
TYPE Original Research

PUBLISHED 22 November 2022

DOI 10.3389/fams.2022.1031039

OPEN ACCESS

EDITED BY

Jianfeng Cai,

Hong Kong University of Science and

Technology, Hong Kong SAR, China

REVIEWED BY

Ming Yan,

Michigan State University,

United States

Yuping Duan,

Tianjin University, China

*CORRESPONDENCE

Hui Zhang

h.zhang1984@163.com

SPECIALTY SECTION

This article was submitted to

Optimization,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

RECEIVED 29 August 2022

ACCEPTED 28 October 2022

PUBLISHED 22 November 2022

CITATION

Yang H, Zhang H, Wang H and Cheng L

(2022) Bregman iterative regularization

using model functions for nonconvex

nonsmooth optimization.

Front. Appl. Math. Stat. 8:1031039.

doi: 10.3389/fams.2022.1031039

COPYRIGHT

© 2022 Yang, Zhang, Wang and

Cheng. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Bregman iterative regularization
using model functions for
nonconvex nonsmooth
optimization

Haoxing Yang, Hui Zhang *, Hongxia Wang and Lizhi Cheng

Department of Mathematics, College of Science, National University of Defense Technology,

Changsha, China

In this paper, we propose a new algorithm called ModelBI by blending the

Bregman iterative regularization method and the model function technique

for solving a class of nonconvex nonsmooth optimization problems. On one

hand, we use the model function technique, which is essentially a first-order

approximation to the objective function, to go beyond the traditional Lipschitz

gradient continuity. On the other hand, we use the Bregman iterative

regularization to generate solutions fitting certain structures. Theoretically, we

show the global convergence of the proposed algorithm with the help of the

Kurdyka-Łojasiewicz property. Finally, we consider two kinds of nonsmooth

phase retrieval problems and propose an explicit iteration scheme. Numerical

results verify the global convergence and illustrate the potential of our

proposed algorithm.
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1. Introduction

In this paper, we consider the following optimization problem

min
x∈Rd

ψ(x) : = f (x)+ µR(x), (P)

where f ,R :R
d → (−∞,+∞] are given extended real-valued functions, and µ > 0 is

some fixed parameter.

Bregman iterative regularization, originally proposed in Osher et al. [1] for

total-variation-based image restoration, has become a popular technique for solving

optimization problems with the form (P). To simplify its computation, the linearized

Bregman iterations (LBI) [2] and their variants [3–5] were proposed with lots of

applications in signal/image processing and compressed sensing. Previous studies mainly

focused on convex smooth optimization in the sense that both functions f and R in (P)

are convex and f is also smooth. Very recently, nonconvex smooth extensions of LBI

were considered in Benning et al. [6] and later in Zhang et al. [7]. However, it seems

unclear whether the LBI can be extended to nonconvex and nonsmooth cases. In other
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words, can we develop the LBI to solve (P) with a nonconvex

nonsmooth function f ? This question is the main motivation of

this study.

A basic algorithmic strategy for optimization problem (P)

is to successively minimize simple objective functions, usually

calledmodel functions, which approximate the original objective

ψ near the current iterate. The LBI method is in the same

spirit as this strategy; it uses a second-order Taylor expansion

of f to approximate the smooth function f and uses a Bregman

distance to replace the regularization function R. To deal with

nonsmooth function f , however, it is impossible to use Taylor

approximations. Fortunately, there recently developed several

“Taylor-like” model functions techniques [8–10] to approximate

and minimize a nonsmooth objective function f . In particular,

the authors of Mukkamala et al. [10] introduced the concept

of model approximation property (MAP) for extending the

Bregman proximal gradientmethod tominimize a nonsmooth f .

In this paper, we will blend the techniques involved in

LBI and MAP to propose a new iterative scheme for solving

nonconvex and nonsmooth optimization problems (P), along

with completed convergence analysis. Moreover, we apply our

proposed method to nonsmooth phase retrieval problems to

demonstrate our findings, both theoretically and numerically.

The remainder of the paper is organized as follows. In

Section 2, we introduce the Bregman distance, the concept

of MAP, and also the Kurdyka-Łojasiewicz (KL) property. In

Section 3, we propose our algorithmic scheme and a group of

assumptions. In Section 4, we present a convergence analysis.

The application demonstrations are given in Section 5 and

Section 6. Finally, concluding remarks are discussed in Section 7.

2. Preliminaries

Throughout the paper, we work in a d-dimensional

Euclidean vector spaceRd equipped with inner product 〈·, ·〉 and
induced norm ‖·‖, where d ∈ N\{0} (N is the set of non-negative

integers). The notation and almost all the facts about the convex

analysis we employ are primarily taken from Rockafellar [11].

For a set B ⊂ R
d, defined ‖B‖− : = infx∈B ‖x‖. Let h be a convex

function, dom h (h∗,∇h, ∂h) denotes the domain of h (conjugate

function of h, gradient of h, and subgradient of h, respectively),

and int dom h denote the interior domain of h. In addition, let

∂xf (x; y) denote the subgradient of the function f (x; y) with

respect to the first variable, ∂yf (x; y) denote the subgradient

of the function f (x; y) with respect to the second variable, and

∂f (x; y) denote the subgradient of f (x; y) with respect to (x, y).

2.1. Bregman distance

The concept of Bregman distance [12] is the most important

technique in Bregman iterative regularization. Given a smooth

convex function h, its Bregman distance between two points x

and y is defined as

Dh(x, y) : = h(x)− h(y)− 〈∇h(y), x− y〉.

Due to the convexity of h, it is essential that Dh is

nonnegative but fails to hold the symmetry and the triangle

inequality in general. The class of Legendre functions [13]

provides a choice to generate Bregman distance.

Definition 2.1. (Legendre functions, Rockafellar [11]) Let

h :Rd → (−∞,+∞] be a proper lower semi-continuous (lsc)

convex function. It is called:

• essentially smooth, if int dom h 6= ∅, h is differentiable

on int dom h, and ‖∇h(xk)‖ → ∞ for every sequence

{xk}k≥0 ⊆ int dom h converging to a boundary point of

dom h as k → ∞;

• of Legendre type, if h is essentially smooth and strictly convex

on int dom h.

As a special case of Legendre functions, the energy kernel

h = 1
2‖ · ‖2 yields the classical squared Euclidean distance.

Note that the common sparsity constraint R(·) = ‖ · ‖1
is not of Legendre type since it is nonsmooth. It leads to the

concept of generalized Bregman distance introduced by Kiwiel

[14]. Given a proper lsc convex function R, the generalized

Bregman distance associated with R between x, y with respect to

a subgradient y∗ is defined by

D
y∗

R (x, y) : = R(x)−R(y)−〈y∗, x−y〉,∀x ∈ domR, y∗ ∈ dom ∂R(y).

Properties of Bregman distances and examples of kernels

can be referred to Kiwiel [14, 15], Chen and Teboulle [16], and

Bauschke et al. [17].

2.2. Model function and model
approximation property

Section 1 has briefly mentioned the model function and the

MAP. Now we state its formal definition in Mukkamala et al.

[10].

Definition 2.2. (Model function [10]) Let f be a proper

lsc function. A function f (·; x) :Rd → (−∞,+∞] with

dom f (·, x) = dom f is called a model function for f around

the model center x ∈ dom f , if there exists a growth function

ςx :R+ → R+ such that the following is satisfied:

|f (x)− f (x; x)| ≤ ςx(‖x− x‖), ∀x ∈ dom f .

The model function is essentially an approximation to f ,

and the growth function can be considered as a bound on the
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model error. Based on Definition 2.2, a modification of the

model approximation property (MAP) (Definition 7, [10]) can

be stated as below:

Definition 2.3 (Model approximation property). Let h be a

Legendre function that is continuously differentiable over

int dom h. A proper lsc function f with dom f ⊃ dom h andmodel

function f (·; x) for f around x ∈ int dom h satisfy the model

approximation property at x, with the constant L > 0, if for any x

the following holds:

|f (x)− f (x; x)| ≤ LDh(x; x),∀x ∈ int dom h.

2.3. Kurdyka-Łojasiewicz property

The Kurdyka-Łojasiewicz property is a significant tool for

our global convergence analysis, which is defined as follows:

Definition 2.4. (Kurdyka-Łojasiewicz property and function

[18]) The function F :Rd → (−∞,+∞] is said to have the

Kurdyka-Łojasiewicz property at x∗ ∈ dom(∂F) if there exists

η ∈ (0,+∞], a neighborhood U of x∗ and a continuous concave

function ϕ :[0, η) → R+ such that

(i) ϕ(0) = 0.

(ii) ϕ is C1 on (0, η).

(iii) for all s ∈ (0, η), ϕ′(s) > 0.

(iv) for all x in U ∩ [F(x∗) < F(x) < F(x∗) + η], the

Kurdyka-Łojasiewicz inequality holds

ϕ′(F(x)− F(x∗))dist(0, ∂F(x)) ≥ 1.

Additionally, a proper lsc function F that satisfies the

Kurdyka-Łojasiewicz inequality at each point of dom(∂F) is called

a KL function.

Usually, it may be difficult to verify the KL property of a

function. Bolte et al. [19, 20] established a nonsmooth version

of Kurdyka-Łojasiewicz inequality:

Lemma 2.5. Let F :Rd → (−∞,+∞] be a proper lsc function.

If F is semi-algebraic then it satisfies the KL property at any point

of dom F.

Lemma 2.5 provides a result that KL property holds for the

class of semi-algebraic functions. Semi-algebraic examples are

common such as derivatives and ‖ · ‖p. In addition, the class of

semi-algebraic sets is stable under finite sums, compositions, or

products [18].

3. Problem setting and ModelBI
algorithm

Throughout this paper, we consider the optimization

problem (P) and make the following assumptions about the

relative function h, the regularized function R, and the loss

function f .

Assumption 3.1. (i) h :Rd → (−∞,+∞] is of Legendre

type and of C2 over int dom h.

(ii) R :R
d → R+ is proper lsc convex with dom ∂R ⊃

int dom h and domR ∩ int dom h 6= ∅.
(iii) f :Rd → (−∞,+∞] is proper lsc nonconvex nonsmooth

with dom f ⊃ dom h and continuous on dom h. Moreover,

the MAP holds for the pair of functions (f , h).

(iv) −∞ < infx∈dom h f (x).

Assumption 3.2. Let pk ∈ ∂R(xk). If {xk} ⊂ int dom h

converges to some x ∈ dom h, then Dh(x, x
k) → 0 and

D
pk

R (x, xk) → 0.

Assumption 3.3. For any bounded subset U ⊂ int dom h, there

exists a constant Lh > 0 such that for any x ∈ U, h has bounded

second derivative ‖∇2h(x)‖ ≤ Lh.

Assumption 3.4. For any bounded set B ⊂ dom f , there exists

c > 0 such that for any x, y ∈ B we have

‖∂yf (x; y)‖− ≤ c‖x− y‖.

Assumption 3.5. The regularized function R has locally bounded

subgradients in the sense that if for any bounded set U ⊂ domR

there exists a constant C > 0 such that for any x ∈ U and all

p ∈ ∂R(x) we have ‖p‖ ≤ C.

A few remarks about the assumptions are as follows:

• Assumptions 3.1(i) and (iii) are required by the MAP,

among which h ∈ C2 is needed for the surrogate function

in Section 4. The assumptions of domains in (ii) ensure

that the objective in Algorithm 1 is well-defined for xk ∈
int dom h. (ii) can be satisfied if R is real-valued, for

example, R(x) = ‖x‖1. With respect to (iv), an lsc coercive

function can ensure the compactness of its lower level set.

• A real-valued convex function R always holds that

D
pk

R (x, xk) → 0 as xk → x due to the continuity of R

[21, Theorem 3.16] and has locally bounded subgradients,

which verifies Assumption 3.2 and Assumption 3.5.

• Assumption 3.4 governs the variation of themodel function

around the model center [10]. We can take the composite

function f (G(x)) = |x2 − 1| as a simple example. Its model

function is f (x; x) = f (G(x)+ 〈∇G(x), x − x〉) = |x2−1+
〈2x, x− x〉|. Then the subdifferential of the model function

is given by ∂yf (x; x) = 2sgn(x2−1 + 〈2x, x − x〉)(x − x),

where sgn(x) = x/|x| if x 6= 0 while sgn(0) ∈ [−1, 1]. Since

|sgn(x)| ≤ 1, we have |∂yf (x; x)|− ≤ 2|x− x|.

Equipped with the above assumptions, the ModelBI

algorithm for solving the nonconvex nonsmooth composite

problem (P) is described in Algorithm 1.

There are some remarks to understand ModelBI:
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Initialization:

• Choose a Legendre function h and a model

function f (x; x) such that the pair of functions

(f , h) satisfy the MAP with the constant L > 0.

• Select any x0 ∈ int dom h.

• Choose δ, δ such that 0 < δ < δ < 1/L.

Iteration:

For each k ≥ 0, choose δk ∈ [δ, δ] and µk ≥ µ; then

compute





xk+1 ∈ argmin
x

{
f (x; xk)+ 1

δk
Dh(x, x

k)+ µkD
pk

R (x, xk)

}
,

pk+1 = pk − 1

δkµk

[
∇h(xk+1)−∇h(xk)+ δkξ k+1

]
,

where ξ k+1 ∈ ∂xf (xk+1; xk).

(1)

Algorithm 1. Bregman iterative regularization using model functions.

• First, note that ModelBI is a generalization of LBI. It

replaces the linearized term of LBI with a model function

that keeps the first-order information of f . For smooth f

and model function f (x; xk) = f (xk) + 〈∇f (xk), x − xk〉,
Algorithm 1 is actually the LBI algorithm in Zhang et al.

[7].

• Denote Txk (x) : = f (x; xk) + 1
δk
Dh(x, x

k) + µkD
pk

R (x, xk),

then argminx Txk (x) is a set of minimizers. When

argminx Txk (x) is a singleton, the update step becomes

xk+1 = argminx Txk (x).

• A potential problem is the choice of ξk+1 if the model

function is also nonsmooth. We need to pick a specific

element from the set ∂xf (x
k+1; xk) for this case. Corollary

4.7 shows that a random element from ∂xf (x
k+1; xk) is

acceptable as ξk → 0 (k → ∞) under some standard

assumptions. Section 6 further verifies this strategy via

numerical experiments.

4. Global convergence analysis

In this section, we analyze the convergence of the ModelBI

algorithm. We first present that our algorithm results in

monotonically nonincreasing function values.

Lemma 4.1 (Sufficient descent property of {f (xk)}). Let

Assumption 3.1 hold and {xk} be a sequence generated by the

ModelBI algorithm; then for k ≥ 0, we have that

f (xk+1) ≤ f (xk)− εkDh(x
k+1, xk)− µkDpk

R (xk+1, xk), (2)

where εk = 1
δk

− L. In particular,

lim
k→∞

Dh(x
k+1, xk) = lim

k→∞
D
pk

R (xk+1, xk) = 0. (3)

Proof. Due to Equation (1), we have

f (xk+1; xk) ≤ f (xk; xk)− 1

δk
Dh(x

k+1, xk)− µkDpk

R (xk+1, xk).

From the MAP,

f (xk+1) ≤ f (xk+1; xk)+ LDh(x
k+1, xk)

≤ f (xk; xk)− 1

δk
Dh(x

k+1, xk)− µkDpk

R (xk+1, xk)

+ LDh(x
k+1, xk)

= f (xk)− εkDh(x
k+1, xk)− µkDpk

R (xk+1, xk).

where the last equality follows from the definition of the model

function. As εk = 1
δk

− L > 0, we obtain the sufficient descent

property in function values.

Summing Equation (2) from k = 0 to n we get

n∑

k=0

(
(
1

δ
− L)Dh(x

k+1, xk)+ µDpk

R (xk+1, xk)

)
≤ f (x0)

−f (xn+1) ≤ f (x0)− inf
x∈dom h

f (x). (4)

Taking the limit as n → ∞, we obtain
∑∞

k=0 Dh(x
k+1, xk) < ∞ and

∑∞
k=0 D

pk

R (xk+1, xk) < ∞,

from which we deduce that

lim
k→∞

Dh(x
k+1, xk) = lim

k→∞
D
pk

R (xk+1, xk) = 0.

This completes the proof.

To further show the convergence of the sufficient desent

sequence {f (xk)}, we now define the set of all limit points of {xk}
as follows

� : ={
x∗ ∈ R

d
: there exists an increasing integer sequence {ki}

such that limi→∞ xki = x∗

}
.

Lemma 4.2 (Function value convergence). Let the same

assumptions hold true as in Lemma 4.1. Suppose further that

Assumption 3.2 holds, that h is strongly convex on dom h with

dom h = dom h and that the level set {x : f (x) ≤ f (x0)} is

bounded. Then,� 6= ∅ and for any limit point x∗ ∈ �,

lim
k→∞

f (xk) = f (x∗). (5)

Proof. The boundness of {x : f (x) ≤ f (x0)} and the sufficient

descent property of {f (xk)} ensure the boundedness of {xk},
hence� 6= ∅.

Take x∗ ∈ �. There exists a subsequence {xki } ⊂ {xk} ⊂
int dom h such that limi→∞ xki = x∗ ∈ dom h = dom h.

Together with (3) in Lemma 4.1 and the strong convexity of h,
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we can conclude that ‖xki+1− xki‖ → 0 and ‖xki+1− x∗‖ → 0

as i → ∞.

In light of (1), we have

f (xki+1; xki )+ 1

δki
Dh(x

ki+1, xki )+ µkiDpki

R (xki+1, xki )

≤f (x∗; xki )+ 1

δki
Dh(x

∗, xki )+ µkiDpki

R (x∗, xki ).

The MAP yields f (xki+1) ≤ f (xki+1; xki )+ LDh(x
ki+1, xki ).

As εki = 1
δki

− L > 0,

f (xki+1) ≤ f (x∗; xki )+ 1

δki
Dh(x

∗, xki )+ µkiDpki

R (x∗, xki ).

Thus, we have

lim
i→∞

sup f (xki+1) ≤ f (x∗; x∗) = f (x∗).

Using the lsc property of f , we obtain

f (x∗) ≤ lim
i→∞

inf f (xki+1).

Therefore, we get

lim
i→∞

f (xki+1) = f (x∗).

Note that {f (xk)} is also lower bounded by infx∈dom h f (x)

and hence it is convergent. Then we have limk→∞ f (xk) =
f (x∗), which completes the proof.

In order to derive the global convergence of {xk}, we should
introduce a modified surrogate function F :Rd × R

d × R
d →

(−∞,+∞]:

F(x, y, z) = f (x; y)+ LDh(x, y)+µ(R(x)+ R∗(z)− 〈z, x〉), (6)

where R∗ is the convex conjugate of R.

Remark 1. The modified surrogate function is inspired by

Benning et al. [6] and Zhang et al. [7]. However, their surrogate

functions are invalid for our global convergence analysis, because

the standard assumptions do not contain the subgradient

relationship between the nonsmooth f and the model function.

Thus, we replace the loss function with a Lyapunov function

f (x; y) + LDh(x, y) that appeared in Mukkamala et al. [10] to

construct a new one. The new surrogate function imposes an

additional variable, where we should make a mild assumption

about the lower bound of the subgradient with respect to

this variable (refer to Assumption 3.4). In addition, we have

known that the Lyapunov function is a KL function [10]. As is

mentioned in Section 2, the KL property holds under finite sums,

which verifies that the proposed surrogate function (6) is also a

KL function.

In the following, we present the sufficient descent property

of F and its subgradient bounds, which are the basis of the

convergence analysis. To this end, we introduce the notation

sk : = (xk, xk−1, pk−1) for all k ∈ N, and thus F(sk) =
F(xk, xk−1, pk−1).

Lemma 4.3 (Sufficient descent property of {F(sk)}). Let the

same assumptions hold true as in Lemma 4.1 and µk ≥ µ ≥ 0.

Then we have the following decent estimate:

F(sk+1) ≤ F(sk)− εkDh(x
k+1, xk)− (µk − µ)Dpk

R (xk+1, xk)

− µD
pk−1

R (xk, xk−1). (7)

Proof. Similar to the proof of Lemma 4.1, we have f (xk+1; xk) ≤
f (xk)− 1

δk
Dh(x

k+1, xk)−µkDpk

R (xk+1, xk) due to Equation (1),

and f (xk) ≤ f (xk; xk−1) + LDh(x
k; xk−1) from the MAP. Note

that F(sk+1) = f (xk+1; xk) + LDh(x
k+1, xk) + µD

pk

R (xk+1, xk)

for xk ∈ ∂R∗(pk). Hence, combining the above formulas, we

derive that

F(sk+1) ≤ f (xk)− εkDh(x
k+1, xk)− (µk − µ)Dpk

R (xk+1, xk)

≤ f (xk; xk−1)+ LDh(x
k; xk−1)− εkDh(x

k+1, xk)

− (µk − µ)Dpk

R (xk+1, xk)

= F(sk)− εkDh(x
k+1, xk)− (µk − µ)Dpk

R (xk+1, xk)

− µDpk−1

R (xk, xk−1),

which completes the proof.

Remark 2. From the definition of the surrogate function, we

know that F(sk) ≥ f (xk) ≥ infx∈dom h f (x) ≥ −∞. Together

with the sufficient decent property, the sequence {F(sk)} is also
bounded.

Note that the subdifferential of the surrogate function reads

as

∂F(x, y, z) =



∂xf (x; y)+ L(∇h(x)− ∇h(y))+ µ∂R(x)− µz

∂yf (x; y)− L∇2h(y)(x− y)

µ(∂R∗(z)− x)


 .

Then, a lower bound for its subgradients at the iterates

computed with ModelBI can be deduced.

Lemma 4.4 (Subgradient lower bound of F(sk)). Let the same

assumptions hold true as in Lemma 4.3. Suppose further that

Assumption 3.3 holds for h and Assumption 3.4 holds for f . Then

the subgradient is lower bounded by the iterates gap:

‖∂F(xk+1, xk, pk)‖− ≤ (
Lh

δk
+ µ+ c)‖xk+1 − xk‖

+ (µk − µ)‖pk+1 − pk‖. (8)
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Proof. Using the fact that pk+1 ∈ ∂R(xk+1) and xk ∈ ∂R∗(pk),
we know

‖∂F(xk+1, xk, pk)‖− ≤ inf
ξ∈∂xf (xk+1;xk)

‖ξ + L(∇h(xk+1)

− ∇h(xk))+ µ(pk+1 − pk)‖

+ inf
η∈∂yf (xk+1;xk)

‖η − L∇2h(xk)(xk+1 − xk)‖

+ µ‖xk+1 − xk‖.

(9)

The optimality of xk+1 in Equation (1) implies the existence

of ξk+1 ∈ ∂xf (xk+1; xk) such that the following condition holds:
ξk+1+ 1

δk
(∇h(xk+1)−∇h(xk))+µk(pk+1− pk) = 0. Then the

first term of the right hand side in Equation (9) is bounded by

inf
ξ∈∂xf (xk+1;xk)

‖ξ + L(∇h(xk+1)−∇h(xk))+ µ(pk+1 − pk)‖

≤ (
1

δk
− L)‖∇h(xk+1)− ∇h(xk)‖ + (µk − µ)‖pk+1 − pk‖

≤ (
1

δk
− L)Lh‖xk+1 − xk‖ + (µk − µ)‖pk+1 − pk‖,

where in the last inequality we applied the Lagrange mean value

theorem along with the fact that the entity∇2h(xk+1+ s(xk+1−
xk)) (s ∈ [0, 1]) is bounded by a constant Lh. Considering the

second term in Equation (9), we have

inf
η∈∂yf (xk+1;xk)

‖η − L∇2h(xk)(xk+1 − xk)‖

≤ inf
η∈∂yf (xk+1;xk)

‖η‖ + L‖∇2h(xk)‖‖xk+1 − xk‖

≤ c‖xk+1 − xk‖ + LLh‖xk+1 − xk‖,

where in the last inequality we used Assumption 3.4 and the fact

that ‖∇2h(xk)‖ is bounded by Lh. Note that there is no loss of

generality to take the same Lh as the upper bound. We therefore

estimate

‖∂F(xk+1, xk, pk)‖− ≤

(
Lh

δk
+ µ+ c)‖xk+1 − xk‖

+(µk − µ)‖pk+1 − pk‖.

This completes the proof.

Recall that {sk} = {(xk, xk−1, pk−1)} is a sequence generated
by ModelBI from starting points x0 and p0. Denote the set of

limit points of {sk} as

�0 : ={
s∗ = (x∗ , x∗ , p∗) ∈ R

d × R
d × R

d
: there exists an increasing integer sequence

{ki} such that limi→∞ xki = x∗ , limi→∞ xki−1 = x∗ , and limi→∞ pki−1 = p∗

}
.

Before we show the global convergence of the ModelBI

sequence to a critical point of f , we need to verify that (i) �0 is

a nonempty, compact, and connected set, and (ii) the surrogate

function F converges to f on �0. Both of them are guaranteed

by the following lemma.

Lemma 4.5 (Function value convergence of {F(sk)}). Under

the conditions of Lemma 4.4, let Assumption 3.2 hold and

Assumption 3.5 hold for R. Suppose that limk→∞ µk = µ, that h

is strongly convex on dom h with dom h = dom h, and that the

level set {x : f (x) ≤ f (x0)} is bounded. Then �0 is a nonempty,

compact, and connected set, and for any s∗ = (x∗, x∗, p∗) ∈ �0,

we have limk→∞ dist(sk,�0) = 0 and

lim
k→∞

F(sk) = f (x∗).

Proof. By the boundedness of {xk}, there exists an increase of

integers {ij}j∈N such that limj→∞ xij = x∗. With pij ∈ ∂R(xij )

and the subgradient local boundedness of R(x), we know that

{pij} must be bounded, and thus, there exists a subsequence

{ki} ⊂ {ij} such that limi→∞ pki = p. Due to Equation (1), it

holds that

µki−1pki = µki−1pki−1 − 1

δki−1
(∇h(xki )−∇h(xki−1))− ξki .

Due to Equation (3) in Lemma 4.1 and the strong convexity

of h, we know that limi→∞ xki = limi→∞ xki−1 = x∗

and limi→∞ ξki = ξ∗ ∈ ∂xf (x
∗; x∗). Together with

limi→∞ µki−1 = µ and the boundedness of {δki−1}, we

conclude that there exists a point p∗ such that limi→∞ pki−1 =
p∗ (p∗ may be different to p). Therefore, s∗ = (x∗, x∗, p∗)
indeed belongs to �0 which shows the nonemptiness of �0.

Furthermore, x∗ ∈ � for each s∗ ∈ �0.

From Theorem 3.7 in Rubin [22], the set �0 must be closed

since it is the set of cluster points of {sk}. The boundedness of
�0 comes from the boundedness of {xk} and {pk}. Therefore,
the set �0 is compact and hence limk→∞ dist(sk,�0) = 0 by

the definition of limit points.

Note that by definition of F we have

F(sk) = f (xk; xk−1)+ LDh(x
k, xk−1)+ µDpk−1

R (xk, xk−1)

= f (xk)+
(
f (xk; xk−1)− f (xk)

)
+ LDh(x

k, xk−1)

+ µDpk−1

R (xk, xk−1).

The MAP gives f (xk) ≤ F(sk) ≤ f (xk) + 2LDh(x
k, xk−1) +

µD
pk−1

R (xk, xk−1). As limk→∞ Dh(x
k, xk−1) =

limk→∞ D
pk−1

R (xk, xk−1) = 0 in Lemma 4.1 and

limk→∞ f (xk) = f (x∗) in Lemma 4.2, we deduce that

lim
k→∞

F(sk) = f (x∗),

which completes the proof.

Now we are ready to present the following global

convergence result for ModelBI.
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Theorem 4.6 (Finite length property). Let {sk} = {(xk, xk−1,

pk−1)} be the sequence generated by the ModelBI algorithm.

Suppose that F is a KL function in the sense of Definition 2.4. Let

Assumptions 3.1–3.2 hold, Assumption 3.3 hold for h, Assumption

3.4 hold for f , and Assumption 3.5 hold for R. In addition, let h be

σh-strongly convex with dom h = dom h, the level set {x : f (x) ≤
f (x0)} is bounded, the parameters δk satisfy 0 < δ ≤ δk ≤ δ <

1/L, and µk satisfy µk ≥ µ and
∑∞

k=0(µ
k −µ) <∞. Then, the

sequence {xk} has a finite length in the sense that

∞∑

k=0

‖xk+1 − xk‖ <∞. (10)

Proof. We show Equation (10) by modifying the methodology

in Zhang et al. [7]. Let us begin with any point s∗ =
(x∗, x∗, p∗) ∈ �0. Then, there exists an increasing integer

sequence {ki}i∈N such that xki → x∗ as i → ∞. From

Lemma 4.5 and recalling that sk = (xk, xk−1, pk−1), we know

limk→∞ F(sk) = f (x∗).
Note that the convergent sequence {F(sk)} is nonincreasing

from Lemma 4.3. If there exists an integer k̄ such that F(sk̄) =
f (x∗), then F(sk) ≡ f (x∗) for k ≥ k̄ and hence Dh(x

k+1, xk) = 0

for k ≥ k̄ from Equation (7), which implies that xk ≡ xk̄ for k ≥
k̄ due to the strong convexity of h. Hence, the result (Equation

10) follows trivially. If there does not exist such an index, then

F(sk) > f (x∗) holds for all k > 0. Since limk→∞ F(sk) = f (x∗),
for any η > 0 there must exist an integer k̂ > 0 such that F(sk) <

f (x∗)+ η for all k > k̂. Similarly, limk→∞ dist(sk,�0) = 0 from

Lemma 4.5 implies for any ζ > 0 there must exist an integer

k̃ > 0 such that dist(sk,�0) < ζ for all k > k̃. Therefore, for all

k > l : = max{k̂, k̃} we have

sk ∈ {s : dist(s,�0) < ζ }
⋂

{s : f (x∗) < F(s) < f (x∗)+ η}.

Thus, we apply Definition 2.4 to get,

ϕ′(F(sk)− f (x∗))‖∂F(sk)‖− ≥ 1. (11)

Using Equation 4.4 in Lemma 4.4 and δk ∈ [δ, δ], we get that

‖∂F(sk)‖− ≤ ρ‖xk − xk−1‖ + (µk−1 − µ)‖pk − pk−1‖. (12)

where ρ = Lh
δ

+ µ + c. On the other hand, from the concavity

of ϕ, we know that

ϕ′(x) ≤ ϕ(x)− ϕ(y)
x− y

holds for all x, y ∈ [0, η), x > y. Hence, by taking x = F(sk) −
f (x∗) and y = F(sk+1)− f (x∗) in the inequality above, we get

ϕ′(F(sk)− f (x∗)) ≤ ϕk − ϕk+1

F(sk)− F(sk+1)
≤ 2(ϕk − ϕk+1)

εσh‖xk+1 − xk‖2
,

(13)

where ϕk : = ϕ(F(sk)− f (x∗)) and ε = 1
δ
−L. The last inequality

follows from Equation (7) and the strong convexity property

Dh(x
k+1, xk) ≥ σh

2 ‖xk+1 − xk‖2. Therefore, from Equations

(11)–(13), we get

‖xk+1 − xk‖2 ≤ 2ρ

εσh

(
ϕk − ϕk+1

)(
‖xk − xk−1‖

+µ
k−1 − µ
ρ

‖pk − pk−1‖
)
.

Based on Young’s inequality of form 2
√
ab ≤ a + b, we

further get

2‖xk+1 − xk‖ ≤ 2ρ

εσh
(ϕk − ϕk+1)+ ‖xk − xk−1‖

+ µk−1 − µ
ρ

‖pk − pk−1‖.

Subtracting ‖xk+1 − xk‖ and summing the inequality above

from k = l, · · · ,N yields

N∑

k=l

‖xk+1 − xk‖ ≤ ‖xl − xl−1‖ +
N∑

k=l

µk−1 − µ
ρ

‖pk − pk−1‖

+ 2ρ

εσh
(ϕl − ϕN+1).

With the boundedness of {pk} and
∑∞

k=0(µ
k−µ), we obtain

the finite length property by letting N → ∞.

Corollary 4.7. Under the same assumptions as Theorem 4.6, the

sequence {xk} converges to a critical point of f in the sense that

0 ∈ ∂f (x∗). In addition, we have the following rate of convergence
result:

min
0≤k≤n

‖xk+1 − xk‖2 ≤ 1

n
· 2δ

σh(1− δL)

(
f (x0)− f (x∗)

)
. (14)

Proof. The finite length property Theorem 4.6 implies that∑∞
k=l ‖x

k+1 − xk‖ → 0 as l → ∞. Thus, for anym > n ≥ l we

have

‖xm − xn‖ =

∥∥∥∥∥∥

m−1∑

k=n

(xk+1 − xk)

∥∥∥∥∥∥
≤

m−1∑

k=n

‖xk+1 − xk‖

≤
∞∑

l

‖xk+1 − xk‖,

which implies that {xk} is a Cauchy sequence. ModelBI gives

pk − pk+1 = 1

δkµk

(
∇h(xk+1)− ∇h(xk)

)
+ 1

µk
ξk+1.

Summing from k = 0, · · · , n leads to

p0 − pn+1 =
n∑

k=0

(
1

δkµk

(
∇h(xk+1)− ∇h(xk)

)
+ 1

µk
ξk+1

)
.
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Assume that the limit point ξ∗ 6= 0. Noting that
1

δkµk

(
∇h(xk+1)−∇h(xk)

)
→ 0 and 1

µk ξ
k+1 → 1

µ ξ
∗ 6= 0,

we apply Lemma 4.8 in Zhang et al. [7] to conclude that ‖p0 −
pn+1‖ → ∞ as n → ∞, which contradicts the boundedness of

{pk}. Therefore, we have ξ∗ = 0 ∈ ∂f (x∗).
Recalling (4) in Lemma 4.1, we have

min
0≤k≤n

Dh(x
k+1, xk) ≤ 1

n
· δ

1− δL

(
f (x0)− f (x∗)

)
,

which immediately leads to the result of a convergence rate due

to the strong convexity of h.

5. Application to phase retrieval
problems

This section illustrates the potential of the proposed

algorithm. To this end, we consider two kinds of nonsmooth

phase retrieval problems and construct the correspondingmodel

functions that the MAP holds. Then, we show howModelBI can

be applied to these problems.

The standard phase retrieval problem can be described as

follows. Given a finite number of measurement vectors ai ∈
R
d, i = 1, 2, ...,m, describing the model, and a vector b ∈ R

m

describing the possibly corrupted measurement data, our goal is

to find x ∈ R
d that solves the system

|〈ai, x〉| ≃ bi, i = 1, 2, ...,m. (15)

It is a natural extension of the standard linear inverse

problem, as the linear measurements are replaced by their

modules. This type of problem has been and is still being

intensively studied in the literature; readers can refer to Dong

et al. [23] for a brief review.

The considered system (Equation 15) is commonly

underdetermined, and thus some prior information of the target

vector is brought into the model by means of some regularizer

R. Adopting the usual mean-value or least-square loss function

f to measure the error, the problem can be reformulated in the

form of (P). What we are concerned about are the following

two nonsmooth models:

(A) Mean-value loss function with intensity-only

measurements [24], i.e.,

f (x) = 1

m

m∑

i=1

|〈ai, x〉2 − b2i |.

(B) Least-square loss function with amplitude-only

measurements [25], i.e.,

f (x) = 1

m

m∑

i=1

(|〈ai, x〉| − bi)
2.

For simplicity and generalization, in both cases (A) and (B),

we use the Legendre function h(x) = 1
2‖x‖2 and the convex

ℓ1-norm regularization R(x) = ‖x‖1.

5.1. Model A

With the usual mean-value loss function, we can reformulate

(Equation 15) as the following nonconvex nonsmooth

optimization problem

min
x∈Rd

{
1

m

m∑

i=1

|xTAix− b2i | + µR(x)
}
,

where Ai = aia
T
i , i = 1, ...,m are symmetric matrices.

To apply ModelBI to this model, we first need to identify

an appropriate model function such that the MAP holds for

the pair (f , h). Consider the composite function f (G(x)) =
1
m

∑m
i=1 |xTAix − b2i |, where f (·) = 1

m‖ · ‖1 and Gi(x) =
xTAix − b2i for all i = 1, ...,m. The structure of f (G(x)) enables

us to construct the model function as follows:

f (x; xk) = 1

m

m∑

i=1

|Gi(x
k)+ 〈∇Gi(x

k), x− xk〉|, (16)

where∇Gi(x
k) = 2Aix

k. With h(x) = 1
2‖x‖2, we now show that

there exists L > 0 such that |f (G(x))− f (x; xk)| ≤ LDh(x, x
k).

Proposition 5.1. Let f , G, h, and the model function be as

defined above. Then, for any L satisfying

L ≥ 2

m

m∑

i=1

‖Ai‖F ,

the MAP holds for the function pair (f , h).

Proof. Let x ∈ R
d and xk be the current iterate. Since G is

C1 on R
d, we obtain the following model function by straightly

computing:

f (x; xk) = 1

m

m∑

i=1

∣∣∣
(
(xk)TAix

k − b2i

)
+ 〈2Aix

k, x− xk〉
∣∣∣ .

Then, the error between the loss function and the model

function is quantified by

|f (G(x))− f (x; xk)| ≤ 1

m

m∑

i=1

∣∣∣Gi(x)− Gi(x
k)− 〈∇Gi(x

k), x− xk〉
∣∣∣

= 1

m

m∑

i=1

∣∣∣
(
xTAix− b2i

)
−
(
(xk)TAix

k − b2i

)
− 〈2Aix

k, x− xk〉
∣∣∣

= 1

m

m∑

i=1

∣∣∣(x− xk)TAi(x− xk)
∣∣∣

≤ 1

m

m∑

i=1

‖Ai‖F‖x− xk‖2
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Note that h is strongly convex and Dh(x, x
k) = 1

2‖x −
xk‖2. Therefore, taking L ≥ 2

m

∑m
i=1 ‖Ai‖F yields |f (G(x)) −

f (x; xk)| ≤ LDh(x, x
k), which proves the desired result.

It is straightforward to verify that the setting implies

Assumptions 3.1–3.5. Thus, the sequence {xk} generated by

ModelBI globally converges to a critical point of f due to

Corollary 4.7. With the notation pk = −∇h(xk) − δkµkpk, we

can rewrite the main computational gradient map in Equation

(1) as follows

xk+1 = argmin
x

{
δkf (x; xk)+ δkµkR(x)+ 〈pk, x〉 + h(x)

}
.

(17)

Observing that there are two nonsmooth terms in this

subproblem, it is difficult to deduce the closed form solutions.

Here, we propose the alternating directionmethod ofmultipliers

(ADMM) as a choice.

Let H(x) = δkµkR(x) + 〈pk, x〉 + h(x) and I(y) = δk

m ‖y‖1;
then the subproblem (Equation 17) can be reformulated as the

2-block optimization problem

minimize
x,y

H(x)+ I(y),

s.t. Gi(x
k)+ 〈∇Gi(x

k), x− xk〉 − yi = 0, i = 1, ...,m.

With a regular parameter ρ and a vector z ∈ R
m,

the Augmented Lagrangian function for the reformulated

problem is

Lρ (x, y, z) =H(x)+ I(y)

+
m∑

i=1

zi

(
Gi(x

k)+ 〈∇Gi(x
k), x− xk〉 − yi

)

+ ρ

2

m∑

i=1

(
Gi(x

k)+ 〈∇Gi(x
k), x− xk〉 − yi

)2
.

(18)

Based on the dual ascent method, ADMM separates the

variants of Lρ (x, y, z) and iterates alternately by the following

scheme:





yk+1 = argmin
y

Lρ (x
k, y, zk),

xk+1 = argmin
x

Lρ (x, y
k+1, zk),

zk+1
i = zki +ρ

(
Gi(x

k)+ 〈∇Gi(x
k), xk+1 − xk〉 − yk+1

i

)
,

i = 1, ...,m.

With the well-known soft-thresholding operator Sτ (·) =
max{| · | − τ , 0} sgn(·), the ADMM scheme admits explicit

iteration steps. Here, we present the derived results below

for computation:





yk+1 = S
δk

ρm

(
G(xk)+ 1

ρ
zk
)
,

xk+1 = S
δkµkηk

1+ηk

(
ρηk

1+ ηk
m∑

i=1

(yk+1
i − Gi(x

k)− 1

ρ
zki )∇Gi(x

k)

− ηk

1+ ηk
pk+ 1

1+ ηk
xk

)
,

zk+1
i = zki +ρ

(
Gi(x

k)+ 〈∇Gi(x
k), xk+1 − xk〉 − yk+1

i

)
,

i = 1, ...,m,

where the solution of the first variant xk+1 is derived

by linearized ADMM (L-ADMM) [26] for the quadratic

regularization term in Equation (18), and ηk is the stepsize.

Remark 3. We utilized ADMMwith single-step iteration to solve

the first subproblems of both nonsmooth models. As the finite

length property ensures the global convergence of our proposed

algorithm, we do not need a high-accuracy solution from ADMM

in each iteration.

5.2. Model B

Another nonconvex nonsmooth optimization problem in

phase retrieval is recovering a solution from the amplitude-

based objective [25]. With the least-squared criterion and

amplitude-only measurements, we can reformulate (Equation

15) as follows:

min
x∈Rd

{
1

m

m∑

i=1

(|〈ai, x〉| − bi)
2 + µR(x)

}
.

To apply ModelBI as Model A, we first need to handle the

loss function f (x) = 1
m

∑m
i=1(|〈ai, x〉| − bi)

2. The structure is

totally different from that of Model A as the inner functions

|〈ai, x〉| are nonsmooth. Thus, the linearized technique is not

feasible for its model function. Fortunately, by considering the

equivalent form of amplitude
√
〈ai, x〉2 and adding an error

term at the current iterate, we construct its model function that

satisfies the MAP with the Legendre function h(x) = 1
2‖x‖2:

f (x; xk) = 1

m

m∑

i=1

(√
〈ai, x〉2 +

1

4
〈ai, x− xk〉4 − bi

)2
(19)

Proposition 5.2. Let f , h, and the model function be as defined

above. Assume that the error around the current iterate satisfies

‖x− xk‖ ≤ 1. Then, for any L satisfying

L ≥ 2

m

m∑

i=1

(
bi +

1

4
‖ai‖2

)
‖ai‖2,
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the MAP holds for the function pair (f , h).

Proof. Let x ∈ R
d and xk be the current iterate. We obtain

the error between the loss function and the model function by

straightly computing:

|f (x)− f (x; xk)| ≤ 1

m

m∑

i=1

∣∣∣∣∣

(√
〈ai, x〉2 − bi

)2

−
(√

〈ai, x〉2 +
1

4
〈ai, x− xk〉4 − bi

)2∣∣∣∣∣∣

= 1

m

m∑

i=1

∣∣∣∣∣2bi
(√

〈ai, x〉2 +
1

4
〈ai, x− xk〉4 −

√
〈ai, x〉2

)

−1

4
〈ai, x− xk〉4

∣∣∣∣

≤ 1

m

m∑

i=1

(
2bi

(√
〈ai, x〉2 +

1

4
〈ai, x− xk〉4 −

√
〈ai, x〉2

)

+1

4
〈ai, x− xk〉4

)

≤ 1

m

m∑

i=1

(
bi‖ai‖2‖x− xk‖2 + 1

4
‖ai‖4‖x− xk‖4

)

≤ 1

m

m∑

i=1

(bi +
1

4
‖ai‖2)‖ai‖2‖x− xk‖2,

where the third inequality comes from√
〈ai, x〉2 + 1

4 〈ai, x− xk〉4 ≤
√
〈ai, x〉2 + 1

2 〈ai, x − xk〉2,
and the last inequality comes from ‖x − xk‖ ≤ 1. Note

that h is strongly convex and Dh(x, x
k) = 1

2‖x − xk‖2.
Therefore, taking L ≥ 2

m

∑m
i=1(bi + 1

4‖ai‖2)‖ai‖2 yields

|f (x)− f (x; xk)| ≤ LDh(x, x
k), which proves the desired result.

Remark 4. Our proposed model function (Equation 19) is

inspired by the smoothing phase retrieval algorithm [25], in which

each amplitude term |〈ai, x〉| is smoothed by
√
〈ai, x〉2 + µ2 with

µ ∈ R++. However, the smoothing term cannot be used as the

model function, as it approximates |〈ai, x〉| independent of xk.

Remark 5. Note that the assumption that ‖x − xk‖ ≤ 1 is not

nontrivial. It can be satisfied by preconditioning the model data.

For a certain random model, an initial vector x0 via the spectral

method can reach sufficient accuracy with high probability [27].

It is straightforward to verify that Assumptions 3.1–3.5

holds. Thus, Corollary 4.7 imply that the sequence {xk}
generated by ModelBI globally converges to a critical point of f .

With the notation pk = −∇h(xk)− δkµkpk, we can also rewrite

the main computational gradient map as Equation (17).

Though the model function (Equation 19) is smooth, its

structure still hinders us from obtaining the closed form

solutions in the subproblem, which again needs the help of

ADMM in the following.

Let H(x) = δkµkR(x) + 〈pk, x〉 + h(x) and I(y) = δk

m ‖y‖2;
then the subproblem (17) can be reformulated as the 2-block

optimization problem

minimize
x,y

H(x)+ I(y),

s.t.

√
〈ai, x〉2 +

1

4
〈ai, x− xk〉4 − bi − yi = 0,

i = 1, ...,m.

With a regular parameter ρ and a vector z ∈ R
m, the

Augmented Lagrangian function for the reformulated problem

is

Lρ (x, y, z) = H(x)+ I(y)+
m∑

i=1

zi

(√
〈ai, x〉2

+1

4
〈ai, x− xk〉4 − bi − yi )

+ρ
2

m∑

i=1

(√
〈ai, x〉2 +

1

4
〈ai, x− xk〉4 − bi − yi

)2
.

Based on the dual ascent method, ADMM separates

the variants of Lρ (x, y, z) and iterates alternately by the

following scheme:





yk+1 = argmin
y

Lρ (x
k, y, zk),

xk+1 = argmin
x

Lρ (x, y
k+1, zk),

zk+1
i = zki +ρ

(√
〈ai, xk+1〉2 + 1

4
〈ai, xk+1 − xk〉4 − bi − yk+1

i

)
,

i = 1, ...,m.

With the soft-thresholding operator Sτ , the ADMM scheme

admits explicit iteration steps, which are presented below:





yk+1 = S
δk

ρm

(
G(xk)+ 1

ρ
zk
)
,

xk+1 = S
δkµkηk

1+ηk

(
ρηk

1+ ηk
m∑

i=1

(yk+1
i − Gi(x

k)

− 1

ρ
zki )∇Gi(x

k)− ηk

1+ ηk
pk+ 1

1+ ηk
xk

)
,

zk+1
i = zki +ρ

(
Gi(x

k)+ 〈∇Gi(x
k), xk+1 − xk〉 − yk+1

i

)
,

i = 1, ...,m,

where the solution of the first variant xk+1 is derived by L-

ADMM for the last two terms of the Augmented Lagrangian

function (Equation 18), and ηk is the stepsize.

Remark 6. It is mentioned that the Legendre function h(x) =
1
2‖x‖2 used above is aimed at simplifying analysis and deriving

the iteration steps. Other Legendre functions might have better
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FIGURE 1

Convergence behavior in the case of noisy data: (A) Function value vs. number of iterations, demonstrates the su�cient desent and convergent

property of the function value sequence {f(xk)}; (B) MSE vs. number of iterations, demonstrates the convergent property of the point sequence

{xk}; (C) min0≤k≤n ‖xk+1 − xk‖2 vs. number of iterations, where the dotted lines indicate the right side of Equation (14), verifies the bound of

convergent rate.

propositions in applications, while they bring more complicated

solutions. For example, equipped with h(x) = 1
4‖x‖4 + 1

2‖x‖2,
Models A and B need to find the roots of cubic equations

additionally in each iteration step.

6. Experiments

In this section, we provide numerical experiments of the

phase retrieval models in Section 5 to demonstrate the global

convergence of ModelBI.

In all reported experiments, (i) the target vector x ∈ R is

a k-sparse signal, which is generated first using x ∼ N (0, Id)

and then followed by setting (n − k) entries to zero uniformly

at random; (ii) the measurement vectors ai are i.i.d. N (0, Id),

i = 1, ...,m; (iii) the Gaussian noise ωi are i.i.d. ∼ N (0, σ 2),

i = 1, ...,m. Then, we postulate the noisy Gaussian data model

b2i = 〈ai, x〉2+ωi for Model A, and bi = |〈ai, x〉|+ωi for Model

B, and take the mean-squared error (MSE) [27] dist(xk, x) =
minφ∈{0,π}

∥∥∥xk − eiφx
∥∥∥ to quantify the error between the k-th

iterate and the target vector.

For simplicity, we set the regular parameters µ = 1/2 and

ρ = 1 for both models, and then choose constant stepsizes

µk ≡ µ, ηk ≡ 1 and δk ≡ 1/2L in all the iterations. We

fixed the dimension d = 128 and the sparsity level k = 5.

The number of measurements is fixed to m = 4.5d, as gradient

decent algorithms such as Wirtinger flow can exactly recover

the target vectors with high probability from more than 4.5d

Gaussian phaseless measurements [27].

With these settings, we conduct 100 trials for each model.

The noise level σ 2 ranges from 0.002 to 0.008 with a

0.002 interval. Then we report the convergence results by

average curves.

The first experiment examines the convergence behavior of

our algorithm for Model A in the case of noisy data. We set

L = 2
m

∑m
i=1 ‖Ai‖F due to Proposition 5.1. We stop after

200 iterations in each trial and report the convergence results

in Figure 1. Figure 1A demonstrates the sufficient desent and

convergent property of the function value whenModelBI applies

to Model A with the model function (Equation 16). Figure 1B

further demonstrates that our algorithm results in a convergent

sequence {xk} with 0 ∈ ∂f (x∗). In addition, Figure 1C verifies

the bound of the convergent rate in Equation (14).

The second experiment examines the convergence behavior

of the ModelBI algorithm for Model B. The initialization step

is obtained by applying 50 iterations of the power method in

Candès et al. [27, Algorithm 3] to ensure the assumption ‖x0 −
x‖ ≤ 1 in Proposition 5.2 with high probability. The constant

for the MAP is set to L = 2
m

∑m
i=1

(
bi + 1

4‖ai‖2
)
‖ai‖2 due

to Proposition 5.2. We stop after 2000 iterations in each trial

and report the convergence results in Figure 2. As is shown in

Figure 2, the sequence {xk} generated by ModelBI results in a

sufficient desent sequence {f (xk)} and a critical point x∗ with the
convergent rate bound in Equation (14).

Remark 7. In Figure 1C, we observe that the curves are piecewise

descending. This convergence behavior is due to the structure of the

model function. The model function (16) constructed for Model

A is still nonsmooth. As mentioned in Section 3, we picked a

specific element ξk+1 from the set ∂xf (x
k+1; xk) at random in

the first experiment. This strategy manifests itself as the piecewise

decending curves in Figure 1C.

Remark 8. In Figure 2B, the MSE curves descend at first and

slightly rise later. We observe that the ModelBI using a smooth

model function makes the sequence {xk} rapidly converge to the

true solution in early iterates. Afterward, the sequence gradually

converges into a noisy solution. The rising range is determined

by the noise level σ . As Figure 2B shows, after about 400

iterates, the MSE curve with σ 2 = 0.002 rises less than that

with σ 2 = 0.008. A proper stopping criterion can output

a better result, but that is not what the manuscript mainly

concerned about.

The third experiment presents the special behavior of

iterative regularization by comparing our algorithm with the
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FIGURE 2

Convergence behavior in the case of noisy data: (A) Function value vs. number of iterations, demonstrates the su�cient descent and convergent

property of the function value sequence {f(xk)}; (B) MSE vs. number of iterations, demonstrates the convergent property of the point sequence

{xk}; (C) min0≤k≤n ‖xk+1 − xk‖2 vs. number of iterations, where the dotted lines indicate the right side of Equation (14), verifies the bound of

convergent rate.

FIGURE 3

Convergence behavior in the case of noisy data with σ 2 = 0.004: (A)MSE vs. number of iterations, presents the convergence behavior of ModelBI

and Model BPG for Model A; (B) MSE vs. number of iterations, presents the convergence behavior of ModelBI and Model BPG for Model B.

recently reported Model BPG algorithm [10]. The settings are

respectively the same as that used in the experiments above. We

do not have explicit solutions for Model BPG with these settings.

For comparative purposes, we also apply ADMM with single-

step iteration to the main computational step of Model BPG. For

Model A, we stop after 200 iterations in each trial and report

the convergence behaviors with σ 2 = 0.004 in Figure 3A. For

Model B, we stop after 2,000 iterations in each trial and report

the convergence behaviors with σ 2 = 0.004 in Figure 3B.

7. Conclusion

Bregman iterative regularization and its variants have

attracted widespread attention in solving nonconvex problems,

while it is still difficult in extending to generic nonsmooth

composite optimization. In this regard, we proposed the

ModelBI algorithm that is applicable to nonconvex nonsmooth

problems based on the recent developments of the LBI

and the model function. By taking advantage of the MAP,

we drive the global convergence analysis of the ModelBI

sequence. Moreover, we present the application of two kinds of

nonsmooth phase retrieval problems by designing their model

functions and iterative schemes. The application demonstrates

the power of ModelBI, which appears to be the first Bregman

iterative regularization method for solving these two kinds

of problems.
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