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On physics-informed neural
networks for quantum
computers

Stefano Markidis*

Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

Physics-Informed Neural Networks (PINN) emerged as a powerful tool for

solving scientific computing problems, ranging from the solution of Partial

Di�erential Equations to data assimilation tasks. One of the advantages of

using PINN is to leverage the usage of Machine Learning computational

frameworks relying on the combined usage of CPUs and co-processors, such

as accelerators, to achieve maximum performance. This work investigates

the design, implementation, and performance of PINNs, using the Quantum

Processing Unit (QPU) co-processor. We design a simple Quantum PINN

to solve the one-dimensional Poisson problem using a Continuous Variable

(CV) quantum computing framework. We discuss the impact of di�erent

optimizers, PINN residual formulation, and quantum neural network depth on

the quantum PINN accuracy. We show that the optimizer exploration of the

training landscape in the case of quantum PINN is not as e�ective as in classical

PINN, and basic Stochastic Gradient Descent (SGD) optimizers outperform

adaptive and high-order optimizers. Finally, we highlight the di�erence in

methods and algorithms between quantum and classical PINNs and outline

future research challenges for quantum PINN development.

KEYWORDS

quantum physics-informed neural network, Poisson equation, quantum neural

networks, continuous variable quantum computing, heterogeneous QPU CPU

computing

1. Introduction

One of the most exciting and lively current research topics in scientific computing is

integrating classical scientific methods with Machine Learning (ML) and neural network

approaches [1]. The usage of Physics-Informed Neural Networks (PINNs) is a major

advancement in this promising research direction. PINNs have been applied in a wide

range of traditional scientific computing applications, ranging fromComputational Fluid

Dynamics (CFD) [2] to solid mechanics [3], and electromagnetics [4], to mention a few

PINN usages.

In essence, PINNs are neural networks that allow solving a Partial Differential

Equation (PDE) of a specific domain area, such as Navier-Stokes equations for CFD

or the Poisson equation in electrostatic problems. To achieve this, PINNs combine and

connect two neural networks: a surrogate and a residual network. The first surrogate

neural network takes as input the point we want to calculate the PDE at (this point is

called collocation point) and provides the approximated solution at that point. Using a
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training process, the surrogate neural network encodes the

Partial Differential Equation (PDE) and associated boundary

and initial conditions as weights of biases. The second residual

network (not to be confused with the popular ResNet!) takes the

input from the surrogate network. It provides the PDE residual,

which is the error of the approximated solution from the

surrogate network. The residual calculation requires the solution

of differential operators on a neural network. This calculation

is performed using automatic differentiation [5] that allows

calculating differential operators at any given point without

discretization and meshes (PINNs are gridless methods). The

residual network has only a passive role during the training

process. While it provides the surrogate network with the loss

function, its weights and biases are not updated during the

neural network training. A stochastic optimizer, such as the

Stochastic Gradient Descent (SGD) [6] and Adam [7], updates

the surrogate network weights and biases using the residual

obtained from the residual network. Typically, in PINNs, we use

a sequence of Adam and Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [8] optimizers: the L-BFGS optimizer

is used to speed up the training or accelerate the convergence

to the solution. PINNs do not require labeled datasets for the

training, work in an unsupervised fashion, and necessitate only

expressing the PDE in the residual network. For an in-depth

description of the PINN, we refer the interested reader to the

seminal work on PINNs by Raissi et al. [9] and the following

enlightening articles [10–12].

From the computational point of view, one of the strategic

advantages of using PINN methods for scientific computing

is the possibility of exploiting high-performance frameworks,

such as TensorFlow [13] or PyTorch [14], designed specifically

for efficiently running ML workloads. Such frameworks rely

heavily on Graphics Processor Units (GPUs) and accelerators

for performance [15]. The use of GPUs for forward and back

propagations led to large performance improvement and a

renaissance of the research on neural networks, spurring the

development of new deeper neural architectures. In addition

to the performance, the domain scientist is not burdened with

learning relatively low-level programming approaches, such as

OpenCL or CUDA, but simply can pin computation to a device

or rely on compiler technologies for accelerator automatic code

generation [16]. However, with Dennard’s scaling ending in

2005 [17] and Moore’s law [18] possibly on its last days, many-

core architectures (including GPUs) may not be enough to

improve the performance scaling in a post-Moore era [19]. For

this reason, researchers and companies are exploring alternative,

disruptive computing directions, such as quantum computing,

to further scale the performance beyond the limitation of

silicon-based hardware. For instance, companies, such as Google

and IBM, that invested heavily in the past in silicon-based

accelerator technologies for AI workloads, now also investigate

the development of quantum hardware and software for

supporting ML workloads. Notable examples are the IBM-Q

devices [20] and Qisikit [21] for IBM, the Sycamore quantum

computer [22], and Quantum TensorFlow [23] for Google.

This work aims to investigate the potential of using

an emerging co-processor, the Quantum Processing Unit

(QPU), and associated software to deploy PINN on quantum

computers. Quantum computing is an emerging technology and

computational model for solving applications in various fields,

ranging from cryptology [24] to database search [25] to quantum

chemistry simulations [26]. Among these applications are

traditional scientific computing and the solution of differential

equations. These basic solvers are at the backbone of CFD,

electromagnetics, and chemistry, among others. Algorithms

and methodologies aimed at solving linear systems started

with the work by Harrow et al. [27], the development of the

Harrow-Hassidim-Lloyd (HHL). They continued with linear

solvers based on variational quantum solvers [28], the seminal

work on Differentiable Quantum Circuits (DQCs) for the

solution of differential linear and non-linear equations [29–33],

solvers with quantum kernel methods [34], and linear systems

based on quantum walks [35]. On the road to fault-tolerant

universal quantum computing systems, Noisy Intermediate-

Scale Quantum (NISQ) systems [36], are currently major

candidate systems for the design and development of near-

term applications of quantum computing. Algorithms for NISQ

systems are heterogeneous approaches as they combine code

running on CPU (typically an optimizer or variational solver)

and QPU (for a cost function evaluation). In this work, we focus

on a hybrid variational solver approach [29, 37, 38] that can

be deployed on NISQ systems. Quantum PINNs are essentially

variational quantum circuits using quantum computers for the

evaluation of the optimizer’s cost function.

This work focuses on Continuous Variable (CV) quantum

computing formulation, an alternative to the popular qubit-

based universal quantum computing because CV quantum

computing is a more convenient framework for PINN

development than qubit-based approaches. CV quantum

computing uses physical observables, such as the strength

of an electromagnetic field, whose numerical values belong

to continuous instead of discrete intervals, like qubit-based

quantum computing. In some sense, CV quantum computation

is analog in nature, while qubit-based quantum computation

is digital. CV quantum computing dates back to 1999, first

proposed by Lloyd and Braunstein [39]. Braunstein and

Van Loock [40] and Weedbrook et al. [41] provide extensive

in-depth reviews of CV quantum computing. While the most

popular implementations of quantum computers, e.g., IBM,

Rigetti, and Google quantum computers, use superconductor

transmon qubits, CV quantum computing is implemented with

mainly quantum optics [42] and also ion traps [43]. As the

PINN method intends to approximate a continuous function,

it is more natural to adopt CV quantum computing than

a qubit approach [44]. In this work, we extend the work

of Killoran et al. [45], Knudsen and Mendl [44], and Kyriienko
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et al. [29] by investigating the performance of quantum

PINN exploiting CV quantum neural networks. CV quantum

neural networks are better suited than qubit-based quantum

computing for performing regression calculations. Because the

main PINN usage is for performing regression tasks (instead

of classification), CV quantum neural networks are the ideal

framework for PINN development.

The paper is organized as follows. We first briefly review CV

quantum computing and neural network and present a design

of the quantum PINN together with the experimental setup

in Section 2. We discuss the impact of different optimizers,

differentiation techniques, quantum neural network depth, and

batch size on the PINN performance in Section 3. Finally,

Section 4 summarizes the results, discusses the limitations

of this work, and outlines future opportunities for quantum

PINN development.

2. Quantum physics-informed neural
networks

In this section, we introduce CV quantum computing, its

basic gates, and a simple formulation of the quantum neural

network unit, the basic building block for CV quantum neural

networks. We then discuss the design of a quantum PINN and

describe the experimental setup, comprising the programming

setup and quantum computer simulator in use.

2.1. Continuous variable quantum
computing and neural networks

The CV quantum computing approach is based on the

concept of qumode, the basic unit carrying information in CV

quantum computing. We express the qumode |ψ〉, in the basis

expansion of quantum states, as

|ψ〉 =

∫

ψ(x) |x〉 dx, (1)

where the states are the eigenstates of the x̂ quadrature, x̂ |x〉 =

x |x〉 with x being a real-valued eigenvalue. This is an alternative

formulation to the popular qubit-based approach. In this latter

case, the qubit |φ〉 is expressed as the combination of the states

|0〉 and |1〉 as

|φ〉 = φ0 |0〉 + φ1 |1〉 . (2)

While for qubit-based quantum computing, we use a set

of discrete coefficients, such as φ0 and φ1, in the case of

CV based we have a continuous of coefficients (a continuous

eigenvalue spectrum), giving the name of this approach. All

the quantum computing settings with continuous quantum

operators perfectlymatch CV quantum computing. The position

(x̂) and momentum (p̂) operators, constituting the so-called

phase space, are good examples of continuous quantum

operators we use in this work. The position operator is defined

as follows:

x̂ =

∫ ∞

−∞
x |x〉 〈x| dx, (3)

where the vectors |x〉 are orthogonal. Similarly, the momentum

operator is defined as:

p̂ =

∫ ∞

−∞
p |p〉 〈p| dp, (4)

with |p〉 being orthogonal vectors. A qumode i is associated

with a pair of position and momentum operators (x̂i, p̂i).

These operators do not commute, leading to the Heisenberg

uncertainty principle for the simultaneous measurements of x̂

and p̂.

As in the well-established qubit-based formulation, CV

quantum computation can be expressed using low-level gates

that can be implemented, for instance, as optical devices. A CV

quantum program can be seen as a sequence of gates acting on

one or more qumodes. Four basic Gaussian gates operating on

qumodes are necessary to develop CV quantum neural networks

and PINNs. These four gates of linear character are:

• Displacement Gate - D(α):

[

x

p

]

→

[

x+ℜ(α)

p+ ℑ(α)

]

.

This operator corresponds to a phase space shift by

displacing a complex number α ∈ C.

• Rotation Gate - R(φ):

[

x

p

]

→

[

cos(φ) sin(φ)

− sin(φ) cos(φ)

][

x

p

]

.

This operator corresponds to a rotation of the phase space

by an angle φ ∈ [0, 2π].

• Squeezing Gate - S(r):

[

x

p

]

→

[

e−r 0

0 er

] [

x

p

]

.

This operation corresponds to a scaling operation in the

phase space with a scaling factor r ∈ C.

• Beam-splitter Gate - BS(θ):










x1

x2

p1

p2











→











cos(θ) − sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 cos(θ) − sin(θ)

0 0 sin(θ) cos(θ)





















x1

x2

p1

p2











.

This operation is similar to a rotation between two

qumodes by an angle θ ∈ [0, 2π].

An important derived gate is the interferometer that can

be formulated as a combination of beam-splitter and rotation

gates. In the limit of one qumode, the interferometer reduces

to a rotation gate. By combining these Gaussian gates, we can

define an affine transformation [45] that is instrumental for the

expression of neural network computation.

In addition, to these four basic Gaussian gates defined

above, non-Gaussian gates, such as the cubic and Kerr gates,
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FIGURE 1

A basic fully connected quantum neural network consists of one or more quantum neural units comprising four/five CV quantum gates:

interferometer (beam-splitter + rotation), squeezing, displacement, and Kerr or Cubic gates. A quantum neural unit performs a non-linear

transformation on an a�ne operator, similarly to classical neural networks.

provide a non-linearity similar to the non-linearity performed

by the activation functions in the classical neural network.

Most importantly, the non-Gaussian gates, when added to the

Gaussian gates to form a sequence of quantum computing units,

provide the universality of the CV quantum circuit: we can

guarantee that we can produce any CV state with at most

polynomial overhead. In this work, we use the Kerr gate because

the CV quantum simulators provide a Kerr gate model that is

more accurate than the cubic model. The Kerr gate is often

expressed asK(κ) and has κ ∈ R as the quantum gate parameter.

Finally, an operation’s result in quantum computing is

a measurement operation. In this work, as a result of

the measurements, we evaluate the expected value for the

quadrature operator x̂:

〈ψx| x̂ |ψx〉 . (5)

As mentioned in Section 1, the most promising hardware

implementation of CV quantum gates uses photonic

technologies. An example of a quantum photonic computer is

Xanadu’s Borealis quantum computer1 [46], designed for solving

Gaussian Boson Sampling (GBS) problems. In this system, a

laser source, generated by an Optical Parametric Oscillator

(OPO), creates a train of identical light pulses, each constituting

a qumode. These qumodes are then injected into a sequence

of dynamically programmable loop-based interferometers: the

beam splitters and rotation can be programmed to selectively

route qumodes into optical delays lines so they can interfere

with later qumodes (this technique is called time-multiplexing).

Finally, the state of the system is measured on the photon

number basis, or Fock state, employing an array of Photon-

Number Resolving (PNR) detectors based on superconducting

transition edge sensors. The PNR detectors require cryogenic

1 https://www.xanadu.ai/products/borealis/

cooling. The development of CV quantum computing systems

is a very active current research area [47].

Equipped with the concepts of CV quantum gates and their

parameters and the expected value of the quadrature operator,

we can now develop a quantum neural network by following the

seminal work by Killoran et al. [45]. The basic building block of

a quantum neural network is the quantum neural network unit

(also called a quantum network layer in the literature) which

is akin to the classical neural network unit. Figure 1 shows the

basic components of a quantum neural unit. The first three

components of the quantumneural unit are a succession of a first

interferometer, a squeezing gate, and a second interferometer. It

is shown in Killoran et al. [45] that the result of these operations

is analogous to multiplying the phase space vector by the

neural network weights W (parameters of the interferometers

and squeezing gates). As in the classical neural networks, a

displacement gate mimics the addition of bias b. Finally, a Kerr

gate (or a cubic gate) introduces a non-linearity similar to the

activation function σ in classical neural networks.

|x〉 → |σ (Wx+ b)〉 . (6)

We can create a quantum neural network by stacking

multiple quantum neural units in a sequence. It is important

to note that for one qumode, each gate can be controlled

by a total of seven gate parameters (α,φ, r, θ , and κ) that

can be a real-value (φ, θ , and κ) or complex number

(α, r). Two real numbers can express the complex-valued

parameters in the Cartesian (with the real and imaginary

part) or polar (with amplitude and phase) formulations. The

quantum circuit parameters are further divided into passive and

active parameters: the beamsplitter angles and all gate phases

are passive parameters, while the displacement, squeezing,

and Kerr magnitude are active parameters. The training of

quantum neural networks aims at finding the parameter

values (α,φ, r, θ , and κ) for different qumodes and quantum
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FIGURE 2

A diagram representing the workflow in a quantum PINN. The collocation points values are the input of the quantum PINN and are encoded as a

displacement (only with the real part). The PINN surrogate/approximator network is expressed as a parametrized quantum circuit consisting of

several connected quantum neural network units. The PINN residual function is calculated on the CPU using automatic di�erentiation. Some

optimizers might require the usage of a quantum computer for the cost function evaluation.

neural units to minimize the PINN cost function, that is, the

PDE residual.

2.2. Quantum physics-informed neural
networks

Quantum PINNs extend the CV quantum neural

networks [29, 44]. Figure 2 shows an overview of the workflow

and resource usage of a quantum PINN for solving a 2D

Poisson equation and associated boundary conditions,

∇28̃(x, y) = b(x, y). The Poisson equation is an omnipresent

governing equation in scientific computing: electrostatic

and gravitational forces are, for instance, governed by the

Poisson equation.

As the first step of the quantum PINN, we encode

the collocation point as a real-valued displacement of the

vacuum state that is the lowest energy Gaussian state with no

displacement or squeezing in phase space. One of the significant

advantages of using CV quantum neural networks is the ease

of encoding the input (the collocation point) into the quantum

neural network without requiring normalization. After the

initial displacement encodes the collocation point, the qumode

feeds into the quantum PINN. A quantum PINN combines two

neural networks working together in succession:

• Quantum Surrogate Neural Network. The quantum

neural network surrogate is a CV quantum neural network

as described in Killoran et al. [45]. The quantum surrogate

neural network is a parametrized quantum circuit that

takes as input the collocation point coordinates x and

y, encoded as a displacement of the vacuum state, and

gives the approximated solution 8̃(x, y) as the expected

value of the quadrature operator. The solution of the

PDE is encoded in the parametrized quantum circuit and

accessible by running the surrogate quantum surrogate

neural network on the QPU. After the training process, we

run the quantum circuit giving a displaced vacuum state to

calculate the approximated solution.

• Residual Neural Network on CPU. In a matrix-free

fashion, quantum PINNs do not require storing and

encoding the problem matrix and the source vector.

Instead, the residual network encodes the governing

equations (in this case, the 2D Poisson equation). The

residual network is not trained, e.g., its weights are not

updated, and its only function is to provide the quantum

surrogate neural network with a loss function that is the

residual function for the domain inner points (ip):

|r|ip = |∇28̃(x, y)− b(x, y)|. (7)

In addition to satisfying the governing equation in

the domain inner points, the collocation points on the

boundaries must satisfy the problem boundary conditions.

For instance, if a problem requires the solution to

vanish at the boundaries then a specific residual function

for the boundary collocation points (bp) is specified as

|r|bp = |8̃(xB, yB)|. Traditionally, PINNs use automatic

differentiation to calculate the differential operators, such
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as the nabla operator in the Poisson equation. To perform

the automatic differentiation, we rely on the ideal analytical

model of the CV quantum gates, as presented in Section 2.1,

and the chain rule. In addition to automatic differentiation,

it is possible to perform numerical differentiation to

calculate the differential operators. However, this requires

introducing a computational grid (with the solutions

calculated only on discrete points) and a discretization of

the differential operators. The calculation of the residual

function occurs only on the CPU and does not involve

the QPU.

In the quantum PINN, the approximated solution of the

quantum neural network is used to calculate the residual

function. The absolute value of the residual function, including

the boundary conditions, constitutes the loss functionL. During

this work, we found that performing the operations in batches,

e.g., running in parallel with the quantum PINN with different

collocation points and averaging the loss function over the batch,

improves the quality of the results in terms of smoothness

of the solution and the computation performance of the

quantum simulator. For this reason, as cost function, we take

the average of cost functions evaluated at the different batch

collocation points:

L =

∑Bs
i |r|ip

Bs
+

∑Bs
i |r|bp

Bs
=

∑Bs
i |∇28̃(xi, yi)− b(xi, yi)|

Bs

+

∑Bs
i |8̃(xi,B, yi,B)|

Bs
, (8)

where Bs is the batch size, (xi, yi) are random inner collocation

points and (xi,B, yi,B) are boundary collocation points. To run

the quantum neural in a batch is equivalent to running it using

multiple qumodes. For instance, if the quantum neural network

uses only one qumode, e.g., a one-dimensional Poisson equation

problem, with a batch size of 32, we can run the full batch using

32 qumodes on the QPU.

The updates of the quantum surrogate neural network

parameters are determined by running a stochastic optimizer

that relies on the calculation of gradient (and Hessian for

second-order optimizers) and often on a learning rate, e.g., a step

size toward a minimum of a loss function. Stochastic optimizers

are adaptive if the learning rate change during the optimizer

iterations. Examples of adaptive optimizers are RMSprop,

Adam, Adam with Nesterov momentum (Nadam) [48], and

Adadelta [49]. If the calculation of the gradient uses automatic

differentiation, then the optimizer only runs on the CPU; in

the case of numerical differentiation, such as in the case of

Simultaneous Perturbation Stochastic Approximation (SPSA)

and L-BFGS-B, the optimizers use both CPU and QPU,

called for the function evaluation with the quantum surrogate

neural network.

2.3. Quantum neural network
implementation

For the design and development of the Quantum PINN, we

use Xanadu’s Strawberry Fields2 CV programming and

simulation framework [50, 51]. Different backends to simulate

the CV quantum computers are available in Strawberry Field,

including the fock, tf, and gaussian backends. The fock

and tf backends express the modes’ quantum state with the

Fock or particle basis. Arbitrary quantum states are expressed

up to a photon cutoff when using these backends. However, this

comes with an exponential increase in space complexity as a

function of the number of modes with the base of the exponent

scaling. This constrains the quantum simulator memory usage

that critically depends on the number of qumodes and the cutoff

number. On the other hand, the gaussian backend does

not suffer the problem of exponential scaling in the memory

required. However, only a subset of states can be represented.

In this work, we use the TensorFlow tf backend [50] that

provides the quantum computer simulator and an expressive

domain-specific language to formulate CV quantum neural

network calculations. The TensorFlow backend represents the

quantum state of the modes using the Fock or particle basis,

and it is subject to the memory constraints of representing

quantum states with the Fock or particle basis. The advantage

of using the TensorFlow backend is that the programmer can

use all existing Keras and TensorFlow automatic differentiation,

optimizers, and tensor operations.

While both the Strawberry Fields and

TensorFlow interfaces will be subject to changes in the future,

we show some snippet code to demonstrate the simplicity of

developing a quantum PINN with these programming

interfaces. The Strawberry Fields quantum computer

simulator is easily initialized with:

eng = sf.Engine(backend="tf", backend_options={"
cutoff_dim": 125, "batch_size":
n_collocation_points})

prog = sf.Program(1)

Note that we select the tf backend, a cutoff for representing

state equal to 125 and batch size equal to the number of

collocation points we use in the PINN. Our code only uses one

qumode set with sf.Program(1).

To express our CV quantum circuit, we use Blackbird,

which is the Assembly language built into Strawberry

Fields. The Strawberry Fields framework allows us

to express the quantum circuit, including the set of gates

for the implementation of the quantum neural network, in a

straightforward form by providing a sequence of gates acting on

a qumode q. The quantum circuit for encoding the collocation

point and executing a forward pass with a one-unit network

2 https://strawberryfields.ai/
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using one qumode (in this case, the beam-splitter reduces to a

rotation) is shown in the Listing of Python code below.

# QPINN Surrogate Circuit: Input + One Quantum Unit
/ Layer

with prog.context as q:
# Initially the qumode q is in the vacuum state
Dgate(x) | q # Encode the collocation point x
with a displacement on q
# One quantum neural unit to express the surrogate
network

Rgate(r1) | q # Beam-splitter 1: beam-splitter
reduces to rotation with one qumode
Sgate(sq_r1, sq_phi1) | q # Squeezeer
Rgate(r2) | q # Beam-splitter 2: beam-splitter
reduces to rotation with one qumode
Dgate(alpha1, phi1) | q # Displacement (similar
to adding bias in classical neural network)
Kgate(kappa1) | q # Kerr gate: non-linear
transformation (similar to activation function in
NN)

Note that in a simple setup of one quantum neural unit

and one qumode we have seven neural network weights (circuit

parameters): r1 for the first rotation, sqr_r1 and sqr_phi1

for the amplitude and phase of the squeezer, alpha1 and

sqr1 for the real and the imaginary parts of the displacement,

and finally k1 for the Kerr gate. In the case of a network

with one quantum neural unit and one qumode, the seven

network weights (quantum circuit parameters) are optimized

to minimize the PINN residual function. With one qumode, a

network with one, two, three, and four quantum neural units will

require to optimize seven, 14, 21, and 28 weights, respectively.

The snippet of Python code below shows the

implementation of executing the quantum circuit, using

the run() method, extracting the resulting state, and

obtaining the expected value of the quadrature operator

with quad_expectation() method. To calculate the

second-order derivative of the Poisson equation for the residual

function, we first identify the region of code defining the

operations that are differentiated using the TensorFlow 2

gradient taping and then perform the differentiation with the

gradient()method.

def QPINNmodel(...):
if eng.run_progs:

eng.reset()
x_in = tf.Variable(np.random.uniform(low=0.0, high
=Lx, size=n_collocation_points)) # Random points
with tf.GradientTape() as tape2:

with tf.GradientTape() as tape1:
result = eng.run(prog, args={"x": x_in,

"alpha1": alpha1_in, "phi1": phi1_in,
"r1": r1_in, "sq_r1": sq_r1_in, "sq_phi1

": sq_phi1_in, "r2": r2_in, "kappa1": kappa1_in})
state = result.state
mean, var = state.quad_expectation(0)

# calculate the second order derivative with
automatic differentiation

dudx = tape1.gradient(mean, x_in)
du2dx2 = tape2.gradient(dudx, x_in)
b = ... # define the known term
res = du2dx2 - b # define the residual
lossIP = tf.reduce_mean(tf.abs(res)) # take the
mean over the batch (IP = Inner points)

# now calculate the residual for the collocation
points on the boundaries
...
loss = lossIP + lossBC1 + lossBC2
return loss

...
# calculate one optimization step
with tf.GradientTape() as tape:

loss = QPINNmodel(...)
opt = tf.keras.optimizers.SGD(learning_rate=rate, name

="SGD") # pick the optimizer
gradients = tape.gradient(loss, [alpha1_in, phi1_in,

r1_in, sq_r1_in, sq_phi1_in,r2_in, kappa1_in])
opt.apply_gradients(zip(gradients, [alpha1_in,phi1_in,

r1_in, sq_r1_in, sq_phi1_in, r2_in,kappa1_in ]))
...

We can calculate the loss function using the result

from the differentiation and the value of the known

term at the collocation point. Note that the operation

is performed in parallel on all the collocation points, so

we take an average of the absolute value of the residual

with tf.reduce_mean(tf.abs()). To update the

quantum network parameters, we calculate the first-order

derivative of the loss function with respect to the quantum

circuit parameters and use these values to update them with

apply_gradients() operation. In this particular case, we

use the SGD Keras optimizer.

2.4. Experimental setup and accuracy
metrics

In this study, we rely on the Python Strawberry Fields

CV quantum simulator and a series of Python modules to

enable efficient vector calculations (on the CPU) and additional

optimizers not included in the TensorFlow/Keras framework.

We use Python 3.10.4, NumPy (1.22.4), and SciPy (1.8.1)

modules. We perform the experiments using the quantum

computer simulator provided by Strawberryfields framework,

version 0.22.0. In all the simulations, we use one quantummode

and a cutoff dimension of 125 for the Fock basis. We check

each measurement’s state vector’s norm to verify that quantum

computer simulation is accurate. Neural networks and quantum

computer simulators inherently comprise a level of stochasticity.

For this, we set random number generator seeds for TensorFlow

and NumPy.

As part of this study, we evaluate the usage of several

optimizers: RMSprop, Adam, Adam with Nesterov momentum

(Nadam) [48], Adadelta [49], Simultaneous Perturbation

Stochastic Approximation (SPSA) [52], and the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) [8]

optimizers. We use the TensorFlow 2.9.0 SGD, RMSprop,

Adam, Nadam, and Adadelta implementations and automatic

differentiation capabilities. For the SPSA optimizer, we use

its implementation, available at https://github.com/SimpleArt/

spsa that provides an adaptive learning rate. Finally, we use
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SciPy 1.8.1 L-BFGS-B optimizer in combination with the

TensorFlow SGD.

For the sake of simplicity, to evaluate the quantum PINN, we

use a simple one-dimensional Poisson’s problem with Dirichlet

boundary conditions fixed to zero: d28/dx2 = b(x). For testing

purposes, we choose kinds of sources (the b term in the Poisson

equation) and two domain sizes:

1. Quadratic: b(x) = x(x− 1), [ 0, 1 ],8(0) = 0,8(1) = 0. The

solution, in this case, is a parabola with the first derivative

equal to zero at the center of the domain, x = 0.5.

2. Sinusoidal: b(x) = sin(2x), [ 0, 2π], 8(0) = 0,8(2π) = 0.

This is a more challenging test case as the solution has four

points where the first derivative zeros.

An extension of quantum PINN to solve a two-dimensional

would require to use of two qumodes to initially encode the

x and y coordinates of the collocation points and having

interferometers (instead of the simple rotation gate in the

case of one qumode) in the quantum neural network to

entangle the two qumodes. In the two-dimensional, the residual

network encodes the Laplacian operator instead of the one-

dimensional derivative.

The baseline quantum neural network hyper-parameters

are the following: we set the learning rate equal to 0.01 and

0.0001 for the quadratic and sinusoidal source terms cases,

respectively. Optimizers’ performance highly depends on the

initial learning rate. We completed a grid search for setting

the learning rate for SGD as it used a fixed learning rate

during the training and was more susceptible to the exploding

and vanishing gradient problem. We perform 500 optimizer

iterations. The collocation points are drawn randomly within

the PDE domain at each iteration. The number of collocation

points per is equal to the batch size. As baseline runs, we choose

32 for the batch size. For the boundary conditions, we also

evaluate the cost functions at the boundaries with a number of

collocation points equal to batch size, e.g., 32 for the baseline

cases. The quantum circuit parameters are initialized with a

normal distribution centered at zero and a standard deviation of

0.05. The simulation of a QPINN implemented with Strawberry

Fields takes approximately 20 min on a modern laptop.

To characterize the accuracy of the quantum PINN, we

check the loss function values (the absolute value of the residual)

and the final error norm after the training. To evaluate the final

error, we compare the analytical solution and quantum PINN

FIGURE 3

Cost function value evolution and final errors for di�erent stochastic optimizers (SGD, RMSprop, Adam, Nadam, Adadelta, SPSA, and SGD +

L-BFGS-B). The SGD optimizer has the best performance for both test problems.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2022.1036711
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Markidis 10.3389/fams.2022.1036711

results using a uniform grid of 32 points (including the boundary

points) and take the Euclidean norm of the PINN approximated

solution minus the analytical solution on the 32 points.

3. Results

As the first step in our experiments, we investigate the

accuracy of different stochastic optimizers for the two one-

dimensional Poisson problems with the quadratic and sinusoidal

sources. Figure 3 shows the cost function value for the two test

problems on the left panels, while the right panels show the final

error after the training.

By analyzing the cost function value and final error, it is clear

that the SGD optimizer outperforms the adaptive (RMSprop,

Adam, Nadam, and Adadelta) and SPSA optimizers. In general,

we find that adaptive optimizers, such as Adam, tend to converge

to local minima in the training landscape without exiting. In the

case of the Adadelta optimizer, we do not observe convergence

to the solution. On the other hand, a noisier optimizer, such

as SGD, can escape the local minima and better explore the

optimization landscape. For instance, by analyzing the cost

function value for the SGD optimizer in the parabolic source

case (black line in the top left panel of Figure 3), we note that

the optimizer escapes a local minimum approximately after

300 iterations. The SPSA optimizer also allows us to provide

additional noise to hop between different convergence basins,

possibly achieving a similar behavior of SGD. However, we find

that SPSA does not perform better than SGD. While all the

optimizers perform relatively well with the parabolic case (they

all capture the parabolic nature of the solution), the adaptive

optimizers fail to recover the sinusoidal nature of the solution in

the second test case (not shown here) and leading to significant

final errors (see the bottom right panel in Figure 3).

In classical PINN, a second-order optimizer, L-BFGS-B,

is used after the Adam optimizer to speed up the PINN

convergence, thus requiring considerably fewer iterations [1, 9].

In classical PINN, L-BFGS-B is not used from the start of the

training, as it would quickly converge to a local minimum of the

training landscape without escaping it. As in the classical case,

we deploy an L-BFGS-B optimizer after 80 optimizer iterations.

While L-BFGS-B can reduce the cost function evaluation in both

cases, we note that the final error is approximately the same

for plain SGD optimizers and SGD combined with L-BFGS-B.

FIGURE 4

Comparison of function cost value (left panels) and final error (right panel) between quantum neural network using Automatic Di�erentiation

(AD) and a Finite Di�erence (FD) approximation for the calculation of derivatives in the PDE. In the FD case, we use an Adam optimizer (the SGD

solver shows high variability in the loss function) and constant uniform collocation point distribution.
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As additional tests, we also implemented a multi-step SGD and

L-BFGS-B, e.g., a succession of SGD and L-BFGS-B, without

achieving a final performance improvement. In classical fully-

connected PINNs, Adam and L-BFGS-B optimizers are widely

employed and successful for PINNs [1, 9], while in quantum

PINN SGD provides better performance than Adam and L-

BFGS-B. In quantum PINN, the optimization landscape is more

diverse, and its optimizer exploration is more challenging.

One of the main advantages of using PINNs is to leverage

Automatic Differentiation (AD) for approximating with high

accuracy a derivative at an arbitrary point in the domain.

This is a powerful and flexible mechanism for evaluating the

residual function in PINN. However, we note that it is possible

to calculate the residual function using a fixed number of

collocation points, e.g., the nodes of a uniform grid, and

approximate the derivative using a Finite Difference (FD)

approximation. A similar approach is used in classical fractional

PINN [53]. This method comes with the disadvantage of using

a fixed grid point, hurting the generalization of the solution to

different collocation points and expressing the calculations on

finite difference stencils.

We compare the cost function value evolution and final

error for PINN residual function, calculated with AD and FD in

Figure 4.When using the SGD optimizer and an FD formulation

for the residual function, we observed high variability of the cost

function values and the occurrence of two-three characteristic

cost function values, signaling that the quantum PINN is

hopping quickly between a small number of local minima. Using

an Adam optimizer, we have a smoother cost function value

evolution behavior. For this reason, for the FD case, we switch

to an Adam optimizer. From analyzing Figure 4, we see that

AD provides a lower final error than the quantum PINN using

AD for the residual function in the case of the quadratic source

case, despite the higher loss function values. However, FD fails

(significant final error) in capturing the sinusoidal nature of

the solution in the second test case. Because of the use of fixed

collocation points, the quantum PINN with FD cannot escape a

local minimum leading to a large final error.

As an additional investigation, we study the impact of the

quantum neural network depth (also the depth of the quantum

circuit) on the calculations by varying the number of quantum

neural network units in the surrogate network. The results of

these experiments in terms of the cost function values and final

error are presented in Figure 5.

Overall, we find that quantum PINNs with four and eight

quantum units have a comparable final error. In general,

FIGURE 5

Cost function value evolution and final errors for di�erent quantum neural network depths (two, four, and eight quantum neural units).
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FIGURE 6

Cost function value evolution and final errors for di�erent batch size (32, 64, and 168).

the network with eight quantum units exhibits a higher

variability in the cost function evolution (see the red lines

on the left panels of Figure 5). The neural network with

two quantum units is too shallow to express the solution at

higher accuracy. The interesting point is that in deep PINNs,

e.g., with eight quantum neural units, the L-BFGS-B leads to

significant error as it converges to local minima of the training

landscape with an incorrect solution. This is probably due

to switching too early to L-BFGS-B (after 85 SGD iterations)

without letting the optimizers increase the exploration of

the landscape.

Finally, we investigate the impact of the batch size per

iteration and show it in Figure 6. The increase in batch size leads

to a rise in the number of collocation points and associated cost

function evaluations per optimizer iterations.

While intuitively, we would expect a noticeable

improvement of the quantum PINN network when increasing

the batch size, by analyzing Figure 6, in practice, we do not note

a significant impact of the batch size on the performance of the

quantum PINN. This is except for the quadratic source case and

batch size equal to 128 (red line in the top left panel of Figure 6,

where the performance drops due to convergence to a local

minimum of the training landscape.

4. Discussion and conclusion

This work investigated the development of PINN for

solving differential equations on heterogeneous CPU-QPU

systems using a CV quantum computing approach. Quantum

PINN solvers are fundamentally variational quantum circuit

solvers [54] with an additional classical residual network to

provide a cost function for the optimization step. The evaluation

of the approximated solution is always carried out on the

quantum computer (in this work, a simulated one). Currently,

the calculation of the loss function via the residual neural

network is carried out on the CPU. While this study uses

a residual network on the CPU, the automatic differentiation

might likely be implemented on quantum hardware. Given

the gate formulation in Section 2.1, differential operators

might be automatically synthesized as additional gates to

express differentiation.

Overall, we found the programming interfaces conveniently

abstract the QPU and quantum hardware: the programmer does

not explicitly take care of the data movement or offloading

of the quantum circuit execution. As in the case of GPU,

the Strawberry Fields and TensorFlow frameworks provide a

convenient approach for the transparent usage of the QPU
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co-processors. In particular, the option of having a batch

operation abstracts the parallel operation of multiple parallel

cost function evaluations and measurements similarly to GPU.

The programmer needs a basic understanding of expressing

quantum circuits using Quantum Assembly languages, such

as Blackbird.

We showed that a CV quantum neural network could

provide a surrogate neural network for approximating a PDE

solution to a certain degree in two test cases, solving the one-

dimensional Poisson equation with quadratic and sinusoidal

source terms. Our results showed that the optimizer’s choice is

the most impactful on the PINN solver accuracy: SGD solvers

lead to a more accurate and stable solution than adaptive

optimizers. The depth of the quantum neural network affects the

PINN performance. In the two test cases, we found four layers

provided higher accuracy than a two-layer quantum network

and comparable performance to the eight-layer network. In the

two test cases, we did not find a dependency on batch size, e.g.,

the number of collocation points we need for the training.

The main priority for developing further quantum PINN

is to address their current low accuracy results. In all our

tests, in practice, reducing the error below a certain value or

increasing the convergence in a finite number of iterations

has been challenging. This is likely related to the barren

plateau problem [55], affecting all the hybrid quantum-

classical algorithms involving an optimization step: the classical

optimizer is stuck on a barren plateau of the training landscape

with an exponentially small probability of exiting it. The barren

plateau problem is fundamentally due to the geometry of

parametrized quantum circuits (our quantum surrogate neural

network) and training landscapes related to hybrid classical-

quantum algorithms [55, 56]. When comparing quantum

to classical PINN in our implementation, we found that

the optimizer exploration of the training landscape in the

case of quantum PINN is not as effective as in classical

PINNs, and adaptive optimizers are less performant than basic

SGD optimizers. Potential classical strategies to mitigate this

problem are the usage of a quantum ResNet or convolutional

surrogate quantum networks [45, 55], skip connections [57],

dropout techniques (in multi-qumodes neural networks) [58],

a structured initial guess, as used in quantum simulations, and

pre-training segment by segment [59].

This exploratory work has several limitations. First, this

work does not prove any quantum advantage but shows

challenges and opportunities for implementing PINNs on

quantum computing systems. The current problem (one-

dimensional Poisson equation) does not exploit quantum

entanglement. A PINN for solving higher-dimensional problems

or systems of equations would require the usage of entangled

qumodes. Second, for CV quantum computing, the QPINN

has only been tested on a quantum computer simulator, the

Strawberry Fields TensorFlow backend. To execute on future CV

quantum computers, additional work must be done to consider

the connectivity of the qumodes and hardware constraints,

e.g., availability and the performance of gates on the given

quantum systems [60]. Despite all these limitations, this work

further investigates quantum PINN, showing the difference

between classical and quantum PINNs and pinpointing current

challenges to be addressed for PINN solvers on hybrid QPU-

CPU systems.
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