ψk (t) =
2
1
4

√

2k k!
Hk

(√
2π t

)

e−π t
2

(2.c)

where Hk is k
th Hermite polynomial with k real zeros.

For the discrete version of these fractional transforms, the

postulate of discrete Fourier transform (DFT) is followed. As,

N × N DFT matrix F is defined as

Fkn = 1√
N

e−
j2π
N .kn 0 ≤ k, n ≤ N − 1 (2.d)

where N is the length of the input sequence. Thus, αth order

N × N DFRFT matrix is defined [12] as:

Fα = V 3a VT

=



















N−1
∑

k=0

e−
jπ
2 kavkv

T
k
, for N : odd

N−2
∑

k=0

e−
jπ
2 kavkv

T
k
+ e−

jπ
2 NavNv

T
N , for N : even

(3)

where V =
[

v1 v2 . . . vN−2 vN−1
]

for N : odd and V =
[

v1 v2 . . . vN−2 vN
]

for N : even, vk is kth-order Hermite-

gaussian like eigenvector,3 is a diagonal matrix with its diagonal

entries corresponding to eigenvalues of each column vector

vk . However, there are certain properties [2, 6, 7] that are

desirable for fractional integral transform used in Eq. (2). Some

of them are:

1. The fractional transform has to be continuous for any real

value of the parameter, ‘α’.

2. It should be additive: Tα1+α2 = Tα1Tα2 .

3. It should be reproducible for full transform if the

parameter is replaced by integer values.

4. For α = 1, it should give T1 = T, a full transform.

5. For α = 0, it should give T0 = I, an identity matrix.

6. From the additivity property,

∫ ∞

−∞
K (α1, x, u) .K(α2, y, u)du = K

(

α1 + α2, x, y
)

(4)
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TABLE 1 Various fractional integral transforms.

Frequently used Less frequently used

Fractional Fourier Transforms

[15, 21–46]

Fractional Riesz Transforms

Fractional Cosine Transform

[18, 20, 41, 47–49]

Fractional F-Kravchuk

Transform

Fractional Sine Transforms [18, 20] Fractional Cauchy

Transforms

Fractional Hartley Transforms [50–54] Fractional Slant Transform

Fractional Mellin Transforms [55–59] Fractional Stieltjes

Transforms

Fractional Angular Transform [60–64] Fractional Abel Transforms

Fractional Hadamard Transforms [19] Fractional Sumudu

Transforms

Fractional Gyrator Transform [65–71] Fractional Brownian

Transforms

Fractional Hilbert Transforms Fractional Walsh Transforms

Fractional Affine Transforms Fractional JigsawTransforms

Fractional Random Transforms Fractional Kekre Transforms

Fractional Hankel Transforms Fractional Schrodinger

Transforms

Fractional Radon Transforms Fractional Riemann

Derivative

Fractional Wigner Distribution Fractional Fokker-Plank

Equation

Fractional DCT Transforms Fractional Lagendre

Transform

Fractional Hilbert Transforms

Fractional Laplace Transforms

Fractional S –Transform

Fractional Wavelet Transforms [69, 72]

Fractional Dual Tree Complex Wavelet

Transform

Fractional Haar Transforms

Fractional Polar Harmonic Transform

It is likely to mention here that the fractional parameter in

a fractional Fourier transform refers to an angle of rotation

(Wigner distribution) [4]. In some references, the fractional

parameter is represented as α = aπ/2, where a : fractional

number. If the angle of rotation, α = 0, the transform

is said to be in purely time domain. If α = 1, it gives

the transformation to the frequency domain whereas if the

parameter is some fractional value then the transformation

output results in a collective time-frequency domain. Table 1

lists some of the fractional transforms that are used in various

applications of signal processing. Very few of them are used for

image encryption applications due to certain properties that are

required to be fulfilled for cryptographic applications.

Contributions and outline

The major contributions of this review article are

summarized as:

• Information regarding the background and evolution of

fractional integral transforms and their application in

image encryption.

• Detailed taxonomy on various methods and corresponding

architectural schematics for implementing these transforms

in different domains.

• A brief overview and recent developments in optical

transforms for image encryption with a tabulated

description of recent review articles and various

cryptanalytic strategies that are adopted to break

the encryption.

• Review recent articles on the digital implementation of

fractional integral transforms that have been merged with

other domains/schemes for enhanced of security. Each of

the classification is separately described and reviewed.

• The performance parameters adopted to evaluate an image

encryption scheme are also summarized for reference in the

comparative analysis of schemes.

• Based on the observations made in the review article, some

issues are highlighted along with some viable solutions.

A set of constructive guidelines are summarized that may

be helpful to future researchers in designing a robust

and highly sensitive encryption algorithm based on digital

implementation of these fractional integral transforms.

The paper is further organized into five more sections.

Section Taxonomy of fractional integral transforms provides

the taxonomy along with a description of each classification

and the review. Section Performance metrics for image

encryption elaborates on the performance measures of

encryption algorithms. Section Comparative analysis provides a

comparative analysis of the results of some recently proposed

articles. A summary on observations based on the literature

review is included in Section Observations based on published

literature. The review is concluded in Section Conclusion.

Taxonomy of fractional integral
transforms

The fractional integral transforms have evolved through

their applications from optical signal processing to digital

signal and digital image processing over the decades.

In this article, we have adopted an architecture and

corresponding domain-based taxonomy to classify various

existing schemes in the literature. The architecture can be

broadly classified on the bases of the platforms used for

implementation as shown in Figure 1. The platform can
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FIGURE 1

Classification of architectures for fractional transform-based image encryption.

be an optical setup that comprises of lenses, spatial light

modulators (SLM), and charge-coupled devices (CCD).

Another platform is based on the use of random phase masks

(RPM) in transforming image pixels. Yet another is a digital

platform, where mathematical modeling is followed to achieve

the transformation.

Optical data processing

Optical data processing got introduced almost four decades

before by Van der Lugt as an optical correlator which is based

on the usage of the thin lens to produce two-dimensional

Fourier transform of an image. This further led to the

invention of other more advanced optical and optoelectronic

processors. The classical methods for the realization of the

optical scheme are based on two architectures [73]: a 4f-

Vander Lugt (VL) and a joint transform correlator (JTC)

architecture. In both of these methods, the input image is

displayed in the form of transparency or as on SLM. With

the advancement in technology, SLMs that are used these

days are electrically addressed liquid crystal-based SLMs. The

randomness in phase is obtained with ground glass or with

a nonuniform coating of gelatine on glass plates. The RPMs

thus obtained are recorded on SLMs during encryption or

decryption. The outcome of a DRPE encryption is a random

noise-like pattern with complex nature. In order to record these

complex coefficients for storage and transmission, a holographic

technique is required. Although both architectures require two

RPMs to convert an image (amplitude or phase) to a stationary

random noise, JTC is considered superior to VLC architecture.

The VLC architecture requires conjugate RPMs and stringent

alignment for decryption, whereas JTC does not require these

two conditions and it is considered as alleviated from these

limitations. Hence, a JTC architecture is considered superior

to the VLC. To record the decrypted image, either a CCD

(charge-couple device) or a conjugate of input plane RPM is

used. In another method known as the optical phase conjugation

method [74], a conjugation of an encrypted image is obtained

with the use of optical phase conjugation in a photo-refractive

crystal through 4 wave mixing. This phase conjugation can

nullify the effect of RPM in the decryption process. A most

recent classical implementation of fractional Fourier transform

in terms of wave functions is presented in Weimann et al.

[75].

We provide a brief overview of the various optical setups that

are used for obtaining an optical transform of the scene or image.

These are categorized as:

• Holographic methods: Holography is based on using

an interference pattern generated by diffraction of the

light field in 3 dimensions. Their resultant 3D image

retains depth, parallax, and other such properties of the

scene. Thus, the hologram is an unintelligible pattern

formed by an image. Digital holography is further divided

into two categories, namely, off-axis digital holography
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and phase-shifting digital holography. Javidi et al. [76]

first presented a combined approach to providing image

security through Double Random Phase encryption

(DRPE) and holography. The author further extended his

work to 3D information encryption [77]. Some of the most

recent reviews are available in the literature [78, 79] that

give insight into the evolution of this scheme over the

last decade.

• Ptychography: It is based on coherent imaging generated

using multiple probes that generate multiple diffraction

patterns in a far field. Ptychography offers good quality of

both recovered amplitude and phase distribution. Similar

to holography, it also generates complex amplitude of the

object but it does not require any reference beam like

in holography. The application of Ptychography in image

encryption has been proposed by many researchers [80–82]

and most recently in [83, 84].

• Ghost imaging: It is also known as coherent imaging or

two-photon imaging or photon-correlated imaging. It is a

technique that produces an image formed by combining

effects from two light detectors: one from the multipixel

detector that does not view the object and another is

a single pixel detector that views the object. Clemente

et al. [85] proposed to use of ghost imaging for image

encryption. Some of the recent works [86, 87] are based on

a similar strategy.

• Diffractive imaging: It is referred to as imaging formed by a

highly coherent beam of wavelike particles like electrons, X-

rays, or other wavelike particles. The waves thus diffracted

from the object form a pattern which is recorded on

a detector. The pattern is used to reconstruct an image

with an iterative feedback algorithm. The advantage of

the absence of lenses is that the final image has no

aberrations and therefore resolution is only dependent

on the wavelength, aperture size, and exposure. The

application of diffractive imaging in image encryption is

proposed in Chen et al. [88], Quin et al. [89], He et al. [90]

and Hazer et al. [91].

• Polarization encoding: An optical plane wave is used to

illuminate the intensity key image and encoded into a

polarization state. It is then passed through a polarizer

(pixelated polarizer) to obtain the encrypted image.

Gopinathan et al. [92] proposed to use of polarization

encoding in image encryption. Some of the recent works

in encryption application are proposed in Wang et al. [93].

• Joint Transform Correlators: The joint power spectrum of

the plane image and key codes are the encrypted data in

the JTCs [94]. Joint correlator-based encryption uses the

same key code for decryption as used in encryption. This

is unlike a classical DRPE scheme where a conjugate key

is required. Many encryption schemes have been recently

proposed based on JTC in fractional transform domain

[65, 95].

• Phase retrieval method: In addition to the methods

described above, there is an iterative phase retrieval method

[96–98] wherein a digital approach is usually applied for

embedding the input image into phase-only mask(POM),

and either a digital or optical method is employed for

image decryption. The main objective of a phase retrieval

algorithm is to find either the correct or an estimate of POM

under some constraint for a measured amplitude. Phase

retrieval algorithms can be 2D or 3D. Unlike holographic-

based or diffractive imaging-based optical encoding, a

phase retrieval-based optical security system generates

POMs as ciphertexts. Various transform domains such as

FrFT and Gyrator transform can be employed in these

encoding schemes.

Advantages of optical encryption

1. Optical instruments such as SLM and lenses have inherent

characteristics of parallel processing.

2. Optical encryption methods possess multiple-dimensional

and multiple-parameter capabilities. The optical

parameters for security keys can be wavelength,

polarization, and phase.

3. For optical encryption, researchers require

multidisciplinary knowledge regarding optical signal

processing, image processing, optical theories, and

computer technologies as well.

Applications of optical signal processing

Fractional transforms and more precisely, fractional

Fourier transform have gained keen interest from researchers

in the area of optical signal processing. Thus, it is also

commonly referred to as “Fourier Optics” or “Information

optics.” Fractional transforms have a widespread application

in signal processing and image processing, in the area of time-

variant signal filtering, phase retrieval, image restoration,

pattern recognition, tomography, image compression,

encryption, and watermarking. This article focuses on

the image encryption application of various fractional

integral transforms.

DRPE model for image encryption

DRPE-based image encryption has its roots in the work of

Refregier and Javidi [21] where two random-phase functions

in fractional Fourier domains are used to encrypt input plain

image into stationary white noise. Hennelly and Sheridan

[99] have shown image encryption as random shifting in the

fractional Fourier domain. Unnikrishnan [22] has generalized

the DRPE scheme in the fractional Fourier domain. The DRPE
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architecture is most exhaustively used and explored in various

optical processing-based applications. The research community

has been continuously exploring the possibilities to improve the

security of DRPE [23, 50, 66, 67, 100] and has also successfully

extended the DRPE scheme to other linear canonical transforms

(LCTs) domains. Figure 2 shows the schematic architecture of

DRPE-based image encryption scheme. As shown in Figure 2,

there are two RPMs also known as POMs. One of the POM

is placed at the input plane and another is placed at the

Fourier plane. The POM1 at the input plane makes the input

signal/image white noise-like but nonstationary and POM2 at

the Fourier plane is also a white noise but is stationary. Let

POM1 at the input plane be exp(jφ
(

x, y
)

) and POM2 at Fourier

plane as exp(jϕ (µ, ν)), both being randomly distributed in the

range [0, 2π]. Therefore, wavefront after POM1 is given by

F (µ, ν) = FT
{

I
(

x, y
)

exp
(

jϕ
(

x, y
))}

(5)

where I
(

x, y
)

is input image in the spatial domain, FT denotes

a Fourier transform operation. The wavefront, F (µ,ϑ), gets

modified by POM2 in the Fourier domain and an inverse

Fourier (IFT) is performed over it. This gives a complex domain

wavefront as

C (ξ , η) = IFT{F (µ, ν) exp
[

jφ
(

µ, ν)
]}

(6)

The complex-valued coefficients are recorded on a CCD

in optical processing while the terms can be electronically

recorded in a computer. During the decryption/reverse process,

the complex domain wavefront is first transformed to POM2 as

F̂(µ, ν) = {FT
[

Ĉ (ξ , η)
]

{

exp
(

jφ (µ, ν)
)}∗

(7)

where ∗ represents a conjugate operation. IFT of Fourier

wavefront is obtained with POM1 conjugate as

Î
(

x, y
)

=
{

IFT
[

F̂ (µ, ν)
]}

{

exp
(

jϕ
(

x, y
))}∗

(8)

Thus, Î
(

x, y
)

is the decoded wavefront in the spatial domain.

DRPE schemes are broadly classified as (1) Amplitude-only

DRPE where decoding is done without using POM1. (2) Full-

phase DRPE where the input image is fully converted into

a full-phase map. This POM is used to encode images with

the DRPE procedure. The only difference is that the input

image is first normalized and converted into a phase image as

exp
[

jI
(

x, y
)]

before encoding. Details of each classification are

beyond the scope of this review work. However, it is likely to

mention that each POM at the input as well as Fourier domain

can be used as secret keys. This enlarges the key space thereby

enhancing security.

Previous review articles and contributed
evaluations

There are many review articles available in the literature

[101–103] that provide the evolution of classical DRPE-based

architecture. Some of the significant contributions in reviewing

fractional transforms are listed in Table 2. The contribution of

these reviews is summarized on various aspects and evaluations

included in them. Each review article is categorized according to

the evaluation of various schemes in the work. Whereas some

of these are based on just conceptual and theoretical aspects,

while others provide an evaluation of quantitative, qualitative,

comparative, applications, etc. We have nomenclated these

evaluations from E01 to E09 based on the criteria mentioned at

the bottom of Table 2.

This will give better clarity to the reader and future

researchers regarding various aspects discussed in each review. It

is not possible to include all the related work in this paper for the

sake of brevity. However, best efforts are put to include the most

recent developments in DRPE-based encryption schemes as

listed in Table 3. DRPE-based architecture has been extensively

used and is considered as an effective method. DRPE methods

require an RPM as the secret key that needs to be stored at the

receiver for decryption. Besides that, a careful alignment of the

RPM with received encrypted data has to be done. The inherent

property of linearity and symmetricity proves to be a bane of

encryption applications as the linearity may lead to vulnerability

to different types of attacks. Based on these vulnerabilities, some

of the recent works on cryptanalysis are summarized in Table 4.

Each reference is included with a short description of the work

and methodology adopted to cryptanalyze the security scheme.

Mathematical modeling of optical
transforms with FRFT and its variants

LCTs, time-frequency transforms, and fractional Fourier

transform (FrFT) are closely related. Since the application of

FrFT to signal processing is proposed [4, 5, 8], there has

been tremendous development in the application of FrFT

and its variants to image encryption. As fractional transform

orders serve as the secret key, the digital implementation is

particularly suitable for encryption applications [99]. Since

this work is mainly focused on the application of fractional

transform in image encryption only, we won’t elaborate the

mathematical eloquence behind the fractional transforms here.

This section specifically emphasizes the discrete realizations

(DFrFT) and their application to image encryption. There are

various methods proposed in the literature for the discretization

of fractional transforms; some of them are classified as shown in

Table 5 with pros and cons of each type. It is worth noting that

Table 5 includes only a fractional version of Fourier transform.

This is due to the fact that the fractionalization of LCTs started

with Fourier transform itself and later was extended to other

transform domains. The methods of discretization mentioned

below are therefore conceptually applicable to variants of

Fourier transforms as well, namely, Gyrator transform [57, 66],
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FIGURE 2

Architectural model for DRPE-based encryption scheme.

Mellin transform [25, 26, 58], Hillbert transform [137], Hartley

transform [17, 20], Hadamard transform [19], etc.

Figure 3 shows the basic architecture for fractional

transform-based image encryption that is digitally implemented

without an RPM in either domain (without DRPE). As depicted

in Figure 1, this method requires the knowledge of fractional

transform orders that are used along both dimensions within

a range [0,1]. The decryption is exactly similar to the forward

process and requires the same fractional orders but with

negative values to decrypt the image correctly. The encryption

is thus a symmetric scheme and a slight change in the key value

will result in incorrect decryption.

The major limitation of such a scheme is shorter key space

which makes it vulnerable to brute force attacks. The input

image is pre-processed for enhanced security and enlarging a

key space. The pre-processing can be a scrambling operation

that only shuffles the pixel positions to make the image,

unintelligible. In some cases, this pre-processing can be a

nonlinear operation that can be a substitution of pixel intensity

values. There are various schemes that employ either scrambling

[27–29, 47], substitution [30] or both [23, 48, 138] to enhance

the security. The following section includes all major schemes

that are proposed to improve the performance of fractional

transform-based image encryption. We have categorized them
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TABLE 2 Recent review articles on fractional transforms-based image encryption schemes.

Author[Ref] Year Description Evaluations done

Moreno and Ferreira

[101]

2010 On the usage of optical signal processing and its conceptual and theoretical

details

E01, E08

Sejdić et al. [104] 2011 On FrFT digital realizations and related application areas E01, E05, E06, E09

Saxena and Singh [105] 2013 On FrFT and its properties, versions in the discrete domain and some

application areas

E01, E05, E09

Chen et al. [102] 2014 On the advances in optical security, various optical signal processing

schemes illustrated

E01, E02, E06, E07, E08,

E09

Yang et al. [106] 2016 On fractional calculus and MATLAB functions defined for same, various

application areas reviewed

E01, E02, E05

Javidi et al. [103] 2016 On recent advances and challenges of optical security using free space

optics, cryptanalysis and road map to the development of secure theory in

optics.

E01, E02, E05, E06, E08,

E09

Guo and Muniraj [107] 2016 On the vulnerability of LCT-DRPE based encryption to COA with

numerical implementation

E01, E02, E03, E07, E08

Situ and Wang [108] 2017 A review on phase problems in optical imaging E01, E05, E07, E08, E09

Guo et al. [97] 2017 On recent development in iterative phase retrieval and application in

information security

E01, E02, E05, E07, E08,

E09

Kaurl and Kumar [109] 2018 On the latest developments in the meta-heuristic methods of image

encryption

E01, E02, E03, E04, E06,

E07, E09

Jinming et al. [110] 2018 On research progress in theory and applications of fractional Fourier

transform

E01, E02, E05, E06, E07

Gadhrili et al. [111] 2019 On different algorithms for color image encryption E02, E03, E04

Jindal and Singh [112] 2019 On the applications of fractional transforms in image processing E04, E07

Gómez-Echavarría et al.

[113]

2020 On the applications of fractional Fourier transform in biomedical signal

processing

E01, E05

E01, Conceptual and Theoretical; E02, Quantitative; E03, Qualitative; E04, Comparative on results; E05, Applications explored; E06, Vulnerabilities; E07, Architecture; E08, DRPE based;

E09, Mathematical details.

in accordance with the strategical amalgamation of scheme

with fractional transform domain. The schemes proposed in

the literature are nomenclated in eight major categories (T01–

T08). Each amalgamated scheme is reviewed separately. This

portion of review article is elaborated as our emphasis is on

the digital implementation of fractional integral transforms for

image encryption.

Reality preserving with optical transform
domain (T01)

The optical transform results in complex coefficients output

corresponding to a real domain input image. Although it is

easy to process these complex coefficients with a holography

method but in a digital domain, it requires two images to be

processed in the encrypted domain, one for real terms and

other for imaginary terms. Therefore, storage and transmission

increase complexity and overhead in digital channels. To

overcome this limitation, Venturi and Duhamel [139] proposed

a mathematical solution based on the properties of the complex

transform output. Reality preserving refers to real domain

output for a real domain input signal. The algorithm still

has computational complexity, O(N2) for matrix order of N.

Reality preserving transforms that are formulated with this

algorithm have most of the required properties of fractional

transforms along with a monotonously decreasing decorrelation

power. Such transforms are beneficial where orthogonal reality

preserving transform is required with their decorrelation power

controlled by some parameters such as in joint source and

channel coding. Initially, the algorithm was proposed in

fractional sine and cosine transforms. It is further extended to

other transforms with the basic properties of the transforms

retained well. Recently, Zhao et. al [25, 59] used it to

obtain fractional Mellin transform for triple image encryption.

Reality preserving is also used in discrete fractional Cosine

transform (FrCT) [47, 140], fractional Angular transform [60,

61], fractional Hartley transform [52–54, 141], besides fractional

Fourier transform [28, 29, 31].

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2022.1039758
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kaur et al. 10.3389/fams.2022.1039758

TABLE 3 Recent publications on evolutionary methods adopted in optical transform with DRPE-based architecture (2016–2021).

References Method Security Advantages Limitations

Abd-El-Atty

et al. [114]

Based on the application of DRPE and quantum

walks. An alternate quantum walk (AQW) is used

to generate random masks as well as for

permutation.

Moderate 1. Higher key space

2. Resistance to digital and

quantum computer attacks.

1. Non uniform histograms

2. Classical attack analysis missing

3. Differential attack analysis not

discussed.

Zhou et al.

[115]

Image is transformed in DRPE domain. The phase

information is quantized for its usage in the

authentication. The plaintext is compressed by CS

where the measurement matrix is also quantized

using a sigmoid function.

High 1. Simultaneous compression

and encryption.

2. Faster and efficient.

3. Robust to differential attacks

1. Higher complexity

2. PSNR is lower indicating

degraded reconstructed image.

Huang et al.

[116]

Low-frequency subbands are extracted by

contourlet transform. Scrambled with 2D logistic

map. 2DLCT is applied to obtain phase truncation

and phase reservation. This is followed by an XOR

operation with a logistic map.

High 1. Multiple image encryption

2. Uniform histograms

3. optimum entropy and CC

of encrypted

4. Robust to classical and

differential attacks

1. Performance degrades

considerably with data loss and

noise attack

Wang et al.

[55]

Based on apertured Mellin transform realized by

log-polar transform followed by apertured

fractional Fourier transform.

High 1. Key size increased

2. Non linearity in transform is

able to resist potential attacks

1. Quality of decrypted images vary

with aperture length parameter

2. Mellin transform gives a lossy

recovery, resulting in significant

degradation in recovered image

Huang et al.

[98]

Original image is encoded with a modified

Gerchberg-Saxton algorithm, which is controlled

by hyperchaos system derived from Chen chaotic

map. Josephus traversing is used for scrambling

the phase function followed by

diffusion-confusion by hyperchaos.

High 1. Uniform histograms

2. High sensitivity to keys

3. Optimum entropy

4. Resistant to all potential attacks

1. Hyperchaotic map has high

complexity in hardware

implementation.

2. G-S algorithm based on

hyperchaos increase

encryption/decryption time

Huo et al.

[117]

Based on DNA theory with DRPE technique with

PWLCM based keys and random phase masks.

Initial values of PWLCM are generated by massage

digest algo5(MD5). Two rounds of process gives

ciphertext.

High 1. High security to input keys

2. key space is large

1. Axis alignment is required for

optical setup

2. Lack in differential attack

analysis

Liansheng

et al. [100]

Based on customized data container. Using phase

masks that are generated from Hadamard matrix

to collect intensities of data containers. After XOR

coding, data is scrambled with logistic map

High 1. Solves issues related to inherent

linearity of computation

ghost imaging.

2. High sensitivity to keys

1D logistic map has its own

limitations

Gong et al.

[118]

Based on compressive sensing (CS) and public key

RSA algo with optical compressive imaging system

to sample input image. Walsh Hadamard

transform, followed by scrambling with

compound chaos

High 1. Enlarged key space

2. Resistant to CPA

3. Entropy is optimum for both

global and local values

4. Robust to noise and data

loss attack

1. Higher complexity for

implementation

Chen et al.

[119]

Chaotic Ushiki map is used to generate random

phase masks. A single intensity image is encrypted

from color image. An equal modulus

decomposition used to create asymmetric keys

High 1. Enhanced security by Ushiki

chaotic map

2. Enlarged key space

3. Immune to CPA and KPA

1. Lossy recovery

2. Entropy not reported

3. Differential attack analysis not

done

(Continued)
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TABLE 3 (Continued)

References Method Security Advantages Limitations

Yadav et al.

[51]

Input is first transformed with chaotic Arnold

transform. Phase masks are based on devil’s vortex

Fresnel lens (DVFL)

High 1. Use of DVFL eliminates

axis-alignment issues.

2. Parameters of DVFL, orders of

FrHT and AT serve as secret key

Robustness to classical and

differential attacks not presented

Faragallah

et al. [50]

Arnold transform is used to scramble RGB of

image followed by a Fresnel based Hartley

transform from random phase masks generated

with a Logistic adjusted sine map

High 1. Enhanced security due to

enlarged key size

2. limitations of logistic map

are eliminated

3. Optimal CC of encrypted

1. Histograms are not independent

of plane image input to some

extent

2. UACI=0

3. Leakage of information due to

low entropy values

Kumar et al.

[120]

security key generated from a phase retrieval

algorithm is used obtain 2D non-separable linear

canonical transform of complex image formed by

combining two plane images

High 1. Double image encryption with

asymmetric keys

2. Robust to data loss attack

3. Chosen plain text

attack addressed

1. Phase retrieval has its inherent

complexity

Jiao et al. [121] QR (quick response) code for speckle noise

removal in Fresnel based optical transform

High 1. Speckle noise reduced in optical

transformed output

1. Applicable only to gray scale

images

Khurana et al.

[122]

Phase-truncated Fourier and discrete cosine

transform (PTFDCT) with random phase as keys.

Decryption requires a cube root operation

High 1. Robust to differential attack

2. Enhanced security

3. Enlarged key space

1. Entropy is less than optimum

2. Correlation plots show unequal

distributions along both

dimensions leading to

information leakage.

Su et al. [123] Chaotic phase masks for cascaded Fresnel

transform holography and constrained

optimization for retrieval

Moderate 1. Reduces retrieval time using

constrained optimization

2. Key sensitivity high due to use

of chaotic Henon map

1. decrypted image is considerably

deteriorated

2. performance will degrade under

noisy and occlusion attacks

Li et al. [124] Depth conversion integral imaging and hybrid

cellular automata (CA)

High 1. PSNR of reconstructed images

degraded with noise are higher

2. Key space is

high (multidimensional)

3. Good resistance to data

loss attack

1. Lossy decryption

2. Differential attack analysis not

proved

Although certain probable drawbacks/limitations are mentioned corresponding to each scheme, some specific solutions like security enhancement methods can be applied in practice.

Application of chaos theory in optical
transforms-based image encryption (T02)

Chaos theory refers to the study of unpredictable behavior in

systems governed by deterministic laws. Chaotic properties are

closely related to cryptography [142] owing to their sensitivity

to initial conditions, randomness and ergodicity. Due to such

intrinsic characteristics, chaoticmaps have been extensively used

in data encryption. Chaotic maps are used as pseudorandom

generators [143], for substitution, and permutation of image

pixels. Various schemes for encryption based on permutation

only [144, 145], or substitution only [146] or a combination

of both [138, 143] with the usage of either one-dimensional

basic maps like logistic [147], sine, the tent [148], 2D Chirikov

standard map [143], or higher dimensional compound chaos or

higher dimensional hyperchaoticmaps [149–151], depending on

the application and level of security.

Chaotic maps have been extensively used in amalgamation

with optical transforms-based image encryption for enhancing

security. Fractional transform-based image encryption schemes

have only transform orders as the secret key. However, this

key space is not large enough and is therefore vulnerable to

cryptanalysis. To enhance security, chaotic maps are used that

also enlarge the key space. There are various schemes proposed

in the literature that have used permutation with chaotic maps

along with an optical transform [23, 28, 29, 50, 66, 69, 72, 152].

The order in which these two schemes are amalgamated may

vary. Permutation in the spatial domain followed by transform

or transform followed by permutation in the transform domain.
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TABLE 4 Cryptanalytic approaches in optical/DRPE-based encryption schemes (2016–2021).

Author Year Description Methodology/ strategy

Guo et al. [107] 2016 Phase retrieval attacks on LCT based DRPE

schemes

Hybrid input–output algorithm, error reduction algorithm, and

combinations of both type of phase retrieval algorithms are applied for

ciphertext-only attacks on Separable LCT DRPE system.

Yuan et al. [125] 2016 Cryptanalysis and its remedy in encryption based

on computational ghost imaging

Due to linear relation between input and output of the encryption with

computational ghost imaging is attacked.

Li et al. [126] 2016 Vulnerability of impulse attack-free DRPE scheme

to chosen plaintext attack

CPA on impulse attack free-DRPE is breached using a new

three-dimensional phase retrieval algorithm.

Wang et al. [127] 2016 Cryptanalysis in phase space Phase space information vulnerable to chosen plaintext attack (CPA) and

known plain text attack (KPA).

Liao et al. [128] 2017 Ciphertext only attack on optical cryptosystem Based on autocorrelation between plaintext and ciphertext, COA is

imposed.

Hai et al. [129] 2018 Cryptanalysis of DRPE scheme with deep learning Vulnerability to CPA with working mechanism-based learning with neural

network.

Xiong et al. [130] 2018 Cryptanalysis of optical cryptosystem with

combined phase truncated Fourier transform and

nonlinear operations

A phase retrieval attack with normalization and bilateral filter is proposed.

Dou et al. [131] 2019 Known plaintext attack in JTC-DRPE scheme Application of denoizing operations make the cryptosystem linear. Thus,

KPA is possible.

Xiong et al. [24] 2019 Cryptanalysis in optical encryption based on

vector decomposition of Fourier plane

Cascaded EMD (equal modulus decomposition)-based cryptosystem is

attacked with CPA and a special attack.

Chang et al. [132] 2020 Ciphertext only attack in optical scanning

cryptography (OSC)

A linear system property analyzed in the ciphertext expression equation of

OSC lead to COA.

Jiao et al. [133] 2020 Known plaintext attack in cryptosystem based on

space and polarization encoding

Matrix regression based on training samples is proposed to crack a

space-based optical encoding and double random polarization encoding

with KPA.

Zhou et al. [134] 2020 Vulnerability of encryption scheme based on

diffractive imaging to machine learning attacks

An end-to-end machine-learning strategy is adopted to establish

relationship between ciphertext and plaintext in case of diffractive imaging.

He et al. [135] 2020 Cryptanalysis of optical cryptosystem using

untrained neural network

Untrained NN is used to break a phase-truncated Fourier transform-based

optical asymmetric cryptosystem. Parameters are optimized by

plain-ciphertext encryption model of phase truncated Fourier transform.

Song et al. [136] 2021 Cryptanalysis of phase only information as it is

vulnerable to chosen plaintext attack.

Deep learning structure is trained using sparse phase information of the

encrypted domain image as phase only information is vulnerable to classical

attacks.

Li et al. [126] 2016 Vulnerability of impulse attack-free DRPE scheme

to chosen plaintext attack

CPA on impulse attack free-DRPE is breached using a new

three-dimensional phase retrieval algorithm.

Wang et al. [127] 2016 Cryptanalysis in phase space Phase space information vulnerable to chosen plaintext attack (CPA) and

known plain text attack (KPA).

Liao et al. [128] 2017 Ciphertext only attack on optical cryptosystem Based on autocorrelation between plaintext and ciphertext, COA is

imposed.

Hai et al. [129] 2018 Cryptanalysis of DRPE scheme with deep learning Vulnerability to CPA with working mechanism-based learning with neural

network.

Some of the schemes follow substitution-permutation and

transform collectively [138, 153, 154] to further enhance

security. We have reviewed some of the most recently proposed

schemes that use chaos-based permutation/substitution with

optical transforms.

Wu et al. [48] proposed a color image encryption scheme

in random fractional discrete cosine transform (RFrDCT) along

with scrambling and diffusion paradigm (DSD). A logistic map

is used to generate a randomized vector of fractional order. This

enlarges key space and increases sensitivity.
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TABLE 5 Various methods for discretization of Linear Canonical transforms.

Type References Pros Cons

Sampling type DFrFT [68] A direct and simplest of all methods Discrete version is derived at the cost of losing many

important properties like unitary, reversibility, and

additivity. Therefore, it has limited applications.

Improved Sampling type

DFrFT

[9] It works like a continuous FrFT and is a fast algo Doesn’t have orthogonal and additive property. Also, it

requires to put some constraints on input signal.

Eigen vector

decomposition based

DFrFT

[10, 12, 16, 17] Based on eigen values and eigen vector of DFT

matrix and then evaluating their fractional power.

Retains orthogonality, reversibility, and additivity.

Further improved by orthogonal projection in [12]

This type of DFrFT lack fast computation, and the

eigen vectors cannot be written in closed form.

Linear combination type

DFrFT

[13, 19, 20] Eigen vectors are derived by linear combination of

identity operation, DFT, time inverse operation

and IDFT. Satisfies properties of reversibility,

additivity and orthogonality.

The outcome of transform does not match with

continuous transform. It works very much similar to

Fourier transform and lose characteristics of

fractionalization of powers.

Chirp type DFrFT [56] DFrFT is derived as multiplication of DFT and

periodic chirp signals. Satisfies additivity,

reversibility property along with Wigner

distribution’s rotation property.

There are constraints on the selection of rotation angles

and also N (sample length) should not be a prime

number. This makes it complicated

Closed form DFrFT [15] Derived 2 types of DFrFT and Discrete Affine

transform (DAFT). Performance is similar to

continuous FrFT for Type I and can be calculated

using FFT. Type II is improved form of Type I and

is applicable to signal processing. Has lowest

complexity.

Scaling property exists for only Type I and not for Type

II.

Amultiple parameter fractional Hartley transform (FrHT) is

proposed by Kang et al. [141] with its reality preserved for a color

image encryption. The chaos is embedded into the algorithm

at each step. The original color image with individual color

components is first combined into a single image. This single

image is divided into different sub-blocks. The blocks are then

shuffled based on a pseudo-random sequence generated from

non-adjacent-coupled map lattices (NCML) based on logistic

maps. The initial parameters of NCML are generated from yet

another chaotic map (Arnold Cat map). The initial parameters

of chaotic maps at this stage serves as secret keys. Next stage

of encryption is based on a pixel scrambling operator which is

based on a 2D Chirikov standard chaotic map (CSM). Using

CSM, a series of 2D and 3D angle matrices are generated that

are used to convert images in RGB space to newer space. The

final stage is to obtain anMPFrHT in real domain (RPMPFrHT)

and to divide the image into three to get concatenated encrypted

image as ciphertext.

A new fractional transform coined as the non-separable

fractional Fourier transform is proposed by Ran et al. [32].

RPMs are generated by Arnold transform. The advantage of

this type of transform is that it is able to tangle information

along and across two dimensions together. It is closely related

to the Gyrator transform. Also, the proposed scheme is resistant

to decryption with multiple keys, unlike ordinary fractional

Fourier transform.

Wu et al. [155] proposed a RFrDCT for image encryption.

The RFrDCT domain image is subjected to confusion-diffusion

paradigm. The confusion is obtained using a game-of-life (GoL)

algorithm and diffusion in the next stage is based on an XOR

operation with another chaotic map. The initial parameters of

chaos serve as secret keys of encryption. Enhanced performance

is claimed with the adopted strategy. A perturbation factor is

applied for resistance against differential attacks.

An encryption scheme with S-box generation is proposed

in Wu et al. [72] which is unique in the way these S-boxes

are generated. Chaotic Chebyshev map and linear fractional

transform are used for the construction of S-box. Partial

image encryption is achieved by a permutation-substitution-

diffusion (PSD) network and multiple chaotic maps in the

linear wavelet transform (LWT) domain. Using dynamic keys

for controlling encryption aids in security against differential

attacks. Partial encryption of only sensitive portions not

only reduces computation complexity but is also faster and

more efficient.

Jamal et al. [156] proposed yet another scheme that

uses a combination of linear fractional transform and

chaotic systems to generate substitution boxes for image
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FIGURE 3

Schematic architecture for Fractional transform-based image encryption in digital domain.

encryption. The chaotic maps used in the scheme are generated

from a combination of seed maps to enhance the security

and chaotic range. The investigation for complexity thus

obtained with the proposed scheme is based on various

algebraic and statistical tests. The investigation gives

testimony of improved perplexity and confusion in the

encrypted domain.

A novel Fresnel-based Hartley transform is proposed in

Faragallah [50] for an optical-double color image encryption

scheme. The color image is first separated into individual

channels and are scrambled separately with the Arnold

transform (AT) in spatial domain. Each scrambled image is then

multiplied with a 2D chaotic Sine-adjusted logistic map (LASM)

and then a Hartley transform is applied to each channel. This

procedure is repeated once again with another set of AT-based

scrambling (now in Hartley domain), and then each channel

is multiplied with another set of 2D-LASM. The final step is

obtaining inverse Hartley transform which gives an outcome

across each channel in Fresnel domain. The color channels in

Fresnel domain are concatenated to obtain a single image which

is the final ciphered image.

A fractional angular transform (FrAT) is used in Sui et al.

[62] where plain image is substituted with a chaotic logistic

map prior to transform. The transform orders along with initial

value of logistic map serve as secret keys of encryption. The

scheme performs marginally as there are certain limitations due

to similarity in histograms of plain and encrypted domain and

correlation coefficients in encrypted domain are considerably

higher. Moreover, the scheme is not evaluated for entropy

measure and differential attack analysis.

Compressive sensing (T03)

Compressive sensing (CS), also referred to sparse signal

sampling, was introduced by work of Donoho, Candes [157,

158]. CS is able to achieve compression and signal sampling

simultaneously [118, 159, 160]. For a signal of bandwidth, BW =
�, the sampling frequency (fs) required to represent the signal

is much smaller than Nyquist frequency (fs ≪ �). Let RN be

the set of N-tuples of real numbers. If x ∈ RN is input 1D

signal sampled using CS, then x can be sparsely represented

using an appropriate basis function9 = [ψ1,ψ2 . . . ψN ]. Thus,

x = 9s =
∑N

i=1 siψi. Let yM×N be the measured matrix

with M ≪ N. Then, y = ∅x = ∅9s = As where y ∈ RN .

Thus if measurement matrix, A that is used to measure sparse

signal, s is given, then the construction of signal requires solving

an underdetermined linear system and the sparse signal can be

obtained by solving a combinatorial optimization problem given

by : min ‖s‖0 : y = ∅9s = A s.

A collective compression-encryption scheme is proposed in

Santhanam and McClellan [26] with 2D compressive sensing

and fractional Mellin transform. The original image is first

measured using a measurement matrix in both dimensions to

reduce data volume with 2D CS. The measurement matrix is

constructed using partial Hadamard matrices. Chaos is used to

control the measurement matrix with its initial conditions. The

non-linear Mellin transform is used to overcome the security

issue related to linear transform.

Zhao et al. [161] proposed a double-image encryption

scheme which is claimed to be faster and more efficient.

The scheme utilizes DWT as the basis for the measurement

matrix. Both images are first transformed into DWT basis and
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are compressed with the measurement matrix derived from

2D Sine-Logistic modulation map (2D-SLMM). The images

are then combined and Arnold transformation is applied for

scrambling the coefficients. Two circular random matrices are

generated using 2D-SLMM with different seed values. These

random matrices are used to obtain DFrRT. The encrypted

image is thus in DFrRT domain.

In another CS-based scheme proposed by Zhang et al. [33],

Kronecker product (KP) is combined with the chaotic map

for the generation of measurement matrix and RPMs. Low-

dimensionality seed maps are extended to high-dimensional KP.

These high-dimensional maps are used for the measurement

matrix. The scheme is able to provide an efficient and fast

approach to color image encryption.

A comparatively simpler scheme is proposed in Deng et al.

[162] where image compression-encryption uses a combination

of 2D CS and DFrRT. The basis function for the measurement

matrix is a discrete cosine transform (DCT). The measurement

matrix is constructed with a chaotic logistic map to control row

vectors of the Hadamard matrix. The compressed image is then

encrypted by DFrRT. Reconstruction of CS requires Newton’s

smoothed l0 norm (NSL0) algorithm.

An asymmetric cryptosystem for color images based on CS

and equal modulus decomposition (EMD) is proposed by Chen

et al. [163]. In this scheme, the color image is initially combined

to a single image. With the application of DWT, this image

is converted into low-frequency and high-frequency images.

The high-frequency image is compressed by a measurement

matrix generated from logistic map. The compressed image is

segmented into two matrices. One of the matrices is used as

a private key (a random matrix related to the plain image) for

DFrRT and another matrix is combined with the low-frequency

image to form a complex function. This complex function is

transformed into DFrRT with the private key (random matrix)

that is plain image-dependent. This enables the cryptosystem to

resist known and chosen plaintext attacks. The output of DFrRT

is decomposed into 2 masks using EMD where one mask is a

cipher image and another is a private key. The inverse CS in the

decryption process is based on the basis pursuit (BP) algorithm.

Yi et al. [34] proposed to use multiple measurement matrices

instead of a single measurement matrix that is used to sample all

blocks of an image. This strategy enables to overcome the issue

of chosen plaintext attacks. The mother measurement matrix

is derived from a single chaotic map and other measurement

matrices are generated by exchanging rows using a random row

exchanging method. However, another chaotic map is required

to control the row-exchanging operation. The compressed image

is then transformed with FrFT. The transform is followed

by two consecutive pixel scrambling operations to guarantee

nonlinearity and to increase key sensitivity in the proposed

scheme. Ye et al. [164] proposed a compressed-sensed color

image encryption scheme based on quaternion discrete multi-

fractional random transform with the hash function SHA-512.

The parameters of chaos are updated by randomly selected hash

values. The use of multifunctional transform not only increases

the key space but also improves the key sensitivity.

On the basis of fixed/multiparameter (T04)

Fractional transforms can decorrelate the spatial domain

pixels based on the fractional value of the transform orders.

The fractional transforms are also looked upon as Wigner

distribution where each fractional order corresponds to an

angle of rotation in the optical domain [4]. With a fixed

value of transform orders, the key space is limited and the

cryptosystem is vulnerable to brute force attack. To overcome

this limitation, various researchers proposed to use multiple

parameter-based fractional transforms [35–39, 153, 165] with

their own definitions and postulates. Mathematically, a FrFT

has multiplicity which is due to different choices of both Eigen

function and eigen value classes [35]. Thus, the multiplicity

is intrinsic in a fractional operator. Lang [31] proposed a

multiparameter FrFT where the periodicity of M is utilized.

The transform order vector, n, can be M-dimensional integer

vector. This provides an extra degree of freedom as the

periodicity parameter; M serves as a secret key along with the

vector parameters.

Sui et al. [63] proposed a multiparameter discrete fractional

angular transform (MPFAT) for image encryption that uses

fractional order and periodicity parameters to provide multiple

parameters in the transform. Similar to a discrete fractional

Angular transform (DFAT), MPDFAT also satisfies properties

such as linearity, multiplicity, and index additivity. Zhong et al.

[166] proposed a discrete multiple parameter FrFT (DMPFrFT)

for image encryption using the periodicity parameter for

extending to multiple parameters.

Azoug et al. [23] proposed yet another opto-digital image

encryption with a multiple parameter DFrFT after a non-linear

pre-processing of the image in spatial domain with a chaotic

map. The multiparameter scheme is extended based on the work

of Pei et al. [40] which extend the DFrFT to have multiple order

parameters equal to the number of input data points. If all the

parameters are made equal in an MPDFrFT, then it reduces to a

single parameter DFrFT.

A general theoretical framework of MPDFrFT is presented

in Kang et al. [153]. The work proposed two different

frameworks as Type I and Type II MPDFrFT that include

existing multiparameter transforms as their special cases.

Further, an in-detail analysis of the properties of such transforms

is discussed and higher dimensional operators are also defined.

Some new types of transforms such as MPDFrCT, MPDFrST,

and MPDFrHT (Cosine, Sine, Hartley) are constructed under

the proposed framework along with their applications such as

feature extraction and 2D image encryption.

A quaternion algebra is used with multiple parameter

fractional Fourier transform (MPFrQFT) by Chen et al. [30]
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for generalizing MPFrFT. Both forward and reverse MPFrQFT

transform are defined and a color image encryption based on

the proposed transform is evaluated for its performance as

compared to other encryption algorithms. The proposed scheme

has larger key space and is more sensitive to transform orders.

Ren et al. [41] proposed a multiple image encryption

scheme based on discrete multiple parameter fractional Fourier

transform (DMPFrFT) for which original images are filtered in

DCT domain and multiplexed into a single image. The multiple

parameters are again generated using a periodicity parameter

which serves as one of the keys. Other keys are the parameters

for scrambling the multiplexed image (random matrix), and

transform orders of DMPFrFT.

A multiparameter discrete fractional Hartley transforms for

image encryption is proposed by Kang and Tao [141]. The

multiple parameters are generated by extending the fractional

order to N-dimensional vector and the FRHT kernel is

represented as a linear summation with weighting coefficients.

DNA sequence (T05)

DNA coding method is inferred from the Deoxyribonucleic

acid and is a branch of computing based on DNA, biochemistry

and molecular biology hardware. DNA sequences appear in the

form of double helices in living cells. A DNA code is simply a

code of alphabetic set Q = {A,T,C,G}. These alphabets refer

to 4 nucleic acid bases: A (adenine), C (cytosine), G (guanine),

and T (thymine): A and T, G and C are complimentary.

The complimentary rules are referred to as Watson-Crick

compliment [167]. Thus, pairing can be described as: A =
T, T = A, C = G, G = C and if a binary code is given to each as

00, 11, 01, 10 with (00, 11) and (01, 10) as complimentary. With

vector algebraic operations based on DNA computing [168,

169], pixel permutation and substitution can be performed if the

image pixels are represented in the form of binary sequences.

Recently Farah et. al [27] proposed to use FRFT along with

chaos and DNA for image encryption. Initially, a random phase

matrix is generated using a chaotic Lorenz map. The plain

image is converted to a binary matrix and encoded according

to chosen DNA encoding rule. Also, the random phase matrix

is encoded to DNA sequence with the same rule. The coded

plain image is XORed with that of the encoded random phase

matrix. Using the RPMs generated from the 3D chaotic map

(Lorenz map), iterative FrFT is performed and the resultant

image is XORed with the third chaotic sequence to obtain the

final ciphered image.

An optical image encryption set-up based on DNA coding is

proposed by Huo et al. [117] where a piecewise linear chaotic

map (PWLCM) is used to generate a key matrix as well as a

random phase matrix. A message digest hash algorithm (MD5)

is used to generate initial values of PWLCM. An MD5 hash of

plaintext consists of 128 bits. XOR operation for DNA is used.

Initially, the plain image and key matrix are converted to binary

sequences with DNA coding rules that are different for different

rows in the image. TheDNA-encoded plain image isXORed with

a key matrix and a forward Fresnel domain DRPE is applied to

obtain the final-ciphered image.

Cellular automata (T06)

Cellular Automata (CA) also called cellular spaces,

tessellation automata/structures, cellular structures, or

iteration arrays find application in various fields like physics,

microstructure modeling etc. CA consists of regular rigid

cells that are generated in accordance with a fixed rule

which is nothing but a mathematical function. CA is used in

cryptography due to the possibility of pseudo-random number

generation with such rule (Rule 30) which is a class III rule

displaying aperiodic chaotic behavior [42, 170]. Li et. al [171]

proposed a 3D image encryption using computer-generated

integral imaging (CIIR) and cellular automata transform. An

elemental image array (EIA) recorded by light rays coming

from 3D image is mapped according to a ray-tracing theory. An

encrypted image is then generated from 2D EIA using cellular

automata transform. It is claimed that CA-based encryption

is error-free and being an orthogonal transformation, it offers

simplicity. The performance of the scheme is measured in terms

of bit correct ratio (BCR) and PSNR for reconstructed and is

compared to some similar proposed schemes. This scheme of

combining optical transforms to that of CA is unique in its

methodology. Recently, there is no further exploration of the

proposed idea.

Double image (T07.1)/multiple image (T07.2)

Double image encryption schemes are aimed to provide

more efficiency in terms of resources. A double image is

simultaneously encrypted and decrypted. Such schemes

also provide higher speed and better sensitivity besides

less storage space requirement. Therefore, double image

encryption schemes have drawn attention of various

researchers [29, 63, 70, 152, 161, 172].

Recently, Yuan et al. [173] proposed an image authentication

with double image encryption based on non-separable fractional

Fourier transform (NFrFT). The two images are combined to

form a complex image matrix and is transformed with NFrFT.

The output of the transform is also a complex matrix. The

transform orders and coefficient parameters serve as secret keys.

Novelty of the proposed work is in the selection of a partial

phase that is reserved for decryption. A nonlinear correlation

algorithm is to authenticate the two recovered images. The

cross-correlation of two compared images is referred to as

non-linear correlation (NC) whose strength is specified by a

parameter, k ∈ [0, 1]. An appropriate value of k is selected

to authenticate the images. Peak to correlation energy (PCE)
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is a ratio of maximum peak intensity value and total energy

of the non-linear correlation plane. Thus, PCE is measured to

determine k and hence authenticity.

A double image encryption scheme based on interference

and logistic map is proposed in Liansheng et al. [174] to

overcome the silhouette problem. The two input images

are initially joined to make an enlarged image. This joined

image is subjected to scrambling based on chaotic sequence

generated from a logistic map. Then, the scrambled image

is again separated into two. One of the images is directly

used to generate two-phase keys/masks based on optical

interference. Another scrambled image is encrypted with DRPE

method using first phase mask (key). This is followed by

multiplying the complex outcome with another phase mask

for transformation to the ciphertext. The author suggests to

use input parameters of the logistic map, wavelength and

axial mask as secret encryption keys to further enhance

the security.

Singh et al. [67] proposed a full-phase encryption scheme

for its better security compared to amplitude image. The scheme

uses two spatial domain input images and converts each of them

to a phase image. The phase images are then multiplied with

RPMs and transformed in the Gyrator domain with rotation

angle, α. The gyrator domain images are then added and

subtracted to get two intermediate images. The intermediate

images are then bonded with structured phase masks based on

the Devils vortex lens (DVFL) specified with certain parameters.

This is followed by another Gyrator transform with a different

rotation angle, β to obtain two encrypted images. Decryption is

exactly the inverse of the encryption process.

Similar to double image encryption schemes, there is

another category where multiple images are simultaneously

encrypted to reduce the key space as compared to the data to

be encrypted (images) but at the cost of increased complexity

[69, 175]. Recently Sui et al. [64] proposed a double image

encryption where two images are initially combined into a single

image along the column of the first image followed by the

second image. This combined image is scrambled with a 2D

sine logistic modulation map. Next, the scrambled image is

divided into two components to constitute a complex image.

One of the components is the phase part and another part is

the amplitude of the complex image. The complex image is

shared using Shamir’s three-pass protocol where the encryption

function is a multiparameter fractional angular transform which

is preferred for its commutative property.

Sui et al. [43] proposed multiple image encryption with

asymmetric keys in the FrFT domain. Initially, a sequence of

chaotic pairs is generated using symmetrically coupled logistic

maps. This chaotic sequence is used to scramble the spatial

domain images. Phase only function (POF) of image is retrieved

using an iterative process of FrFT domain. In the next stage, all

the POFs are modulated into an interim which is transformed to

real-value ciphertext by FrFT and chaotic diffusion. The three

random phase functions are used as keys to retrieve POFs of

plain images and three decryption keys are generated in the

encryption process.

A multiple image encryption scheme is proposed [49] by

combining a non-linear fractionalMellin transformwith a FrCT.

Fractional Mellin transform is used for its robustness to classical

attacks. The original images are simultaneously transformed

into a DCT domain and then re-encrypted with amplitude and

phase encoding. The transformed images have changed center-

coordinates due to fractional Mellin transform since FrMT is

a log-polar transform of the image followed by a FrFT of log-

polar image. The fractional orders of FrFT, phases ψj, θj are the

secret keys.

Recently, Guleria et al. [176] proposed to encrypt three

RGB images simultaneously using RSA cryptosystem followed

by a discrete reality preserving FrCT and the final stage of

scrambling with Arnold transform. To accomplish multiple

image encryption, 3 RGB images are combined into a single

image using a single color component of each image as R,G,B

components. All three indexed images are individually ciphered

with the proposed algorithm and then combined as a single

ciphered image. The security of the scheme depends not

only on the input parameters of RSA, Arnold transform and

orders of transform but also on their sequence of arrangement.

Decryption is exactly the inverse of the encryption scheme.

Watermarking in the encrypted domain (T08)

Recently, many researchers have proposed to use of optical

transform for watermarking applications [69, 71, 177–179].

Watermarking an image is a data-hiding method for copyright

protection and copy prevention. Depending on the application,

a watermark can be a visible pattern or can be hidden in

the host image. For copyright, its generally a visible pattern

and for resolving an authorship problem, the watermark is

secretly embedded into image which can be recovered by an

authorized user only. In the latter case, the watermark is usually

a binary logo that is encrypted into a noise-like pattern and

then embedded in the image for enhanced security. Many

researchers have followed this approach in the watermarking

algorithm. Some of the recent watermarking schemes with an

encryption algorithm using fractional transforms are reviewed

in this section.

Singh et al. [180] proposed to embed an encrypted

watermark in fractional Mellin transform (FrMT) into the host

image. The two deterministic phase masks (DPM) are generated

to be used in the input and frequency plane. The watermark

image is first converted into a log-polar image. After multiplying

the log-polar image with the first DPM, it is transformed to

a FrFT domain. This is FrMT transformation. In the next

step, again the second DPM is multiplied by the complex

outcome and inverse FrFT is obtained. For embedding, the

outcome is attenuated by a factor and then added to the host
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image. SVD decomposition is applied in the last stage to make

the watermarked image unrecognizable and is transmitted as

individual S, V, D matrices.

A quaternion algebra is used to define a quaternion discrete

fractional random transform (QDFRNT) which generalizes

DFRNT for its application in watermarking [181]. The host

image is divided into blocks and QDFRNT is applied to each

block. The scrambled watermark image is used to modify the

mid-frequency coefficients of the QDFRNT host image. The

transform orders and parameters of the scrambling scheme in

the watermark image are used as secret keys of encryption.

Liu et al. [182] proposed a novel transform, known

as fractional Krawchouk transform (FrKT), to generalize

the Krawchouk transform. Derivation of FrKT is based on

eigenvalue decomposition and eigen vectors. For validating the

imperceptibility of the proposed transform, a watermarking

application is illustrated in the work. A better robustness and

imperceptibility with proposed transform have been claimed in

the work.

Performance metrics for image
encryption

Image data have high redundancy and large volumes

as compared to text or binary data. It may also have

some real-time operations or may also be incorporated with

compressed data of a certain format. Thus, an image encryption

scheme needs to satisfy certain requirements. Some of the

commonly used performance requirements are discussed in

this section. The categorization of such performance analysis

is shown in Figure 4. Performance analysis of encryption

requires a comprehensive investigation of perceptual security

and cryptographic security. Perceptual analysis requires that the

outcome of an algorithm is unintelligible to human perception

whereas cryptographic analysis refers to the ability of the

algorithm to resist cryptanalysis that includes all possible attacks

in terms of the secret key, data statistics etc.

Perceptual security analysis

Perceptual security can be investigated with some subjective

metrics [183]. The ciphertext can be classified into typical

quality levels as shown in Table 6. QL0: signifies a completely

recognizable image which indicates that the encryption is not

valid, QL1: signifies a partially recognizable image contour like

edges and boundaries are visible but the texture is not clear.

QL2: signifies that the image is completely unintelligible and is

considered perceptually secure.

Another measure of perceptual quality is done by evaluating

a set of parameters for comparison of encrypted images with

reference to the plain image. Some of the commonly used

objective metrics are explained below.

i. Peak signal to noise ratio (PSNR): PSNR is the measure of

spectral information in an image. A higher value indicates

greater similarity in the test images. In an encryption

algorithm, PSNR values are evaluated to quantify the

dissimilarity in the encrypted image with respect to plain

image. During decryption, the same measure indicates the

efficacy of the algorithm in the reverse process. Practically

PSNR ≥ 28 indicates that the test images are similar. For

any pair of images, plain image (P) and ciphered image (C),

the PSNR is mathematically defined as:

PSNR (P,C) = 10 log10
(L− 1)2

1
MN

∑M
i=1

∑N
j=1

[

Pi,j − Ci,j
]2

(9)

ii. Mean square error (MSE): It is also an error metric like

PSNR that indicates the dissimilarity between the test

images. In an ideal case, for two similar images,MSE should

be zero. PSNR andMSE are mathematically related to each

other as:

PSNR (P,C) = 10 log10
(L− 1)2

MSE
(10)

∴ MSE = 1

MN

M
∑

i=1

N
∑

j=1

[Pi,j − Ci,j]
2 (11)

iii. Spectral Distortion measure (SD): It indicates the spectral

dissimilarity between the reference image and test image.

The SD measure evaluates as to how far is the spectrum of

the test image from that of the reference image. The spectral

distortion is defined as:

SD (P,C) = 1

MN

M
∑

u=1

N
∑

v=1

|FP (u, v)− FC (u, v)| (12)

where FP (u, v) , FC (u, v) are Fourier transforms of plain

image, fP(m, n) and encrypted image, fC(m, n), respectively.

iv. Structural Similarity Index Measure (SSIM): Wang et al.

[184] proposed a metric based on the human visual system

(HVS) that considers biological factors, namely, luminance,

contrast, and structural comparison between the image and

a reference image. This measure known as SSIM, is used to

quantify the visual image quality.

SSIM
(

x, y
)

= f
(

l
(

x, y
)

, c
(

x, y
)

, s
(

x, y
) )

(13)

where l(x,y), c(x,y) and s(x,y) are luminance, contrast, and

structural comparison, respectively. For any two pairs of

images P and C, it is mathematically defined as:

SSIM (P,C) = (2µPµC + C1) (2σPC + C2)
(

µ2P + µ2C + C1
) (

σ 2P + σ 2C + C2
)\n (14)

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2022.1039758
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kaur et al. 10.3389/fams.2022.1039758

FIGURE 4

Performance requirements of image encryption scheme.
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TABLE 6 Subjective metrics for perceptual security analysis.

Quality Level Ciphertext quality

QL0 Image contours are

completely recognizable

QL1 Partially recognizable

contours of the image

QL2 Completely

unintelligent/ white

noise like image

v. Histogram variance: In order to quantify the

uniformity of cipher images, variances of histograms

are evaluated [185]. Variances are also evaluated

for two different cipher images that are encrypted

from two different secret keys on the same plain

images. The lower values of variance indicate higher

uniformity. The variance of histogram is mathematically

evaluated as:

var (Z) = 1/n2
n

∑

i=1

n
∑

j=1

1

2
(zi − zj)

2 (15)

where Z = {z1, z2, z3,, . . . z256} is vector of

histogram values, zi, zj are the number of

pixels that have grey values equal to i and

j, respectively.

vi. Encryption Quality is a subjective measure

that collectively evaluates an algorithm for

the level of security it provides. There are 4

different levels for evaluation as explained in

Table 7.

Statistical analysis

According to Shannon’s communication theory

of perfect secrecy [186], “It is possible to evaluate

most of the encryption techniques by statistical

analysis”. He suggested two methods for such

analysis. One is histogram analysis and another is

correlation analysis for the adjacent pixels in the

encrypted image.

Histogram analysis

Histogram is the pixel frequency distribution where

each grey level is plotted for the number of pixels with that

particular value in the image. An effective cryptosystem

should be able to generate ciphertext with fairly uniform

histograms, which are also significantly different from

the plaintext.

TABLE 7 Evaluation of encryption quality.

Security Level Performance

SL0 High cryptography security+
High perceptual equality (QL2)

SL1 High cryptography security+Low

perceptual security (QL0, QL1)

SL2 Low cryptography security+High

perceptual security (QL2)

SL3 Low cryptography security+ Low

perceptual security (QL0, QL1)

Chi-square test

In order to verify the uniformity of the histogram, a chi-

square test is performed [187] and defined as:

χ2test =
K

∑

k=1

(oi − ei)
2

ei
(16)

where k is gray-level (256 for 8-bit image), oi, ei are the observed

and expected times occurrence of each gray-level, respectively.

The test is performed with different significance levels (generally

at 0.05) for a null hypothesis.

Correlation analysis

For a perceptually meaningful image, the correlation

between adjacent pixels is very high. It is necessary for an

effective cryptosystem to significantly reduce these correlation

values by decorrelating them in the encrypted domain. For

such analysis, either all or a few pixels are randomly selected

and correlation plots are obtained for horizontally, vertically,

and diagonally adjacent pixels. The correlation plots in each

direction should display the pixels to be uniformly scattered over

the entire intensity range. For quantitative analysis, correlation

coefficients are evaluated for two adjacent pixels in horizontal,

vertical, and diagonal directions using Eqs. (17)–(19). For

xi, yi as gray values of ith pair of selected adjacent pixels,

ρ(x,y) =
cov

(

x, y
)

√
D(x)

√

D
(

y
)

(17)

where cov
(

x, y
)

= E[x− E (x))(y− E
(

y
)

)]

= 1

N

i=N
∑

i=1

[( xi −
1

N

i=N
∑

i=1

xi )
∗(yi −

1

N

i=N
∑

i=1

yi ) ] (18)

D (x) = 1

N

i=N
∑

i=1

( xi −
1

N

i=N
∑

i=1

xi )

2

,

D
(

y
)

= 1

N

i=N
∑

i=1

(yi −
1

N

i=N
∑

i=1

yi)

2

(19)
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Entropy analysis

Information entropy is a mathematical property that depicts

the randomness associated with the information source. The

entropy of a message source s is given as:

H
(

d
)

= −
L−1
∑

i=0

P (si) log2 P (si) (20)

where L is the highest intensity value of pixels in image, si is

the ith symbol in message, P(.) refers to the probability. The

entropy defined in Eq. (20) is termed as Shannon’s entropy

[186]. Besides, a local entropy has been recently proposed [188]

as an extension of Shannon’s entropy measure. It is the mean

entropy of several randomly selected non-overlapping blocks

of information source. For an 8-bit image, L = 256, there

are K = 30, nonoverlapping blocks to be randomly selected

from the image with each block having 1,936 pixels (TB=1936).

Therefore, this entropy measure is also termed as (K,TB)-local

entropy and is evaluated using Eq. (21)

Hk,TB (S) =
k

∑

i=1

H (Si)

k
(21)

where Si are randomly selected non-overlapping image blocks

with TB pixels in each block of S with total of L intensity scales.

Sensitivity analysis

Key sensitivity analysis

The sensitivity of an encryption scheme can be evaluated

in two aspects: (1) at encryption stage which means that a

completely different ciphertext should be generated with a very

minute change in the input key value, (2) at the decryption stage,

the ciphertext should not be correctly recovered if there is very

slight change in the correct key values. Key sensitivity (KS) is

mathematically defined as:

KS = 1

M × N

M
∑

m=1

N
∑

n=1

C1(m, n)
⊗

C2(m, n)× 100% (22)

where C1 and C2 are two different ciphered images with slight

change in key values corresponding to same plain image, P.

M × N is total number of image pixels in the image.

C1 (m, n)
⊗

C2 (m, n) =
{

1,C1 (m, n) 6= C2 (m, n)

0,C1 (m, n) = C2 (m, n)
(23)

The value of KS should be as close to 100% [183].

Key space analysis

Key space refers to the set of all possible keys that are used

in encryption of information. A brute force attack is possible if

an intruder manages to make an exhaustive search on the set

of possibilities until the correct one is found. Thus, feasibility

of brute-force attack depends on the total number of valid keys.

This number is an important feature to determine the strength

of a cryptosystem, and it has to be large enough (> 2100) [142]

as per today’s computing power.

Di�erential analysis

With reference to plaintext, the sensitivity refers to change

in ciphertext with slight change in plaintext. This is termed

as differential analysis where an adversary can change a single

pixel in plaintext and compare the corresponding ciphertexts

to get some clue about secret keys. The diffusion property of

a cryptosystem enables it to spread any change in plaintext to

the entire ciphertext. There are two indicators for numerical

evaluation of resistance to such attack: NPCR (number of pixel

change rate) and UACI (unified average change in intensity).

Theoretically, the closer values of NPCR and UACI are 99.6093

and 33.4635%, respectively, indicating the effectiveness of the

applied algorithm [189]. These indicators are mathematically

defined as:

NPCR = 1

M × N

∑

i,j

D
(

i, j
)

× 100% (24)

UACI = 1

M × N

∑

i,j

∣

∣C
(

i, j
)

− C̃
(

i, j
)
∣

∣

L− 1
× 100% (25)

where C , C̃ are two encrypted images with the same keys but

with a slight change in the corresponding plain image of size,

[M N] with the highest intensity value, L.

D
(

i, j
)

=
{

1, C
(

i, j
)

6= C̃
(

i, j
)

0, otherwise
(26)

Avalanche e�ect

The avalanche criterion is referred to as an average number

of bits that differ between C and C̃ while changing a pixel in

plaintext. The ideal value of the avalanche effect is 0.5 (50%).

Noise analysis

The communication channels over which the image

information is transferred are responsible for the addition of

some noise in the form of degradation or distortion. The

performance of a cryptosystem in such a scenario requires

analysis. Gaussian noise with zero mean and varying values

for variance is added to the encrypted image for Gaussian

noise analysis. The quality of the decrypted image is checked in

perceptual as well as numerical terms with different variances

in noise [60, 190]. The results thus obtained are compared
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for the noise analysis. The Occlusion attack refers to the loss

of data or cropping of a portion of the image due to noisy

channels. The cryptosystem should be capable of recovering the

appropriate amount of information even after some occlusion

in data. In order to check for the robustness to occlusion

attack, some pixels of encrypted image (10, 15, 25, 50, 75%) are

cropped and corresponding decrypted image quality is evaluated

in perceptual and numerical analysis [25, 66, 190].

Speed analysis

Speed analysis refers to the critical execution time for

forward and reverse process in an encryption scheme. As typical

configuration and capacity of a system greatly determine its

computation speed, therefore a comparison of encryption and

decryption time is a trivial task. Different machines perform

differently. However, time analysis is an important feature,

especially where real-time application is involved. Time analysis

is performed in terms of encryption time and decryption

time separately. Generally, a large sample set of images are

considered for evaluating the average time taken in the

encryption and decryption process on a present-day commonly

used system configuration.

Randomness analysis

NIST SP800-22 is a statistical test suite for random

and pseudorandom number generators that are used for

cryptographic applications. The advantage of this test suite is

that it does not require any assumptions on the generator.

Rather, it only looks for a particular statistical recurrence in the

generated sequence (random). It consists of 15 p-value-based

tests that include frequency test, run test, and spectral test. These

tests are generally not used in transform-based cryptography.

However, we mention it here due to usage of it in some classical

methods of image encryption.

GVD analysis

The gray value difference of a pixel form its four neighboring

pixels in an image is given by:

G
(

i, j
)

=
∑

[ I
(

i, j
)

− I
(

i
′
, j
′)
]

4
(27)

The average difference in gray values corresponding to each pixel

in image is

Gav
(

i, j
)

= 1

(M − 2)(N − 2)

M−1
∑

i=2

N−1
∑

j=2

G
(

i, j
)

(28)

Thus, gray value difference (GVD) parameter [191] of an

encryption scheme is defined as:

GVD = GP
av(i, j)− GC

av(i, j)

GP
av

(

i, j
)

+ GC
av(i, j)

(29)

where GP
av and GC

av are the average differences in gray values for

original plain image and ciphered image, respectively. The ideal

value of GVD parameter is unity. For a good encryption scheme,

this parameter should be as close to 1.

Classical attack analysis

In cryptography, classical attacks are launched to

cryptanalyze an encryption scheme. The adversary can

have certain information regarding plain text or ciphertext

that provide for cryptanalysis. If the adversary has access to

set of ciphertext, then it can launch a ciphertext only attack. If

it is able to get access to set of plain texts and corresponding

ciphertexts, then a known plaintext attack can be launched. In

a chosen plaintext attack, it is assumed that the adversary has

access to arbitrary plaintexts and can obtain the corresponding

ciphertexts. From the above-stated assumptions, a chosen

plaintext attack provides the most information to the adversary.

Thus, if a cryptosystem is able to resist chosen plaintext attack,

it is believed to be able to resist other classical attacks as well

[154, 192]. Therefore, an image encryption scheme should have

excellent diffusion properties for providing robustness to a

chosen plaintext attack analysis.

Comparative analysis

As shown in Table 8, each of the proposed schemes is

accompanied by the parameters used to evaluate the encryption

algorithm and the technique that is merged with the fractional

transform. We have categorized these techniques into eight, as

reality preserving (T01), chaos theory based (T02), compressive

sensing (T03), multiple parameters (T04), DNA sequence (T05),

cellular automata (T06), double image encryption (T07.1),

multiple image encryption (T07.2), and with watermarking

(T08). The comparative analysis is based on the results

available for Lena image only. Table 9 illustrates the subjective

comparison for the same references as listed in Table 8 along

with the probable vulnerabilities associated with each of them.

These vulnerabilities are expressed as V01–V07 (mentioned

below the Table 9). It is worth mentioning here that the

vulnerabilities of each scheme can be removed by specific

methodology in practice.

It is evident from the values in Table 8 that studies in

which chaos-based permutation or substitution is merged with

fractional transform domain have higher entropy measure, low
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TABLE 8 Comparative analysis for performance metrics of proposed schemes (for Lena image).

[Reference] Year Technique Correlation Average Key Average Average Encryption

used analysis entropy space NPCR(%) UACI(%) quality

Horizontal Vertical Diagonal

Kaur et al. [53] 2021 T02, T05 0.0015 0.0014 0.0059 7.9952 10247 99.6348 33.5816 SL0

Ye et al. [164] 2021 T02, T03,T04 – – – – 2259 – – SL1

Kaur et al. [54] 2021 T02, T05 0.0033 −0.0099 −0.0046 7.9768 10228 99.5956 33.8798 SL1

Farah et al. [27] 2020 T02, T05 0.0693 0.0610 −0.0242 7.9991 — 99.5677 33.4353 SL0

Guleria et al. [176] 2020 T02,T07.2 0.0223 0.0187 0.0137 1.0149 1070 99.4664 34.1316 SL1

Kaur and Agarwal

[190]

2020 T01,T02 −0.0006 −0.0057 0.0009 7.9938 10102 99.6006 34.6379 SL0

Kaur et al. [52] 2019 T01,T02, T07.2 0.0036 −0.0038 0.0023 7.99 – – – SL2

Faragallah [50] 2018 T02,T07.1 0.0001 −0.0029 −0.0019 7.5907 – 99.7400 0 SL2

Zhang et al. [33] 2018 T02, T03 0.0127 0.0101 0.0139 – 10136 – – SL2

Kang and Tao [141] 2018 T01, T02, T04 −0.0001 −0.0014 0.0004 – – 99.8640 33.3330 SL0

Kang et al. [60] 2018 T01, T02, T04 0.0015 0.0017 −0.0033 – 1098 = 2325 99.9949 33.3616 SL0

Mishra et al. [28] 2018 T02 0.0020 −0.0007 0.00006 7.4739 – – – SL0

Ref. [29] 2018 T01, T02, T07.1 – – – SL3

Kaur et al. [48] 2017 T02 0.01513 −0.0024 −0.0045 7.9974 2297 – – SL2

Yu et al. [62] 2017 T02 0.1068 0.0766 0.0182 – ≈ 1016 – – SL3

Deng et al. [162] 2017 T02, T03 0.0909 0.2389 0.0126 – 1037 – – SL2

Pan et al. [49] 2017 T07.2 0.0249 0.0505 0.0280 – 275 × 305 99.6279 33.4599 SL2

Sui et al. [64] 2016 T02, T07.1 – – – – 1055 – – SL2

Santhanam and

McClellan [26]

2015 T02 0.0104 0.0299 0.0062 – 1034 × 135 × 115 – – SL2

Zhou et al. [161] 2015 T02, T03 0.0119 0.0925 0.0325 – 1064 – – SL2

Singh et al. [67] 2015 T07.1 0.0093 0.0172 0.0021 – – – – SL2

Sui et al. [43] 2014 T07.2 0.0040 −0.0018 0.0266 7.9976 – – – SL2

correlation coefficients, high NPCR and UACI, higher key space,

excellent key sensitivity, robustness to noise and data occlusion

attacks, hence having higher security levels. Reality preserving

algorithm has contributed toward the digital implementation

of optical transforms and has enabled researchers to overcome

major limitations regarding complexity issues of fractional

transforms in the digital domain. Compressive sensing is used

to reduce the data deluge while dealing with large images

for encryption but their performance is marginal in terms

of higher correlation coefficients and vulnerability to leakage

in information.

CS-based encryption schemes are highly complex [193] and

reconstruction is time-consuming. It has been observed in the

results of the above-reviewed articles that CS-based schemes lack

uniform histograms in the encrypted domain and CC values are

considerably higher. Also, CS-based simultaneous compression

and encryption schemes are vulnerable to cryptanalysis due to

linearity [194]. In a broad sense, if the plaintext is sparse, the key

of the cryptosystemmay not be safe as it is possible to exploit the

prior sparsity knowledge to extract information of the key from

ciphertext. The key and the plaintext may be partly accessed

using some information processing technology such as Blind

source separation (BSS) [195].

Multiple parameter-based fractional transform schemes

perform better than fixed/single transform order-based schemes.

This is due to enlarged key space and better uniformity in

encrypted histograms. However, there are some deficiencies

related to multiple parameter schemes [44–46] due to linearity

that need to be avoided. The linear relation among consecutive

transform orders and periodicity is the major limitation that

can lead to multiple decryption keys corresponding to an

encryption key. This depicts its vulnerability to various attacks.

To overcome this issue, it is necessary to introduce some means

of breaking the linear relationship among consecutive transform

orders or by careful selection of transform orders through a

random selection scheme [38], [190].

DNA sequence operation is little less explored with optical

transforms. However, it is able to enhance security with

increased key space and randomness in encrypted data. Double

and multiple image encryption schemes are preferred for
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TABLE 9 Comparative analysis for subjective parameters (refer Table 8 for performance metrics).

Reference Metrics for

perceptual

analysis

Noise

analysis

Occlusion

attack

Classical

attacks

Differential

attack

Statistical

attack

Time

analysis

Probable

Vulnerabilities

Kaur et al. [53] X X X X X X X V06, V07

Ye et al. [164] X X X X X X X V02, V05, V07

Kaur et al. [54] X X X X X X X V07

Farah et al. [27] X X X X X X X V01, V03, V06, V07

Guleria et al. [176] X X X X X X X V03, V07

Kaur and Agarwal [190] X X X X X X X V03, V07

Kaur et al. [52] X X X X X X X V01, V02,

Faragallah [50] X X X X X X X V02

Zhang et al. [33] X X X X X X X V01, V02, V07

Kang and Tao [141] X X X X X X X V03, V07

Kang et al. [60] X X X X X X X V07

Mishra et al. [28] X X X X X X X V03, V04, V05, V07

Kaur et al. [29] X X X X X X X V02, V04, V06, V07

Wu et al. [48] X X X X X X X V02, V03, V07

Yu et al.. [62] X X X X X X X V02, V03, V07

Deng et al. [162] X X X X X X X V01, V02, V07

Pam et al. [49] X X X X X X X V01

Sui et al. [64] X X X X X X X V02, V03, V07

Santhanam and

McClellan [26]

X X X X X X X V02, V07

Zhou et al. [161] X X X X X X X V02, V06

Singh et al. [67] X X X X X X X V02, V07

Sui et al. [43] X X X X X X X V02, V07

V01, High complexity; V02, Low encryption quality; V03, Dependent on diffusion; V04, Smaller key space; V05, poor efficiency; V06, Lossy; V07, may not be applicable for real

time applications.

speed and increasing encryption efficiency. Watermarking is

another domain where fractional transforms are used to

encrypt the watermark before embedding in a blind watermark

scenario. The encryption of the watermark logo in the

collective time-frequency domain increases the robustness to

various attacks.

Observations based on published
literature

In an exhaustive search performed in the month of

December 2021 on the various online databases: ACM Digital

library, Elsevier, Google Scholar, IEEE explore, Springer link,

Taylor and Francis and Wiley for the number of research papers

published related to the encryption of different multimedia

contents during the period 2015–2021. The pictorial view to

highlight the percentage of papers published on the encryption

of various multimedia contents like: images, video, audio, text

data etc. has been shown in Figure 5.

According to search results, it is observed that the number of

publications is majorly in text and image encryption. However,

the number of image encryption works is dominating with

42% of all the metadata available. We believe that it is due to

the wide application area of image data, from platforms like

social media to sensitive data like military and telemedicine

fields. Almost every sector of communication is dependent

on image transmission in one way or the other. It is also

observed that amongst various mathematical implementations

of the fractional transforms, FrFT is most popular with more

than 60% of the total publications in fractional integral-based

image encryption schemes. This is followed by fractional wavelet

transform (FrWT) with a contribution of 16%, fractional Hartley

transform, FrHT (10%), fractional Cosine transform, FrCT (7%)

and the remaining few on other transforms (namely, Mellin,

angular, sine etc.).

As the present manuscript is mainly concerned with

image encryption using optical/fractional integral transforms,

therefore, we narrowed down our search for the number of

papers published year-wise on the fractional transform-based
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FIGURE 5

Percentage of research papers published on the encryption of

various multimedia contents like: images, video, audio, text data

during 2015–2021.

image encryption schemes. Figure 6 illustrates a graphical

representation of the related publications in all the major online

databases during the period 2015–2021.

It is observed that the number of publications on image

encryption in the fractional transform domain has considerably

increased every year. This gives testimony to the fact that

with the advent of evolutionary algorithms based on fractional

integral transforms in the digital domain has increased its

popularity and is receiving significant attention from the

researcher community.

It has been also observed that most of the encryption

algorithms with fractional transform as the main component

are evaluated for statistical analysis, noise attack, and occlusion

attack analysis only. This is probably the reason for less

popularity of optical transform-based image encryption schemes

as compared to purely chaos-based schemes or other number

theory-based approaches. According to a recent survey on

color image encryption [111], only 8.65% of the proposed

schemes are based on optical transforms. In order to widen

the contribution of optical transform-based schemes to image

encryption, certain limitations need solutions for encouraging

practical implementations.

In Section Mathematical modelling of optical transforms

with FRFT and its variants, we have described the categorization

of fractional transform-based image encryption schemes in

accordance with the strategical amalgamation of the fractional

transform domain with other evolutionary methods. There

are total of eight major categories T01 to T08 (one of

them T07 having two subcategories). In Figure 7, we have

shown the relative contributions in terms of the number

of papers published in each of these categories so far.

We observe that the major contributions come from the

T07: Double Image/Multiple Image category, followed by

T02: chaos-based, T08: Watermarking, T03: Compressive

Sensing, T01: Reality Preserving category T04: Multiple/fixed

parameter transforms, T05: DNA Sequences, and least in T06:

Cellular Automata.

Based on the observations related to security levels and

vulnerabilities mentioned in Tables 8, 9, we elaborate on the

possible ways to overcome some limitations. Most of the

algorithms mainly lack in the following aspects: (1) uniform

histograms, (2) entropy measure, (3) smaller key space, (4)

differential analysis, (5) classical attack analysis, (6) speed

analysis. In the discussion below, we try to highlight some of the

possible solutions as:

• Uniform Histogram: A majority of fractional transform-

based image encryption schemes produce cipher images

having Gaussian distribution like histograms [23, 29, 141].

It is due to the fact that the energy of a transform is

concentrated at the center. Authors have claimed the

robustness of encryption schemes only on the basis of

similarity in the distribution of histograms irrespective of

the content of the plain image. The entropy measure for

such distributions has values that is significantly less than

the ideal value (8 for 256 intensity levels image). However,

in cryptography, it is expected that the cipher image pixels

should have a uniform distribution over the entire intensity

ranges having entropy measure very near or equal to the

ideal value. This points to some information leakage, that

can make a scheme vulnerable to entropy attacks. To

overcome such limitation, a hybrid algorithm in which

fractional integral transform domains are amalgamated

with chaos based pseudorandom substitutions should

be used.

• Smaller Key space: Adopting multiple layer security for

image encryption algorithm will lead to an increase in key

space. Apart from this, making a selection of transform

orders to depend on some chaotic parameters or a similar

analogy will result in larger key space [141, 190]. Most

of the proposed schemes have added a permutation layer

along with the transform domain. Some of the schemes

that are based on permutation and substitution paradigm

are able to offer larger key space to overcome brute

force attack.

• Differential Analysis: In order to fulfill the requirement of

effective encryption algorithm, the scheme should be able

to resist differential attack analysis. The parameters NPCR

and UACI are its measures. From Table 9, it is clear that

majority of schemes lack such analysis. Even if done, the

UACI values are not optimum or even zero. This is due

to the fact that there is no significant change in intensity

values with a single pixel change in input. Therefore, for

a successful strategy, the change should be diffused over
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FIGURE 6

Number of papers published on fractional integral transform-based image encryption schemes on various online databases.

FIGURE 7

Relative contribution in terms of the number of papers published belonging to di�erent categories (T01-T08) of fractional transform-based

image encryption techniques.

the entire image coefficients. One of the solutions to this

issue is to make the initial parameters of diffusion scheme

to depend on some significant feature of the input image

like mean or average values.

• Time analysis: A run time for an encryption algorithm

refers to the time required for its execution. Various factors

need to be considered for time analysis like the size of

image, system configuration, programming language etc.

[109]. To compare the computational performance of an

algorithm, is a crucial task as different host machines have

their own set of configurations. Due to this reason, some

researchers have used an average time Vs size paradigm to

evaluate computational performance [143] wherein input

images with variable size are selected and the average

time of encryption is evaluated using large set of different

keys. Fractional transform-based encryption schemes have

inherent advantage of high speed and parallel processing.

However, while merging of these schemes with other

domains like chaos etc., computational optimization should

be taken care of. In summary, there should be trade-

off management between complexity and security while

designing an algorithm and some optimum suggestion for
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the choice of parameters, number of rounds etc. should

be given.

• Careful Selection of chaotic maps: The chaotic maps

wherever used in an encryption scheme, need a careful

selection. As most of the schemes that are reviewed

have employed one dimensional chaotic map [28, 66,

69]. Although 1D maps are simplest in hardware

implementation but are less secure. For instance, 1D

logistic maps have some periodic windows in the chaotic

range [196] and that Arnold transform also has periodicity

[197], hence are vulnerable. At the same time, the higher

dimensional chaotic maps are sometimes secure but

complex. To keep a balance, it is recommended to use a

coupled map scheme where two or more 1D chaotic maps

are coupled for enhanced security [50] and also robust

chaotic maps may be used with proper specification of

the range of parameters where robust chaos is observed.

Prior to selection of such chaotic map, a proper bifurcation

analysis and investigation of dynamical behavior in the

entire parameter space must be done to identify the suitable

regions of parameter space exhibiting robust chaos.

Conclusion

The evolution of digital media over the past two decades

has revolutionized the development of strategies pertaining to

security preservation of the multimedia contents. Encryption is

the most effective way to secure the data. It has been observed

in the study that out of all the data types, (audio, video,

text, image) image data are most frequently used to convey

the information. Consequently, the percentage of published

work on image encryption is dominating with 42% of all the

metadata available. However, cryptography for image data is

challenging when it comes to classical methods of encryption

due to huge volume of data and also due to the high correlation

among adjacent pixel values. Various research works have been

proposed in the literature that are specifically suitable for image

encryption. Application of fractional integral transforms in

image encryption has been an active research area and the review

work in this paper is also focused on the same. The fractional

integral transform provide an extra degree of freedom to the

encrypted data as the fractional order of the transform is used

as secret key.

The aim of this review is to build an understanding of the

reader toward application of fractional integral transforms in

image encryption. The initial description of the paper gives

a conceptual idea on using these transforms and also the

domain-based taxonomy to classify various existing schemes

in the literature. The optical image encryption that comprises

of optical setup and double random phase encoding (DRPE)

has been discussed. Few recent review works and cryptanalysis

of these schemes are tabulated and analyzed. The digital

implementation of the fractional integral transforms is discussed

with its analogy to the optical setup. Further, various algorithms

are categorized in accordance with their merging techniques

and a comprehensive review is presented on some of the

most recently published articles. The performance criteria and

standards to be followed have been discussed. A performance

comparison in tabular format is presented for objective as

well as subjective metrics of some of the recent publications.

Finally, based on the observations, some major concerns are

listed and a few constructive guidelines are provided. This work

intends to provide the readers with an understanding of why

and how fractional integral transformations are applicable to

the encryption of images. In addition, the study highlights some

vulnerabilities and threats associated with the usage of fractional

transforms along with the probable solutions that may help

in the future design and development of hybrid and robust

encryption schemes.
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