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The observed induction time from an infection to an event of interest

is often double-interval-censored and moreover, often prevented from

being observed by the clearance of the infection (a competing risk).

Double-interval-censoring and the presence of competing risks complicate

the statistical analysis extremely and are therefore usually ignored in infectious

disease studies. Often, the times at which events are detected are used as a

proxy for the exact times and interpretation has to be made on the detected

induction time and not on the actual latent induction time. In this paper, we

first explain the concepts of double interval censoring and competing risks,

propose multiple (semi-) parametric models for this kind of data and derive a

formula for the corresponding likelihood function. We describe algorithms for

the maximization of the likelihood and provide code. The proposed models

vary in complexity. Therefore, results of simulation studies are presented to

illustrate the advantages and disadvantages of each model. The methodology

is illustrated by applying them tomalaria data where the interest lies in the time

from incident malaria infection to gametocyte initiation.

KEYWORDS

competing risks, double-interval-censoring, flexible hazards, gametocyte incidence,
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1. Introduction

In infectious disease research one is often interested in the association between

some biological variables and a time-to-event outcome, defined as the time from a

starting point or origin event until the event of interest. Some examples of such

outcomes are the time from birth to childhood pneumonia [1], the time from

hospitalization of COVID-19 patients to mortality [2], or the time from incident

malaria infection to initiation of gametocyte production [3, 4]. The analysis of

this type of data may vary in complexity due to, for instance, missing time-to-

event data by different types of censoring or the presence of competing risks.
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In particular, when the origin event is an initial infection and

one is interested in the induction time until another event

of interest, clearance or resolution of the initial infection is a

competing risk. The time from HIV infection to the onset AIDS

is a well known example [5]. While HIV infection may not

clear completely, due to treatment it can reach undetectable

levels thus mitigating the risk of AIDS onset. If individuals are

only routinely followed-up the data are often double-interval-

censored which gives an additional layer of complexity in the

analysis. In this paper we focus on methodology for analyzing

this kind of data. As an illustrative example, described in Section

4, we study the time from incident malaria infection to initiation

of the transmissible stages (gametocytes) that, for Plasmodium

falciparum, show delayed appearance. Individuals visit a clinic

at regular time points at which they are tested for malaria

infection and initiation of gametocyte production in case of an

infection. The aim is to estimate the hazards over the latent time

from infection to gametocyte production. In this example this

time-span is double-interval-censored and often missing due to

clearance of the infection (competing risk).

1.1. What are right- and
double-interval-censoring?

Right-censoring, the most commonly occurring type of

censoring, happens when the event of interest is not observed,

but is known to happen after a certain time-point, for instance

after the end of the study period. In most longitudinal infectious

disease studies individual data are routinely collected at regular

time points, like visits to a clinic. At these visits it is observed

whether an individual has already experienced the event or not.

Then, the exact time of an event is not observed, but rather

known to be occurred between two visits. This type of censoring

is known as interval-censoring. If the start time is interval-

censored as well, for instance if the origin event is an initial

infection, the data are double-interval-censored. A well-known

example of double-interval-censored data in literature is the

study of AIDS induction time, i.e., the time from HIV infection

to onset of AIDS. The time of HIV infection and the time of

onset of AIDS are both interval-censored [6–8]. Also in the

illustrating malaria data we have to deal with double-interval-

censoring: the time ofmalaria infection and the time of initiation

of gametocyte production are both interval-censored.

1.2. What are competing risks?

In survival analysis we often have to deal with a competing

event, i.e., an event that prevents the event of interest from being

observed [9]. This happens for many infectious diseases where

the origin event (infection) can be cleared before the event of

interest is observed. For instance, in themalaria data in which we

are interested in studying the time from infection to gametocyte

production, the infection might be cleared before gametocyte

initiation. Therefore, clearance of the infection can be treated

as a competing event. When competing events are present in

the data, they should be modeled as such using competing risks

models [9, 10]. For infections that cannot resolve, like HIV, death

could be seen as a competing event.

1.3. Aim of the paper

To the best of our knowledge there is no available

literature on regression models for modeling competing events

with double-interval-censored data, and no available software.

Adamic [11] looked at non-parametric modeling of double-

censored data with competing risks but did not consider

interval-censored data. Sankaran and Sreedevi [12] looked at a

model for double-censored data (also not considering interval-

censoring) with competing risks using an extension of the Gray

[13] approach. In this paper we aim to develop and compare

models for double-interval-censored competing risks data of

infectious diseases. We restrict ourselves to situation in which

one is interested in the time from infection to an event of interest

with clearance of the infection as a competing risk. We illustrate

the methodology through a simulation study and through a real-

world example in malaria transmission epidemiology. Through

the simulation study we also show how well these models

compare to standard competing risks models when the exact

times are observed (or right-censored) instead of interval-

censored. Through the malaria example, we show how these

models can be applied to infectious diseases data where the start

time, which is not known exactly, is defined by an infection that

can be cleared. We share available code for reproducing such

analyses.

1.4. Overview of the paper

In Section 2, we describe the methodology for analyzing

double-interval-censored data with competing events. We

propose different statistical models for the analysis. Thereafter,

in Section 3, we examine and compare the performance of

these models under various scenarios with a simulation study.

In Section 4, we look at the illustrative example using malaria

transmission data. We end the paper with a discussion and

conclusion in Section 5.

2. Methods

2.1. Short introduction to survival analysis

Let the survival time T be a non-negative continuous

random variable representing the time from an origin event
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until the time of an event of interest. The survival function

S(t) = P(T > t) is defined as the probability the event happens

after time t and equals the compliment of the cumulative

incidence at time t. It is either estimated non-parametrically

by the Kaplan-Meier estimator or through its relationship

with the hazard function λ, i.e., S(t) = exp
[

−3(t)
]

where

3(t) =
∫ t
0 λ(s)ds is the cumulative hazard function. The hazard

function is the instantaneous rate at which an individual

experiences an event of interest over time conditional that he/she

has remained event-free until that time, i.e.,

λ(t) = lim
dt→0

P(t ≤ T < t + dt|T ≥ t)

dt
.

In regression modeling, where we aim to study the

relationship between a covariate vector x and the survival time

T, the emphasis is on the hazard function. The most commonly

used regression model for time-to-event data is the Cox

proportional hazards (CPH)model [14]. In this semi-parametric

model the hazard function is defined as λ(t) = λ0(t) exp(β
′
x),

where β is the vector of unknown regression parameters and

λ0 the unknown baseline hazard function. The model assumes

that covariate effects β are constant over time [i.e., proportional

hazards (PH)]. Flexible models that address violations in the

proportional hazards assumption with applications to infectious

diseases have been discussed in greater detail [15, 16]. Many

other extensions of the CPH model have been proposed to

accommodate complexities in the data generating mechanisms

and/or the data collection limitations such as left-truncation,

left-censoring, interval-censoring, competing risks, recurrent

events, etc. [17–21], but in none of them the combination of

double-interval-censoring and competing risks, which regularly

is the case in infectious disease data, is studied.

2.2. Specification of the baseline hazard
function λ0(t)

The baseline hazard function can be specified through

a parametric distribution for the survival time T. The

exponential and the Weibull distributions are common (and

easily implemented) specifications. An exponential distribution

assumes that the baseline hazard rate is constant over

time, while a Weibull distribution implies a monotonically

increasing/decreasing baseline hazard [22]. The parametric

forms of these distributions, while useful, may be too simple

for the true baseline hazards which may lead to biases in

the estimated covariate effects. A spline based model for the

baseline hazards gives much more flexibility, so much so that

these models are often considered non-parametric [23]. Flexible

models using penalized splines are gaining momentum in

advanced survival analysis models [15, 16, 24].

For the exponential model the baseline hazards is specified

as a constant, i.e.,

λ0(t) = λ

where λ > 0. Its cumulative baseline hazard equals 30(t) = λt.

The Weibull specification is

λ0(t) = ρλρ tρ−1

where λ, ρ > 0. Note, when ρ = 1 it reduces to an

exponential baseline hazard. The cumulative baseline hazard is

30(t) = (λt)ρ . The B-spline baseline hazard function is given

by a linear combination of m B-spline basis functions and a set

of corresponding coefficients, i.e.,

λ0(t) =
m

∑

j=1

θjbj(t)

where θj > 0. The cumulative baseline hazard can be specified

using higher order B-splines basis functions as an approximation

to the integrated B-splines basis functions [25] such that

30(t) =
m

∑

j=1

θjBj(t)

where Bj are integrated B-splines basis functions. According

to Wood [26] and other authors [15, 16], m = 10 is usually

sufficient for good estimation.

2.3. A competing risks model

Competing events are events that prevent the event of

interest from being observed. They are easily modeled in a

framework that redefines the survival function as the probability

of not experiencing either the event of interest or the competing

event before time t, and defining cumulative incidences for

each event as the measure of interest (the probability of

experiencing each event over time). Ignoring a competing event

(i.e., by considering the time that competing event occurs as

right-censored) results in inflated cumulative incidences for

the event of interest [9, 10] as well as a missing piece of

information in the transmission epidemiology. We use the

multi-state approach for modeling competing risks [27]. Here

we model the effects of covariates on the cause-specific hazard

rates.

As shown in Figure 1, we define two hazard rates: one for

the time from infection to the event of interest, λ1(t|x1) =

λ01(t) exp(β
′
1x1), and one for the time from infection to its

clearance (the competing risk), λ2(t|x2) = λ02(t) exp(β
′
2x2).

Here λ01 and λ02 are the baseline hazard functions for

both events. For each event k, k = 1, 2, xk is a vector

of covariates and βk is a vector of regression coefficients
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FIGURE 1

Competing risks model for two events, a main event of interest

from an initial infection and clearance/resolution of the initial

infection without the main event of interest.

to be estimated. The cumulative hazard rates for event k

is

3k(t|xk) = 30k(t) exp(β
′
kxk) with 30k(t) =

∫ t

0
λ0k(u) du.

The marginal survival probability (probability of not

experiencing either event before time t) is given by

S(t|x1, x2) = exp(−31(t|x1)− 32(t|x2))

and the cumulative incidence probabilities up to time t for event

k is given by

Pk(t|x1, x2) =

∫ t

0
S(u− |x1, x2)λk(u|xk) du.

2.4. Interval-censoring and
double-interval-censoring

As mentioned before, a survival time is interval-censored

if the exact time is not observed, but known to lie within

an interval. In many applications researchers ignore interval-

censoring in the data by using the midpoint or the right-end

point of the interval as the exact observed event time. This

usually leads to biased estimates of the regression parameters

and of the standard error [28–30]. In the case of double-interval-

censoring these issues may be more pronounced.

In the likelihood the interval-censoring is dealt with by

integrating over the interval in which the event occurred. If the

time of the origin event is observed and the time from this origin

event to the event of interest is known to fall in an interval

(L,R) its leverage to the likelihood function is
∫ R
L f (s|x) ds =

S(L|x)−S(R|x) where f (t|x) is the conditional density of T. Then

the full likelihood for n individuals is given by the product

L(β|x) =
n

∏

i=1

∫ Ri

Li

f (s|xi) ds

=

n
∏

i=1

S(Li|xi)− S(Ri|xi).

where i indicates the individual.

Parameters are estimated by maximizing the log-likelihood

function. This is straightforward when the baseline hazard

function is specified. Flexible models for dealing with interval-

censoring using splines for baseline hazards specification are

becoming increasingly popular [24, 31, 32].

In this paper, we consider double-interval-censored data.

To illustrate different scenarios of the time-to-event data, the

longitudinal follow-up data in calendar time of three individuals

is presented in the upper panel of Figure 2. Participant 1 has an

interval-censored infection time (infection occurred between L0

and R0) and is right-censored for the event of interest at time

L1—we do not observe an event time for this participant but we

know that it had not happened before the time of the last follow-

up visit at L1. Participant 2 has an interval-censored infection

time (infection happened between L0 and R0) and time of the

event of interest (happened between L1 and R1), and participant

3 has an interval-censored infection time and event of interest

time and the observation intervals overlap completely (both

events occurred between L0 = L1 and R0 = R1). In general, L0 is

the date of the last visit before infection, R0 is the date of the visit

when the infection was confirmed to have happened before, L1
is either the date of the last visit prior to the event of interest (or

clearance of the infection) or the date of last follow-up when no

event or clearance was observed (right-censored), and R1 is the

date of the visit at which it is being confirmed that the event have

occurred before. For right censored data R1 is not observed. The

data in the upper panel of Figure 2 are in calendar time. For the

analysis of the data we transform these calendar data to follow-

up data by defining a starting point at which the follow-up time

starts. The starting point t0 : = 0 is defined as the last observed

moment infection had not yet taken place (so L0 in the upper

panel). By this transformation new intervals for the events are

defined as can be seen in the middle panel of Figure 2; (t0, t1) for

the infection time and (t2, t3) for the event of interest. For the

third scenario where the two intervals overlap, we specifically

note that t2 = t0 : = 0 and t3 = t1. For right censored

data t3 = ∞. In the middle panel of Figure 2, we denote the

unobserved times for infection and the event of interest by

W and U. By definition W ∈ (t0, t1), U ∈ (t2, t3) and the

unobserved survival time is T = U−W. The admissible survival

times (T) for the three participants given the intervals (t0, t1) and

(t2, t3) are shown in the lower panel of Figure 2. In some studies,

a simple transformation of double-interval-censored data into

single interval-censored data have been used, i.e., the time from

(L0,R0) to (L1,R1) is converted to (L1−R0,R1−L0). De Gruttola
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FIGURE 2

Timeline. Conversion of calendar time data into follow-up time intervals for three participants from the malaria cohort and the possible survival

times (T) representing the time from the initial infection to the event of interest.

and Lagakos [7] argues that this is not appropriate and is only

valid when the density function for the time to the origin event

is uniform in chronological time. In our likelihood formulation

described in Section 2.5, we assume that the infection time is

uniformly distributed within the interval (L0,R0) and make no

assumptions about the density function for the time to the origin

event prior to L0.

A few methods that take double-interval-censoring into

account in their analysis have been proposed: these can be

described as non-parametric approaches [7], proportional

hazards approaches [33, 34], and multiple imputation

approaches [35] among others. Kim et al. [33] proposed a

discrete time proportional hazards model in an extension of

the Turnbull [36] estimator. In their work, Sun et al. [34]

estimated the effects of covariates in a proportional hazards

framework using estimating equations. However, they focused

on interval-censored start times with an exactly observed or

right-censored event-times. In the presence of a few interval-

censored event times, they assumed the time exactly equal to the

right-boundary of the interval and performed some sensitivity

analysis. Sun [6] gives an overview of some of these approaches

and discuss issues related to them with a focus on left truncation

and also proportional hazards violations. In this paper, we look

at modeling the hazard rates in a regression modeling approach

for continuous time-to-event data. The baseline hazards are

specified by well-known parametric distributions or more

flexible shapes using B-splines. Estimation involves maximizing

the full-likelihood or penalized likelihood when using splines.

This is the topic of the next subsection.

2.5. Likelihood function and estimation

For individual i we observe the data �i = (t0i =

0, t1i, t2i, t3i, δ1i, δ2i,αi, x1, x2), with t0i, t1i, t2i, t3i as defined in

the previous subsection. The functions δ1i and δ2i indicate

whether the event of interest or the competing event (clearance

of the infection) has occurred: (δ1i, δ2i) = (1, 0) for the
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event of interest, (δ1i, δ2i) = (0, 1) for the competing event,

(δ1i, δ2i) = (0, 0) none occurred (the data are right-censored)

and (δ1i, δ2i) = (1, 1) is not possible by definition. For right-

censored data t3i : = ∞. We also define αi = I[(t0i, t1i) =

(t2i, t3i)] to indicate whether or not the event of interest was

observed in the same interval as the infection. We assume that

the observation intervals are sufficiently narrow to exclude the

case in which infection and its clearance happen in the same

interval, so that all infections are observed. Not making this

assumption would complicate the methodology dramatically,

as then latent infections could happen in any interval. In the

malaria example the assumption is likely satisfied. The vectors

x1 and x2 are observed covariates that might be associated with

the time to the event of interest and to the competing event.

We assume that the times of the visits in calendar

time (observation times of the individuals) are statistically

independent of the actual unobserved event timesU andW (and

of the competing event). By this assumption, it is reasonable to

assume that time to infectionW within the interval (t0i = 0, t1i)

(given t1i) follows a uniform distribution at this interval with the

density f (w) = 1
t1i
.

In the following, we derive the likelihood function for

the observed data of individual i (conditional all observation

(visit times)). First, we do this for the four possible scenario’s

indicated by δ1i, δ2i, and αi. The full likelihood for individual i

can be found by combining these four terms.

Right censored, no overlap (δ1i = 0, δ2i = 0,αi = 0)

Li =

(

1

t1i

) ∫ t1i

0
exp(−31(t2i − w)− 32(t2i − w)) dw,

Competing event, no overlap (δ1i = 0, δ2i = 1,αi = 0)

Li=

(

1

t1i

)∫ t1i

0

∫ t3i

t2i

exp(−31(u−w)−32(u−w))λ2(u−w) du dw,

Event of interest, no overlap (δ1i = 1, δ2i = 0,αi = 0)

Li=

(

1

t1i

)∫ t1i

0

∫ t3i

t2i

exp(−31(u−w)−32(u−w))λ1(u−w) du dw,

Event of interest, with overlap (δ1i = 1, δ2i = 0,αi = 1)

Li=

(

1

t1i

)∫ t1i

0

∫ t1i

w
exp(−31(u−w)−32(u−w))λ1(u−w) du dw.

The resulting log-likelihood is thus

l(φ|�i) = (1− δ1i)(1− δ2i)(1− αi)

log

(∫ t1i

0
exp(−31(t2i − w)− 32(t2i − w)) dw

)

+(1− δ1i)δ2i(1− αi)

log

(∫ t1i

0

∫ t3i

t2i

exp(−31(u− w)− 32(u− w))λ2(u− w) du dw

)

+δ1i(1− δ2i)(1− αi)

log

(∫ t1i

0

∫ t3i

t2i

exp(−31(u− w)− 32(u− w))λ1(u− w) du dw

)

+δ1i(1− δ2i)αi

log

(∫ t1i

0

∫ t1i

w
exp(−31(u− w)− 32(u− w))λ1(u− w) du dw

)

− log(t1i), (1)

where φ is a vector of the baseline parameters for either

the exponential, Weibull, or B-spline formulations that are

to be estimated, and the vector of regression coefficients

corresponding to covariates sets x1 and x2. By independence

of the observations of the individuals in the data, the full log

likelihood function for all data equals the sum of the individual

log likelihood functions: l(φ|�) =
∑

i l(φ|�i) for �= ∪i�i.

For the exponential model the integrals in Equation (1)

can be computed explicitly. For the Weibull and B-spline

regression models this is not the case and approximations

using quadrature methods could be used. More specific, for the

Weibull model we used more precise quadrature methods, i.e.,

Gauss-Konrad quadrature [37] and for the B-splines model we

used a simpler Simpson’s approximation. The latter allowed for

easier computation of the gradient and the information matrix

which is needed for the algorithm to choose the penalty factor in

the penalized likelihood shown in Equation (2).

For the exponential and Weibull hazards models, estimates

for the parameters can be found by standard maximum

likelihood estimation procedures. To make use of parallel

computing we made use of the R package optimParallel

[38] to optimize the log-likelihood using the limited-memory

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [39].

This is an approximation of the BFGS that uses less computer

memory and allows bound constraints. The parallel version,

is much faster if the log-likelihood takes more than 0.1 s to

compute.

For the B-splines baseline hazards formulation we add a

penalty to the log likelihood for the spline parameters with a

smoothing parameter that controls the amount of smoothing

[32]. The penalized log-likelihood is given by

lp(θ ,β , γ |�) = l(θ ,β|�)−
1

2
θTSγ θ , (2)

where S is a block diagonal matrix with blocks γkSk for events

k = 1, 2 and zeros elsewhere and γ = (γ1, γ2) a vector of

penalty factors. Matrix Sk is the integrated second derivative of
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the B-spline basis function. There are different ways to select

the smoothing/penalty factors. Due to the complexity of the

likelihood and the presence of multiple smoothing parameters

we used the approach adapted by Machado et al. [32]. They

modeled multi-sate interval-censored data and used a two-step

algorithm, following work from Marra et al. [40] for estimation

as a whole. First, for a given set of smoothing factors they

estimated the spline parameters and covariate effects. In the

second step, they used the parameter and covariate effects

estimates to estimate the smoothing parameter that minimizes

the unbiased risk estimator [UBRE, [41]] which can be seen as

an approximation to AIC [42]. When the difference between the

parameter estimates in two consecutive iterations are less than

a certain threshold (say 1 × 10−4) convergence is reached. For

mathematical details of the UBRE formulation, see Machado

et al. [32]. We adapted this approach for faster computation

time such that in step 1 the parameters are estimated given a set

of smoothing parameters using the parallel BFGS optimization

described earlier. Furthermore, we estimated the information

matrix required for the UBRE optimization via the empirical

Fisher’s information matrix.

To obtain the standard errors of the covariate effects

an approximation of the Fisher’s information matrix can

be obtained through numerical methods. Point-wise 95%

confidence intervals of the hazard and cumulative incidence

estimates can be obtained by a bootstrap procedure where

the analysis can be re-run on many datasets selected with

replacement from the original data. The 2.5th and 97.5th

percentiles can then be used as confidence interval limits.

3. Simulation study

3.1. Aim

In infectious disease applications baseline hazards are often

expected to be unimodal, i.e., the hazards steadily increase to

a certain point and decreases thereafter. An exponential or

Weibull hazard may be to simple. In these cases a more flexible

hazard should be chosen. In this simulation study, motivated by

the malaria example described in Section 4, where much fewer

incident infections result in the event of interest compared with

the clearance event, we assume a “flatter” baseline hazard curve

for the event of interest and one with a more defined peak for

the clearance event. If a baseline hazard function is expected to

be approximately flat, an exponential or a Weibull model may

perform just as well.

With this simulation study we aim to evaluate

(1) the impacts of mis-specifying the baseline hazard function on

the estimate of the covariate effect β = log(HR);

(2) the impacts of fitting too complex models when an

exponential is sufficient; and

FIGURE 3

Baseline hazards for the event of interest (blue) and clearance of

the initial infection without the event of interest (green) with the

dashed vertical lines indicating the time associated with the

peak hazard for the event of interest and clearance, respectively.

(3) the models performances compared with the gold-standard

CPH model when using exact survival times.

3.2. Simulation scenarios and data
generating mechanism

3.2.1. Baseline distributions and exact time
competing risks data

For every individual in the simulation study we simulate the

time from infection to the event of interest and to the competing

risk (the clearance of the infection) from a generalized log-

logistic PH model [43]. The distribution for the competing risk

is shifted 28 days to ensure that the infection and its clearance

do not happen in the same interval (in the simulation study we

work with 28 day intervals). So, the baseline hazards functions

for the time to the event of interest and the competing event are

defined as:

λ01(t) =
p1a

p1
1 t(p1−1)

1+ (l1t)p1
, (3)

λ02(t) =







0 t ≤ 28

p2a
p2
2 (t−28)(p2−1)

1+(l2(t−28))p2
otherwise.

(4)

We took parameter values a1 = 0.014, p1 = 1.6, l1 = 0.026,

a2 = 0.04, p2 = 3, and l2 = 0.05 such that the peak hazard rate

of 0.008 at day 28 for the event of interest is much lower than the

peak hazard rate for the clearance event (0.041 at day 54; shown

in Figure 3).

3.2.2. Simulation scenarios

We simulated data under five different scenarios with a

binary covariate (simulated for each individual from a Bernoulli

distribution with probability 0.5) defined with effects β1 = 0.1

and β2 = −0.3 on the hazards of the event of interest and the
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competing event, respectively. The simulation scenarios varied

in terms of the interval width during follow-up, the distribution

of the start time in the origin event interval, the sample size and

the maximum time of follow-up.

1. n = 200, 28 day intervals, a maximum follow-up time of 200

days and origin event times that are uniformly distributed in

the origin interval.

2. n = 200, 14 day intervals, a maximum follow-up time of 200

days and origin event times that are uniformly distributed in

the origin interval.

3. n = 200, 28 day intervals, a maximum follow-up time of 200

days and origin event times that are not uniformly distributed

in the origin interval.

4. n = 100, 28 day intervals, a maximum follow-up time of 200

days and origin event times that are uniformly distributed in

the origin interval.

5. n = 200, 28 day intervals, a maximum follow-up time of 82

days and origin event times that are uniformly distributed in

the origin interval.

3.2.3. Algorithm for simulating
double-interval-censored data

We first used the algorithm illustrated by Beyersmann

[44] to simulate exact time competing risks data (described

in the Supplementary material) with one binary covariate xi

simulated for each individual from a Bernoulli distribution with

probability 0.5 and time ti as the exact survival time (i.e., time

to either the event of interest (event 1), competing event (event

2), or right-censored time). Here event/censoring indicators

δ1i and δ2i were then generated (δ1i and δ2i were defined in

Section 2.5).

To transform the simulated data into double-interval-

censored data, we utilized the following steps. For

individual i

1. We defined t0i : = 0.

2. We defined a sequence of regular follow-up visit times as

v0i = 0, vji = jz + eji for j = 1, . . . ,m, where z is a fixed

width of the follow-up visits, with eji ∼ N(0, 3) some noise

and m is large enough to include all possible survival times.

This results in intervals of (0, v1i), (v1i, v2i), . . . , (vm−1,i, vmi)

for which the origin and events can occur.

3. The right boundary of the origin event was defined as

t1i = v1i.

4. We simulated the exact origin time wi (see Figure 2) from a

Uniform distribution between (0, v1i].

5. The exact event time (or right-censoring time) was calculated

as ui = wi + ti.

6. For δ1i = 1 or δ2i = 1, the event interval was defined

as (t2i, t3i) = (vj−1,i, vji) if ui ⊂ (vj−1,i, vji]. For δ1i = 0

and δ2i = 0, the event interval was defined as (t2i, t3i) =

(vj−1,i,∞) if ui ⊂ (vj−1,i, vji).

For simulating scenario 3 in Section 3.2.2, we simulated data

such that the origin timewi was not uniformly distributed within

(0, v1i). Here we used an absolute value function of the normal

distribution to get some skewness.

3.3. Analysis and performance measures

For every scenario we simulated N = 500 datasets and

fitted three models based on each dataset: (1) an exponential PH

model; (2) a Weibull PH model; and (3) a B-spline PH model

withm1 = m2 = 10 basis functions for the event of interest and

the competing/clearance event. Convergence in the algorithm

is reached when the tolerance (i.e., the difference in parameter

estimates between two consecutive iterations) is < 1 × 10−4 or

after a maximum of 30 iterations. Moreover, the data with the

exact time-to-event (non-interval-censored) data are analyzed

with a CPH model. The estimates found from the latter analyses

are seen as the best possible results and used for comparison.

We will simply refer to these models as the exponential, Weibull,

spline, and CPH model.

For all scenarios the performance of each model across

simulations are summarized in Table 1. The table gives the

bias (β̂ − β), the empirical standard error (EMPSE, which is

the standard deviation of the estimated β ’s across the different

simulations), the model averaged standard errors (MODSE, the

average of the SE’s across simulations), and the % coverage (cov.)

of the true β in the 95% confidence intervals for β . For the

estimates of the bias, EMPSE, MODSE, and coverage Monte

Carlo standard errors are included in Supplementary Table 1. To

investigate sensitivity to the number of basis functions mk, an

additional summary was made for the performance measures

(with Monte Carlo standard errors in brackets) of a B-spline

model with m1 = m2 = 20 basis functions for scenario 1 (see

Supplementary Table 2).

Table 2 shows the estimated mean square error for all

estimates from the double-interval-censored model relative

to the estimates from the CPH model based on the exact

time-to-event data across all simulation scenarios. That is,

cMSE = N−1 ∑N
j=1(β̂j,cph − β̂j,model)

2 for β̂j,cph and β̂j,model

the estimates in the jth iteration.

Two scatter plots are used to summarize the association

between the double-interval-censored models and the CPH

model in terms of the estimated coefficients (Figure 4)

and the estimated standard errors of the coefficients

(Figure 5) across simulations for scenario 1. The blue line

in each plot is the least squared line and the red line is the

y = x line for one-to-one association between the CPH

model estimates and the double-interval-censored model

estimates. Figures for scenarios 2–5 are included in the

Supplementary Figures 1–8. Figure 6 shows the estimated

baseline hazards (Figures 6A,C) and cumulative incidence

estimates (Figures 6B,D) from the double-interval-censored
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TABLE 1 Performance measures for all simulation scenarios.

β1 = 0.1 β2 = −0.3

model bias EMPSE MODSE Cov % bias EMPSE MODSE Cov %

Scenario 1

CPH −0.0126 0.2325 0.2342 95.6 −0.0074 0.1821 0.1854 96.2

Exp. −0.0399 0.2363 0.2346 94.6 0.0789 0.1340 0.1858 98.0

Wei. −0.0415 0.2415 0.2353 94.2 −0.0720 0.2492 0.1928 86.2

Spline −0.0162 0.2363 0.2372 95.0 −0.0082 0.1927 0.1935 94.8

Scenario 2

CPH −0.0126 0.2325 0.2342 95.6 −0.0074 0.1821 0.1854 96.2

Exp. −0.0353 0.2347 0.2332 94.6 0.0835 0.1295 0.1840 98.4

Wei. −0.0450 0.2408 0.2341 93.6 −0.0890 0.2595 0.1882 84.3

Spline −0.0145 0.2342 0.2346 95.4 −0.0071 0.1849 0.1879 95.8

Scenario 3

CPH −0.0126 0.2325 0.2342 95.6 −0.0074 0.1821 0.1854 96.2

Exp. −0.0237 0.2290 0.2342 96.2 0.0949 0.1270 0.1853 98.2

Wei. −0.0560 0.2476 0.2359 93.4 −0.0904 0.2706 0.1941 82.2

Spline −0.0124 0.2367 0.2359 95.2 −0.0189 0.2044 0.1947 94.6

Scenario 4

CPH −0.0186 0.3403 0.3356 95.2 −0.0030 0.2590 0.2653 95.4

Exp. −0.0410 0.3421 0.3348 94.0 0.0812 0.1995 0.2640 98.4

Wei. −0.0470 0.3520 0.3367 93.8 −0.0804 0.3684 0.2779 86.0

Spline −0.0196 0.3460 0.3379 94.6 −0.0121 0.2885 0.2786 95.2

Scenario 5

CPH 0.0091 0.2441 0.2440 95.0 0.0054 0.2059 0.2014 95.4

Exp. 0.0113 0.2411 0.2458 95.4 0.0870 0.1530 0.2036 98.0

Wei. 0.0104 0.2478 0.2466 95.0 −0.0111 0.2551 0.2431 94.8

Spline 0.0134 0.2525 0.2490 94.6 0.0270 0.2580 0.2372 92.8

TABLE 2 Mean square error relative to CPH model estimates.

β1 = 0.1 β2 = −0.3

Scenario Exp. Wei. Spline Exp. Wei. Spline

1 0.0027 0.0028 0.0010 0.0150 0.0181 0.0035

2 0.0019 0.0027 0.0004 0.0157 0.0220 0.0012

3 0.0017 0.0049 0.0008 0.0192 0.0262 0.0043

4 0.0061 0.0060 0.0028 0.0228 0.0390 0.0095

5 0.0015 0.0016 0.0026 0.0157 0.0164 0.0168

spline model across simulations for the event of interest

(Figures 6A,B) and for the competing event/clearance

(Figures 6C,D) in gray relative to the true baseline hazards

and cumulative incidences (solid black lines). Figures for

scenarios 2–5 are included in the Supplementary Figures 9–12.

An additional plot was made for the hazards and cumulative

incidence estimates for the B-spline model with mk = 20

basis functions for each event k = 1, 2 for scenario 1 (see

Supplementary Figure 13).

3.3.1. Results

For scenarios 1–3, on average, 2.1% of observations across

the simulated data was right-censored, 37.8% had experienced

the event of interest, and 60.1% had experienced the competing

event (i.e., clearance) first. Scenario 4 had an approximately

equivalent event proportions. Induced by a shorter follow-

up time in scenario 5 there was, on average, 14.8% censored

observations, 34.6% with the event of interest, and 50.6% with

the competing event/clearance.
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FIGURE 4

Scenario 1: Correlation with CPH estimates. Scatterplots show the correlation between estimates from the exponential (A,D), Weibull (B,E), and

spline models (C,F) for the event of interest (A–C) and the competing/clearance event (D–F) with estimates from the CPH model using exact

time data. The blue line is the simple regression line and the red line is the identity line.

In general, across simulation scenarios, there was a little

more bias relative to the true effect (β1 = 0.1) for event

of interest compared with the competing event with larger

standard errors. The larger standard errors could be attributed

to the smaller number of events (a third of the data) for the

first event compared with the competing event (more than

half the data). The bias is smaller for the spline and CPH

models compared with the exponential andWeibull models (see

Table 1). The additional bias for the exponential and Weibull

models could be explained by the hazard for the event of interest

not being entirely flat and not monotonic. Alternatively it could

be because of the bias from the mis-specification of the hazards

in the competing event. The contribution to the likelihood for

the event of interest is a function of the hazard function λ1(t|x)

and survival function S(t) = exp[−31(t|x)−32(t|x)]. If λ2(t|x)

is misspecified, it will also have consequences on the likelihood

contribution of the first event.

The exponential model tends to underestimate the

magnitude of effects (Table 1), much more so for the competing-

event with the unimodal hazard than with the even-of-interest

with the flatter hazard. This is also the case when comparing

individual simulation estimates from the exponential model

with the CPH model using exact times (Figure 4). The standard

errors closely align with those of the CPH model (Figure 5).

For the competing event (with a stronger peak), the empirical

standard errors however are much smaller for the model

averaged standard errors in all scenarios (Table 1). This could

be indicative of an under-fitting model for the competing event.

For the Weibull model from Table 1 it can be seen that the

estimated effects are underestimated for the event of interest

and show large overestimation for the competing event for all

scenarios except for scenario 5 (more right-censoring). While

the empirical standard errors and model averaged standard

errors do not differ much for the event of interest, we see

much larger empirical standard errors for the competing event

(with the exception of scenario 5), and lower coverage of the

95% confidence intervals. Except for scenario 5, the Weibull

estimates show the largest deviation from the CPH model

estimates (Table 2). These findings are confirmed visually for

scenarios 1 in Figures 4, 5, and for scenarios 1–4 in the

Supplementary material. More right-censoring induced by a

shorter follow-up time allows for a more monotonic shape
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FIGURE 5

Scenario 1: Correlation with CPH standard errors. Scatterplots show the correlation between standard error estimates from the exponential

(A,D), Weibull (B,E), and spline models (C,F) for the event of interest (A–C) and the competing/clearance event (D–F) with standard error

estimates from the CPH model using exact time data. The blue line is the simple regression line and the red line is the identity line.

of the hazards to be observed (missing a distinct peak, see

Supplementary Figure 12), and could be an explanation of the

good performance for the Weibull model under higher right-

censoring in this scenario.

Overall, estimated coefficients from the spline model are

relatively unbiased (Table 1). The estimated coefficients and

standard errors correspond nearly perfectly with the estimates

from the CPH model (Figures 4, 5). This is only slightly worse

for smaller sample sizes and if the true start times are not

uniformly distributed within the start interval, i.e., scenarios 2

and 3. For these scenarios the estimated coefficients themselves

however were closer to estimates from the CPH model than the

exponential or Weibull models (Table 2).

Studies with smaller sample sizes occur frequently when

the prevalence of the infection is low. To determine whether a

stricter convergence criteria can improve the fit of the spline

model for scenario 4, we re-ran the model with a tolerance of

< 1 × 10−5 and a maximum of 50 iterations for convergence.

The bias in the coefficient for the competing event reduced

from −0.0121 (Table 1) to −0.0081 (Supplementary Table 2)

with slightly lower standard errors and slightly higher coverage.

The difference was negligible and even more so for the event of

interest. We did not repeat this for all scenarios since the stricter

convergence criteria makes the computation time of the analysis

of the simulated data much longer.

For scenario 2 (shorter follow-up intervals of 14 days)

compared with scenario 1 (28 day intervals)) the spline model

improves but the exponential and Weibull models perform

slightly worse. This may be because there is less uncertainty in

the data and thus stronger support that the baseline hazards are

misspecified.

Figure 6 middle panel shows that the spline model for

double-interval-censoring produces reasonable estimates of the

hazard rates. It is also seen that there are higher hazard rates at

the tail ends for some of the simulated data-sets. This is not of

too much concern as the hazards are conditional probabilities

and this means that the few individuals that “survived” until

that time experienced the event of interest late. The peak hazard

rate is a little shifted toward the right. This was also observed

by Machado et al. [32] and was explained by the placement of

the knots (we used automatic placement based on percentiles).

In Supplementary Figure 13, we use mk = 20, k = 1, 2 basis
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FIGURE 6

Scenario 1: Baseline hazards and cumulative incidences across simulations. The black line shows the true hazards (A,C) and true cumulative

incidences (B,D) for the event of interest (A,B) and competing/clearance event (C,D). The gray curves show estimates from our spline based

model applied on the doubly-interval-censored data for all 500 simulated datasets.

functions andwe see amuch better estimation of the peak hazard

but more “wiggliness.” The estimated delayed peak in our spline

model with mk = 10 has a negligible effect on the cumulative

incidence and certainly not in the estimated covariate effects.

In summary, to address the aims of the simulation study:

(1) Mis-specifying the baseline hazards was investigated by using

an exponential or Weibull model when the hazards (for

the competing event) was unimodal. The exponential model

underestimated the magnitude of the covariate effect while

the Weibull model overstated the effect.

(2) The hazards for the event of interest was “flatter” and we saw

that the Weibull and exponential models still showed larger

relative bias compared with the spline model. The estimated

covariate effects could have been influenced by the bias in the

covariate effects on the competing event.

(3) We saw that the estimated covariate effects for the “flatter”

event of interested across simulations for all models were

closely correlated with those from the CPHmodel using exact

time data. For the unimodal competing event, the exponential

model estimates across simulations weremuch closer to a null

effect compared with the CPHmodel, while the magnitude of

the Weibull estimates were larger except for the last scenario.

Estimates from the spline model showed nearly perfect one-

to-one association with the CPH model.

4. Motivating example

4.1. Background

Malaria transmission epidemiology is used as an illustrative

application for the models presented in Section 2. Malaria

parasite life cycle involves two hosts: humans and mosquitos.

Transmission from infected humans to mosquitoes begins

when a subset of asexual parasites converts to female and

male gametocytes. Through a blood meal, male and female

gametocytes are ingested by anopheles mosquitos. Inside the

mosquito parasites fuse, progress through several developmental

stages until they multiply and develop into sporozoites. Once

sporogenic development is complete, a mosquito becomes

infectious and can infect more human hosts through a blood

meal. Gametocyte density is a known driver of infectivity in
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P. falciparum mosquitos [45–47]. Their impact on mosquitoes

infectivity was shown by feeding Anopheles coluzzi mosquitoes

with natural P. falciparum gametocytes diluted samples [48].

This analysis used malaria incident data obtained from

a cohort study conducted in Nagongera subcounty, Tororo

district in Eastern Uganda between October 2017 and October

2019. In summary, 531 participants were enrolled from 80

randomly selected households and followed up every 28

days at a designated study clinic [49]. At each follow up,

parasite densities were determined microscopically and by

ultrasensitive varATS qPCR [50]. All patients that tested

positive for microscopy were treated with a 3-day course

of artemether-lumefantrine (Coartem, Novartis, Switzerland)

while asymptomatic individuals were not treated. Incident

malaria infections were estimated based on qPCR negativity.

Infections were considered cleared by qPCR if a participant

was parasite-free on three consecutive visits. For all qPCR

positive samples, female (CCp4 mRNA transcripts) and male

(PfMGET mRNA 229 transcripts) gametocyte densities were

quantified by quantitative reverse transcriptase PCR [51]. At

enrollment, whole blood was also collected to assess host

genetic polymorphisms of the HBB gene [52], which is

known to have a protective effect against the severe clinical

consequences of infection [53, 54] and might also influence

gametocytes [55]. Multiplicity of infection (MOI), the number

of genetically distinct parasite strains co-infecting a single host,

was assessed by apical membrane antigen-1(AMA-1) amplicon

deep sequencing [56].

An incident infection was defined as a new malaria infection

detected in an individual who was parasite-free by qPCR on

three previous visits. Some follow-up times were significantly

shorter if participants experienced clinical symptoms and

received treatment. Since treatment interrupts the parasite

transmission mechanism, we treated the moment of clinical

symptoms prior to gametocyte production (if any) as a malaria

clearance.

Here, we are interested in the evolution of the hazard rates

for the initiation of gametocyte production over time since

incident malaria infection, and factors that have a multiplicative

effect on this hazard rate. Specifically, we assess the effects of

host and parasite characteristics such as age at detected malaria

infection (< 5 years, 5–15 years, 16+ years), sex, parasite density

(log10 transformed), sickle hemoglobin gene (HbS) (HbAA—

wildtype HbS, HbSS—sickle cell anemia polymorphism, and

HbAS—the human sickle trait polymorphism) and MOI (either

single clone or multiclonal). Because of the routinely measured

data collection criteria, the time of 104 incident malaria

infections are interval-censored and thus the time to initiation of

gametocyte production ormalaria clearance are double-interval-

censored. We also assume that an incident infection could not

occur and sporadically clear within the 28 day window. Six

individuals in the study had two incident infections each and

some infections come from unique individuals in the same

household. We do not adjust for this and assume independence

between the time-to-event data between incident infections.

From an overview of the data it was clear that many incident

infections cleared without first initiating gametocyte production.

A competing risk model realizes that malaria clearance prior

to gametocyte initiation impedes the observation of gametocyte

initiation.

4.2. Analysis and results

From the 104 incident malaria infections, 32 (31%) initiated

gametocyte production, 68 (65%) had cleared their malaria

without gametocyte production, and the remaining 4 (4%)

were right-censored. Missing data were reported in the HbS

gene information (3, 2.9%) and in the MOI data (37, 35.6%)

due to sequencing failures. All three infected individuals with

missing HbS data had cleared their infection without producing

gametocytes. From the 37 infected individuals with sequencing

failures for MOI, 34 had cleared their infection without

gametocytes, 1 had initiated gametocyte production, and 2 were

right-censored.

We first estimated the baseline hazards using the

exponential, Weibull and spline models without any covariates

and then performed univariable analysis with each of the

five factors. In Figure 7, the estimated baseline hazards and

cumulative incidences are shown. While we see that the shape of

the hazards (Figures 7A–C) largely differ between models, the

cumulative incidences (Figures 7D–F) are very much similar.

From the latter estimates all three models suggest that by 100

days after incident infection approximately one-third of the

infections initiate gametocyte production and the remaining

two-thirds of infections clear, either naturally or through clinical

intervention. Figure 7C suggests that the hazard of gametocyte

initiation peaks around three weeks after incident malaria

infection and declines rapidly thereafter. This is in line with

other findings [57, 58], although they estimated closer to 2

weeks. A later increase in the hazards is also observed for longer

event-free infections. In a descriptive analysis, Andolina et al.

[59] showed that infection duration was strongly associated

with gametocyte initiation. They showed that 82% (18/22) of

the long infections (≥ 12 weeks/84 days) initiated gametocyte

production earlier than 12 weeks from detection of incident

malaria. From the remaining four infections, three had initiated

gametocyte production at or after 12 weeks from detection of

incident malaria infections.

In the simulation study in Section 3, we saw that increasing

the number of basis functions improved the estimates of the

peak hazards, without much impact on the estimated effects of

covariates. We re-ran the malaria data analysis with 15 basis

functions for each event and allowed a much larger maximum

number of iterations (500) in the estimation algorithm before

convergence is reached. The hazards and cumulative incidences
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FIGURE 7

Baseline hazards and cumulative incidences for the malaria data analysis. Here we show the estimated baseline hazards (A–C) and cumulative

incidences (D–F) using the exponential, Weibull, and spline baseline proportional hazards models based on double-interval-censored data.

are presented in Supplementary Figure 14. Here, we see that the

peak hazard for gametocyte initiation is reached at 2 weeks and

a slower but steady decline is observed afterwards until the later

resurgence. The hazard estimates for malaria clearance without

gametocytes remain largely unchanged.

The results of the effects of the covariates are summarized

in Table 3. The estimated effects and corresponding p-values

(for testing for association) across all models are fairly similar.

A significant effect is seen for HbS and parasite density at

detection of the initial infection on the initiation of gametocyte

production. Specifically, human sickle-cell trait (HbAS) is

associated with a nearly three times higher hazard of gametocyte

initiation over time compared with wildtype (HbAA). A one

unit increase in baseline log parasite density is associated with

a nearly 20% increased hazard (p-value< 0.001) of gametocyte

initiation over time from the spline model. MOI showed a two

times hazard of gametocyte initiation for those with more than

one co-existing parasite genotype versus those with only one,

and this was significant at a 10% level of significance (p-value<

0.1) for the exponential and spline models.

From Table 3, we saw evidence of increased hazards for

malaria clearance without gametocytes for higher baseline log

parasite densities (HR = 1.14; 95% CI: 1.09–1.21, p-value

< 0.001) and HbSS compared with HbAA at the 10% level

of significance. Presentation of clinical symptoms was also

considered a clearance event, and clinical symptoms are strongly

associated with parasite density [60]. When modeling the effect

of parasite density for the 88 initially asymptomatic incident

infections only, we found no statistically significant effect of

baseline parasite density (spline model HR = 1.02; 95% CI 0.93–

1.12; p-value = 0.691, see Supplementary Table 3) on malaria

clearance without gametocyte production.

5. Discussion and conclusion

In this paper we studied models for double-interval-

censored time from infection to event of interest data.

Clearance of the infection may prevent the event of interest

from happening and, thus, is modeled as a competing risk.

We considered models with parametric specifications of the

baseline hazards (exponential and Weibull hazards) and a B-

spline specification. A penalized likelihood algorithm was used

to estimate the parameters for the spline hazards and the

penalty factor that controls the smoothness simultaneously.

A simulation study was performed to evaluate and compare
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TABLE 3 Results from the malaria data analysis.

Exponential Weibull Spline

Covariates HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Gametocyte initiation

Baseline age

<5 years (ref)

5–15 years 1.62 (0.61, 4.27) 0.332 1.64 (0.62, 4.33) 0.319 1.73 (0.63, 4.70) 0.286

16+ years 1.17 (0.42, 3.24) 0.770 1.18 (0.43, 3.28) 0.749 1.20 (0.42, 3.39) 0.732

Sex

Female (ref)

Male 0.82 (0.40, 1.68) 0.592 0.83 (0.40, 1.68) 0.599 0.83 (0.40, 1.70) 0.605

HbS genotype

HbAA (ref)

HbSS 1.23 (0.26, 5.74) 0.791 1.31 (0.27, 6.36) 0.737 1.68 (0.29, 9.65) 0.564

HbAS 2.74 (1.23, 6.13) 0.014 2.87 (1.23, 6.69) 0.015 2.97 (1.16, 7.60) 0.023

Parasite density 1.14 (1.07, 1.23) <0.001 1.17 (1.07, 1.28) <0.001 1.18 (1.11, 1.27) <0.001

MOI

Single clone (ref)

Multiclonal 1.95 (0.91, 4.17) 0.086 1.84 (0.85, 3.99) 0.123 2.06 (0.88, 4.83) 0.095

Malaria clearance

Baseline age

<5 years (ref)

5–15 years 0.85 (0.45, 1.59) 0.606 0.90 (0.48, 1.71) 0.750 0.80 (0.40, 1.61) 0.536

16+ years 0.60 (0.31, 1.18) 0.142 0.61 (0.31, 1.20) 0.154 0.55 (0.27, 1.14) 0.110

Sex

Female (ref)

Male 1.02 (0.61, 1.71) 0.938 1.01 (0.60, 1.71) 0.958 1.04 (0.60, 1.80) 0.880

HbS genotype

HbAA (ref)

HbSS 2.19 (0.88, 5.42) 0.090 2.73 (0.99, 7.55) 0.053 3.55 (0.85, 14.88) 0.083

HbAS 1.22 (0.59, 2.55) 0.594 1.46 (0.66, 3.22) 0.351 1.41 (0.56, 3.53) 0.466

Parasite density 1.10 (1.04, 1.16) 0.001 1.14 (1.06, 1.22) <0.001 1.14 (1.09, 1.21) <0.001

MOI

Single clone (ref)

Multiclonal 1.42 (0.65, 3.10) 0.373 1.33 (0.61, 2.92) 0.479 1.23 (0.56, 2.72) 0.601

The results are in terms of the hazard ratios (HR) with 95% confidence intervals for both the gametocyte initiation event and the malaria clearance event using the exponential, Weibull,

and spline based on double-interval-censored proportional hazards models.

the model performances for both a flatter and a unimodal

baseline hazard. A comparison with the CPH model using the

exact times was made as well. An illustrative analysis using

malaria data was performed to study the effects of various

covariates on the time to gametocyte initiation from incident

malaria infection.

In this paper, we focused on clearance of the infection as the

competing risk. To be able to observe every infection we had to

assume that the infection and its clearance could not happen

in the same interval. If an infection would still be observable

despite the occurrence of the competing event, this assumption

is not necessary. The likelihood function can be simply adjusted:

if the ith individual experienced the competing event in the

same interval as the infection, its contribution to the likelihood

would be

Li =

(

1

ti

) ∫ t1i

0

∫ t1i

w
exp

(

−31(u− w)− 32(u− w)
)

λ2(u−w) du dw.

In the malaria illustrative example we assumed that all

incident malaria infections were detected, and no infection with

spontaneous clearance had occurred within the 28 days between

two consecutive routine follow-up visits. Similarly we assumed

that gametocyte production subsequently followed by parasite

clearance within the 28 day period does not happen. This
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assumption implies that we do not miss gametocyte production

and misclassify the infection as cleared without gametocyte

production. While we cannot completely rule out this may have

happened, we consider it unlikely since a prolonged plateau of

gametocyte density, lasting several weeks, is observed after low

parasite densities in controlled infections [58, 61].

For the derivation of the likelihood we also assumed that

every individual had an infection only once during the follow-

up time and that there is no clustering in the data. These

assumptions may be violated in practice. The simplest way is to

ignore it and analyze the data as if this is not the case (we ignored

“household” in the illustrative example). This will likely have

little effect on the estimated effects, but possibly the estimates

of the standard errors are slightly too low. Taking into account

clustering or recurrent events among individuals is possible by

including a random effect in the model or to determine robust

variance estimates. In case of a random effects model we have

to adapt the likelihood function: we need to integrate out this

random effect. This will result in an extra integral and slows

down the estimation procedure.

We used the two step approach proposed by Machado et al.

[32] (with an adaptation of the first step) to estimate the spline

parameters and smoothing penalty factor simultaneously. Other

approaches for estimating the penalty factor are possible. Cai

and Betensky [24] used penalized splines for hazards regression

with interval-censored data. They utilized the link between

smoothing splines and random effects, and thus translated the

estimation of the smoothing factor to the estimation of a random

effect where the reciprocal of the random effect’s variance is

the smoothing parameter. This has also been seen in work by

Wood et al. [62]. In their work on interval-censoring in an

illness-death model with penalized splines, Touraine et al. [63]

ignored covariate effects and used a grid search method to

find the smoothing factor values for all transitions based on an

approximation of the leave-one-out log-likelihood score. Using

a random effects approach will induce another integration level

in the likelihood, making it more complex. While a grid search

approach is simple, it is computationally intensive, especially

when multiple smoothing parameters are being estimated, as in

our case.

Convergence of the iterative algorithm for estimating the

parameters in the spline model relies on two factors: the absolute

tolerance, i.e., how small the difference in spline parameters

between two iterations should be, and the maximum number of

iterations allowed. Ideally the maximum number of iterations

should be large enough so that convergence is reached. So

using a lower tolerance for convergence should coincide with

increasing the maximum number of iterations. Using a stricter

criteria, however, comes at the cost of a longer computation

time. The exponential and Weibull models both converge much

faster than the spline model. For example, when fitting the

baseline hazards for the malaria data, the exponential model

took 7.18 s, theWeibull model took 18.4 s, the spline model with

tolerance 1 × 10−5 and a maximum of 50 iterations took 1.10

min, and lastly the spline model with tolerance 1 × 10−7 and a

maximum of 100 iterations took 15.3 min (without a noticeable

difference in the baseline hazards). These computation times

are expected to increase with more covariates and a larger

sample size.

The exponential andWeibull model performed decently well

for the flatter hazard under all scenarios. It is expected that

they would perform much better if the hazards were truly flat,

whichmay be an unrealistic expectation, especially for infectious

diseases. The Weibull model showed improved performance in

scenario 5 (more right-censoring), especially for the competing

event, where due to the shorter follow-up, a distinct peak in the

true hazards was no longer seen and the hazards appeared more

monotonic. Making the Weibull, due to its simplicity, much

more attractive in this scenario. In practice however, the shape of

the hazards are usually unknown and understanding the shape

of the underlying hazards may be one of the research aims.

Here, the spline model is useful in estimating the shape of the

baseline hazards as well as estimating unbiased effects without

unreasonable assumptions of the baseline hazards.

The methods highlighted in this paper along with the

R code, provide an efficient tool for estimating hazard

curves, cumulative incidences and/or covariate effects for

double-interval-censored time-to-event data in the presence of

competing risks. We focused on an infectious disease setting in

which the origin time is infection and the competing event is

the clearance of this infection. The results of the spline based

approach closely aligns with that from the CPH model with

exact data and are well-suited to complex forms of the baseline

hazards such as unimodal hazards which are prominent in

infectious diseases.
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