
TYPE Original Research

PUBLISHED 07 November 2022

DOI 10.3389/fams.2022.1021069

OPEN ACCESS

EDITED BY

Li Wang,

University of Minnesota Twin Cities,

United States

REVIEWED BY

Juntao Huang,

Michigan State University,

United States

Omar Abu Arqub,

Al-Balqa Applied University, Jordan

*CORRESPONDENCE

Xinghui Zhong

zhongxh@zju.edu.cn

SPECIALTY SECTION

This article was submitted to

Mathematics of Computation and Data

Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

RECEIVED 17 August 2022

ACCEPTED 17 October 2022

PUBLISHED 07 November 2022

CITATION

Chen Y, Yan J and Zhong X (2022)

Cell-average based neural network

method for third order and fifth order

KdV type equations.

Front. Appl. Math. Stat. 8:1021069.

doi: 10.3389/fams.2022.1021069

COPYRIGHT

© 2022 Chen, Yan and Zhong. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Cell-average based neural
network method for third order
and fifth order KdV type
equations

Yongsheng Chen1, Jue Yan2 and Xinghui Zhong1*

1School of Mathematical Sciences, Zhejiang University, Hangzhou, China, 2Department of

Mathematics, Iowa State University, Ames, IA, United States

In this paper, we develop the cell-average based neural network (CANN)

method to solve third order and fifth order Korteweg-de Vries (KdV) type

equations. The CANN method is based on the weak or integral formulation

of the partial di�erential equations. A simple feedforward network is forced to

learn the cell average di�erence between two consecutive time steps. One

solution trajectory corresponding to a generic initial value is used to generate

the data set to train the network parameters, which uniquely determine a

one-step explicit finite volume based network method. Once well-trained,

the CANN method can be generalized to a suitable family of initial value

problems. Comparing with conventional explicit methods, where the time

step size is restricted as 1t = O(1x3) or 1t = O(1x5), the CANN method

is able to evolve the solution forward accurately with a much larger time

step size of 1t = O(1x). A large group of numerical tests are carried out to

verify the e�ectiveness, stability and accuracy of the CANN method. Wave

propagation is well resolved with indistinguishable dispersion and dissipation

errors. The CANN approximations agree well with the exact solution for long

time simulation.

KEYWORDS

neural network, finite volumemethod, KdV equations, nonlinear dispersive equations,

CANNmethod

1. Introduction

In this paper, we develop the cell-averaged based neural network (CANN)method [1]

for four classes of nonlinear wave equations formulated by the third order Korteweg-de

Vries (KdV) equations

ut + f (u)x + ǫuxxx = 0, (1.1)

the fully nonlinear K(m, n) equations

ut + (um)x + (un)xxx = 0, (1.2)

the KdV-Burgers type equations

ut + f (u)x − (ξ (u)ux)x + ǫuxxx = 0, (1.3)

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.1021069
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.1021069&domain=pdf&date_stamp=2022-11-07
mailto:zhongxh@zju.edu.cn
https://doi.org/10.3389/fams.2022.1021069
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2022.1021069/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

and the fifth order KdV type equations

ut + f (u)x + (r′(u)g(r(u)x)x))x + (s′(u)h(s(u)xx)xx)x = 0,

(1.4)

where ǫ is a constant and ξ (u) ≥ 0, f (·), r(·), g(·), s(·), and h(·)
are arbitrary (smooth) nonlinear functions.

The KdV equations (1.1), introduced in [2] a century ago as

a model for small amplitude long wave motion on the surface

of shallow water waves, are one of the basic models of soliton

theory. The fully nonlinear K(m, n) equations (1.2) are useful for

describing the dynamics of various physical systems, and admit

compactly supported solitary waves solutions, i.e., the so-called

compacton solution [3]. The KdV-Burgers equation (1.3) arises

in the description of long wave propagation in shallow water

and in weakly nonlinear plasma physics with dissipation [3]. The

fifth order nonlinear KdV equation (1.4) arises in the modeling

of weakly nonlinear waves in a wide variety of media including

magneto-acoustic waves in plasma and long waves in the liquids

under ice sheets [4, 5]. These KdV type equations describe

nonlinear wave motion that incorporate several important

physical phenomena, namely, dispersion, nonlinear advection,

and viscosity, and are commonly found in applications such as

nonlinear optics, Bose-Einstein condensation, plasma physics,

biophysics, etc.. Various conventional numerical methods were

carried out to solve these KdV type equations; see [6–10] and the

references therein.

Over the last three decades, machine learning with

neural networks has achieved tremendous success in image

classification, speech recognition, text and natural language

processing, etc.. In the last few years, extensive studies with

neural network appear in scientific computing, now referred as

the field of scientific machine learning. Early works include the

integration of ODE or PDE to networks in [11, 12], discovery

of PDEs in [13, 14], solving high-dimensional PDEs in [15–

17], and applications for uncertainty quantification in [18–

24], etc.. Another popular direction combines neural network

with classical numerical methods to improve their performance,

for example, as troubled-cell indicator in [25], to estimate the

weights and enhanceWENO scheme in [26], convolution neural

networks (CNN) for shock detection for WENO schemes in

[27], and to estimate the total variation bounded constant for

limiters in [28].

Recently, neural network has been applied to directly solve

ODEs and PDEs, among which they can be roughly classified

into two approaches. The first approach parameterizes the

solution as a neural network or a deep CNN between finite

Euclidean spaces. Approximation properties of neural networks

are explored in [29–31] and the method is mesh free and enjoys

the advantage of auto differentiation. There have been early

works in [32–37] and the popular PINNmethod in [38–43]. We

skip the long list. While PINNmethods are successful for elliptic

type PDEs, the method is inefficient for time evolution problems

due to its approximation is limited to a fixed time window.

The second group of methods, the so-called neural operator

approach, produce a single set of network parameters that may

be used in discretizations. It needs to be trained only once and a

solution for a new instance of parameter requires only a forward

pass of the network. Works in this approach include the graph

kernel neural network [44] and the Fourier neural operator [45],

which learn the mapping between infinite-dimensional spaces

and most closely resembles the reduced basis method. The cell-

average based neural network (CANN) method discussed in

this paper explores a simple network that approximates the cell

average difference between two consecutive time steps, which

can be considered as operator approximation and be classified

into this approach. The CANN method was first developed in

[1] for hyperbolic and parabolic equations, motivated by the

work of [46] that also explored the approximation of the solution

difference between two time instances. The CANN method we

aim to develop for KdV type equations essentially defines a

forward in time evolution mechanism, which can be applied to

propagate the wave solution in time as a regular explicit method.

We also refer readers to the early work of cellular nonlinear

network for KdV equation [47].

The CANN method combines the neural network with the

finite volume scheme, where a shallow feedforward network

is explored to learn the cell average difference between two

consecutive time steps. After well trained, an explicit one-step

finite volume type neural network method is obtained. A major

advantage of the CANN method is that the neural network

solver can be relieved from the Courant-Friedrichs-Lewy (CFL)

restriction of explicit schemes and can adopt large time step

size (i.e., 1t = 41x). In this paper, we continue to develop

the CANN method for KdV type equations (1.1–1.4), which are

third order or fifth order nonlinear equations with dispersive

feature. The CANN method is further developed to solve these

high order equations with large time step size (i.e., 1t =
1x/2), which can be considered as an explicit time discretiztaion

method efficiently propagating the dispersive wave evolution

forward in time.

The starting point of CANNmethod is the weak formulation

of the time dependent problem (1.1–1.4) obtained by integrating

the equation over the box of spatial cell and temporal interval.

With the notation of cell averages, the rewritten integral form

of the equation can be regarded as the cell average difference

between two consecutive time levels, for example, between tk
and tk+1. The CANN method applies a simple network to

approximate the cell average difference between such two time

levels. One important feature is the introduction of the network

input vector, which can be interpreted as the stencil of the

scheme at time level tk. The major contribution of the CANN

method is to explore such a network structure that exactly

matches an explicit one-step finite volume scheme. Thus the

network parameter set, after offline supervised learning from a

given data set, behaves as the coefficients of the scheme. After

well trained, the CANN method is a local and mesh dependent

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

solver that can be applied to solve the equation as a regular

explicit method.

Essentially the CANN method can be considered as a time

discretization scheme, for which it is critical to maintain the

stability and control the accumulated error in time. Numerical

tests show that it is necessary to include multiple time levels of

data to train the network and obtain a stable CANN solver. In the

original CANNmethod [1], multiple time levels of data pairs are

used and treated equally over the training process, which does

not take into account the accumulation error. In this paper, we

modify the training procedure by connecting all time levels of

data and by forcing the accumulation error to roll over to the

next time level such that a stable CANNmethod can be obtained.

In this paper, we pick one generic initial value u(x, 0) =
u0(x) of the given PDE (1.1–1.4) to generate the training data

set. In a word, cell averages from a single solution trajectory

are used to train the network. It turns out that the CANN

method is able to learn the mechanism of nonlinear dispersive

wave propagation with such a small training data set (up to

t5 five time steps). Once well trained, the CANN solver can

be applied to solve a group of initial values problems of (1.1–

1.4) with insignificant generalization error. Numerical tests

show a shallow network [48] in terms of two or three hidden

layers and a total of a few hundred unknowns of weights and

biases is sufficient for obtaining a well-behaved CANN method.

Comparing with conventional explicit methods, where the time

step size is restricted as 1t = O(1x)3 or 1t = O(1x)5, the

CANN method can accurately maintain the evolution of the

solution in time with a much larger time step size as 1t =
O(1x). Numerical tests for four classes of the KdV equations are

carried out to verify the stability, accuracy, and effectiveness of

the CANNmethod.

The rest of the paper is organized as follows: In Section 2,

we present the details of the CANNmethod for solving the KdV

type equations with the problem setup and formulation of the

CANN method in Section 2.1, data generation and the training

process in Section 2.2, and implementation and discussion of the

CANN method in Section 2.3. Various numerical experiments

are shown in Section 3. Conclusion remarks are given in

Section 4.

2. Cell-average based neural
network approximation

2.1. Problem setup and the CANN
method

The CANN method is closely related to the finite volume

scheme, which is a mesh-dependent local solver. Similar to the

finite volume method, we start with mesh partition in space and

time. The computational domain [a, b] is uniformly partitioned

into J cells with Ij = [xj− 1
2
, xj+ 1

2
], j = 1, . . . , J, where

a = x 1
2

< x 3
2

< · · · < xJ+ 1
2
= b.

The cell size is denoted as 1x = b−a
J . The time domain is also

uniformly partitioned with time step size 1t, and the k-th time

level is denoted as tk = k1t.

To derive the CANN method, we first rewrite the KdV type

equations (1.1–1.4) in the following form

ut = L(u), (2.1)

where L is the differential operator that includes all terms

involving spatial variable x. Integrating (2.1) over a generic

computational cell Ij and time interval [tk, tk+1] yields
∫ tk+1

tk

∫

Ij

ut dxdt =
∫ tk+1

tk

∫

Ij

L(u) dxdt. (2.2)

Let ūj(t) = 1
1x

∫

Ij
u(x, t) dx denote the cell average of the

solution on Ij. Equation (2.2) can be integrated out as

ūj(tk+1)− ūj(tk) =
1

1x

∫ tk+1

tk

∫

Ij

L(u) dxdt. (2.3)

Clearly, exact solutions of the KdV type equations satisfy (2.3)

with L being the associated differential operator. Equation (2.3)

is a weak formulation and is equivalent to the associated KdV

type equation (1.1–1.4) under suitable regularity.

The integral form of (2.3) is the starting point for

designing the CANN method. Instead of applying numerical

differentiation to the complicated operator L, a fully connected

feedforward neural network N (·;2) is sought to approximate

the right hand side of (2.3), namely,

N (EV in
j ;2) ≈ 1

1x

∫ tk+1

tk

∫

Ij

L(u)dxdt. (2.4)

We assume such a mapping exists, represented through a

network N (EV in
j ;2), where EV in

j is the network input vector.

We highlight that the input vector EV in
j involve the solution

information at time level tk and cell Ij and is the window

to communicate with the network. All network parameters of

weight matrices and biases are grouped into and denoted by 2.

Suppose that the training data pair (ūkj , ū
k+1
j) involving the cell

averages at time level tk and tk+1 are available, a simple network

N (EV in
j ;2) is trained to minimize the square error between the

network output v̄outj and the given data ūk+1j , where

v̄outj = v̄inj +N

(

EV in
j ;2

)

. (2.5)

Setting v̄inj = ūkj and connecting (2.5) with (2.3), the goal of the

CANNmethod is to enforce the network output to approximate

the cell average at next time level tk+1, i.e.,

v̄outj ≈ ūk+1j .

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 1

Network structure of a CANN method.

We refer to Figure 1 for the structure of the CANN method.

From the format of (2.5), we see our network is a variation of

residual neural network method. The input of our network is a

vector while the output is a scalar. The leading entry of the input

vector is used to compute the residual. The network is trained to

learn the residual or the solution evolution from tk to tk+1.
In a word, a shallow network N (EV in

j ;2) is pursued to

approximate the cell average difference between two consecutive

time levels. The input vector EV in
j of the network (2.5) is given by

EV in
j =

[

ūkj−p, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, . . . , ū

k
j+q

]T
, (2.6)

which includes p left cell averages and q right cell averages of

ūkj . The functionality of the input vector EV in
j is similar to the

stencil of a conventional numerical method. The components

of the input vector, i.e., the values of p and q, determine

the effectiveness of the CANN method and thus need to be

carefully chosen. The general principle is to follow the PDE and

the characteristic of the solution to design a suitable network

input vector. For a dispersive differential equation with wave

propagating from right to left, i.e., ut + uxxx = 0, more cells

to the right (q > p) should be included in the network input

vector (2.6) to adapt the dispersive relation.

The network parameter set 2 can be considered as the

scheme coefficients of a finite volume type neural network

method. The so-called optimal network parameter set 2∗

is obtained through offline supervised learning with data

distributed over all spatial cells Ij, j = 1, . . . , J. The well-trained

neural network essentially behaves as an explicit one-step finite

volume scheme, which is supposed to solve general initial value

problem of the KdV type equations (1.1–1.4) at any time level tk
and on any cell Ij.

The network structure of the CANN method is illustrated

in Figure 1. We consider a standard fully-connected neural

network with M (M ≥ 3) layers. The first layer is the input

vector EV in
j of (2.6) which is the stencil with p cells to the left

and q cells to the right of the current cell Ij. The last layer is

the cell average approximation v̄k+1j at next time level tk+1. The
M − 2 layers in the middle are hidden layers. Let ni denote the

number of neurons in the i-th layer. We have n1 = p + q + 1

and nM = 1. The abstract objective of machine learning is to

find a mappingN :R
p+q+1 → R

1 such that,N (·;2) is able to

accurately approximate 1
1x

∫ tn+1
tn

∫

Ij
L(u) dxdt, the right hand

side of (2.3).

The network N (·;2) is a composition of the following

operators

N (·;2) = (σM ◦WM−1) ◦ · · · ◦ (σ2 ◦W1), (2.7)

where ◦ represents the composition operator, and Wi denotes

the linear transformation operator or the weight matrix

connecting the neurons from the i-th layer to the (i+1)-th layer.
Activation functions σi :R → R(i ≥ 2) are applied to each

neuron in a component-wise fashion. In this paper, we adopt

σi(x) = tanh(x) for i = 2, . . . ,M − 1 and σM(x) = x.

Definition 1. The CANNmethod is well-defined by the following

three components: (1) the spatial and temporal mesh sizes 1x

and 1t; (2) the network input vector EV in
j defined in (2.6); (3)

the structure of the neural network in terms of number of hidden

layers and neurons per layer.

In this paper, we explore one generic initial value of the

given PDE (1.1–1.4) to generate the training data set. In a

word, a single solution trajectory is considered and used to

train the network. To maintain the stability and control the

accumulation error in time, multiple time levels of cell averages

are needed and included in training. It turns out that the

CANN method is able to learn the mechanism of nonlinear

dispersive wave propagation with such a small training data set.

Once well trained, the CANN solver can be applied to solve a

group of initial values problems of (1.1–1.4) with insignificant

generalization error. We further highlight that numerical tests

show a shallow network in terms of two or three hidden layers

and a total of a few hundred unknowns of weights and biases is

sufficient for obtaining a well-behaved CANNmethod (2.5).

2.2. Data generation and training of the
CANN method

In this section, we present the generation of the data set and

the training process of the CANN method, which are important

steps toward the success of the CANNmethod.

The training data set is taken as one generic initial value

problem with u(x, 0) = u0(x), and one single solution trajectory

is explored to generate cell averages as the learning data. The

training data set is defined by

S =
{(

ūk1, ū
k
2, . . . , ū

k
J

)

: k = 0, . . . , n
}

, (2.8)

which consists of one trajectory of cell averages spreading over

the whole computational domain (j = 1, . . . , J) and covering

time levels from t0 to tn. The cell averages {ūkj } are either

generated from the exact solution or obtained from a highly

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

accurate numerical method corresponding to the picked initial

value problem.

The geometric structure of the data set S can be regarded

as rectangular shape with the horizontal direction representing

spatial cells with index j = 1, . . . , J and the vertical direction

representing time levels with index k = 0, . . . , n. It is worth

mentioning that there is no analytical result about how many

time levels should be included in the data set to obtain a stable

CANN method. In this paper, numerical experiments show that

time levels up to t5 [n = 5 in (2.8)] are good enough for training

the network such that a stable CANN method can be obtained

for all four classes of the KdV type equations.

Now we discuss in detail the supervised learning process

with the data of (2.8) to obtain the optimal parameter set

2∗, which is the goal of the CANN method such that the

network N (EV in
j ;2∗) can accurately approximate the operator

1
1x

∫ tk+1
tk

∫

Ij
L(u) dxdt or the difference ūk+1j − ūkj between two

consecutive time levels. As discussed in Section 2.1, the network

parameter set2 behavesmore or less as the coefficients of a finite

volume scheme. The CANN method (2.5), after well trained, is

an explicit one-stepmethod that will be applied on any cell Ij and

at any time level tk. Thus the network parameter set2 should be

updated independent of the data location (j, k) and should be

continuously updated while the cell index looping through the

spatial domain (j = 1, . . . , J).

In the original CANNmethod [1], the training data is used in

the form of pairs (ūkj , ū
k+1
j). The parameter set2 is updated with

{ūkj }
J
j=1 applied forming the input vector EV in

j , while the square

error or the loss function

Lj(2) = (voutj − ūk+1j)2

is minimized through the network (2.5). Even for nonlinear

problems with multiple time levels of data on hand, different

time levels are used and treated equally in [1]. Since the

parameter set 2 is essentially the coefficients of a one-step

method, it is reasonable to apply the data usage in this way

and enforce the network learning the evolution of ūkj → ūk+1j .

On the other hand, this training procedure does not take into

account the error accumulated in time. It is worth emphasizing

that such a process of training is not stable for nonlinear KdV

type equation involving advection, diffusion, and dispersion

terms.

To maintain the stability and control the accumulation

errors in time, we connect all time levels of data in the training

set (2.8) and modify the data usage and training process. We

force the accumulation error roll over to the next time level

during training such that the accumulation error is part of the

training procedure itself. Except the first two time levels t0 and

t1, we follow the original CANNmethod and apply data pairs of

(ū0j , ū
1
j) to update parameter set2. For any later two consecutive

time levels tk and tk+1 (1 ≤ k ≤ n− 1), data pairs of (v̄kj , ū
k+1
j)

FIGURE 2

Illustration of data usage and one epoch iteration to update 2.

are adopted in the network (2.5) to update the parameter set

2. Here the network outputs {v̄kj }
J
j=1 at tk, which are obtained

through the network (2.5) with the updated 2, are used to

assemble the network input vector EV in
j , instead of using {ūkj }

J
j=1

as the original CANNmethod. It is worth mentioning that v̄kj ≈
ūkj . The network input vector EV in

j inherits the accumulation

error from previous time levels and will flow this information

into the CANN network to update v̄outj . We then minimize the

square error of (v̄outj − ūk+1j)2 with a optimization method, for

example, the stochastic gradient descent to update2 for the next

round. We refer to Figure 2 for the illustration of data usage and

the modified training process for 2.

To speed up training and improve accuracy, we apply the

mini-batch stochastic gradient descent method with the batch

size set as jb = 10. The loss function is defined as

Lm,k(2) = 1

jb

jmjb
∑

j=jm1

(v̄outj − ūkj)
2, (2.9)

where 1 ≤ jm1, . . . , jmjb ≤ J are the total jb randomly selected

indices for each batch m = 1, . . . , J/jb. Following [49], Adam

optimization algorithm is applied to train the parameters 2.

Initial learning rate of α = 0.01 or α = 0.001 is adopted and

later attenuated learning rate is applied through Adam method.

All matrices weights are first randomly generated from a

normal distribution around zero. The biases are initialized to be

zero. One epoch of iteration is defined as the network parameters

2 being continuously updated with each piece of data ūkj in the

set of (2.8) applied once.

One epoch iteration: 2old −→ 2new,

∀m = 1, . . . , J/jb and ∀k = 0, . . . , n− 1.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

The parameter set 2 will be updated corresponding to the

coverage order of the data set. We first sweep through spatial

cells over the whole computational domain, then move toward

temporal direction to accommodate more time levels of data to

improve the stability of the method. Specifically, one epoch of

iteration is corresponding to the procedure described from line

#7 to line #19 in the pseudo code of Algorithm 1. The parameter

set 2 is to be continuously updated through the mini-batch

gradient descent direction of (2.9). For one epoch iteration, the

parameter set 2 is updated with a total of n × (J/jb) times. It

is worth mentioning that following squared L2 error at the last

time level tn

L22(tn) =
1

J

J
∑

j=1
(v̄outj − ūnj)

2 (2.10)

is calculated and used as the objective and the measurement

of the effectiveness of the CANN method (2.5). We refer to

Algorithm 1 as a flow chart of the training procedure for the

CANNmethod.

We mention again that multiple time levels of data are

necessary to train a stable CANN method for nonlinear KdV

type equations. With the new way of data application, the

accumulation error in time is considered over the training

process, which undoubtedly improves the stability of the CANN

method. The data set S of (2.8) involving multiple time levels

of data can be regarded as a one identity or one body of the

training data.

We further highlight that the term optimal is an abused

notation. We assume that the network mappingN :R
p+q+1 →

R
1 exists and well approximates the right hand side of (2.3) with

small error (N (·;2) ≈ 1
1x

∫ tn+1
tn

∫

Ij
L(u) dxdt). The parameter

set 2∗ does not refer to the set corresponding to the minimizer

of (2.9). Instead, the term of the optimal parameter set 2∗ refers
to any collection of network weights and biases that can manage

the squared error (2.10) smaller than a given tolerance.

Notice for j = 1 or j = J or those close to boundary

cells, the network input vector EV in
j in (2.6) requires p left cells

and q right cells to update the current cell during both training

and implementation. This is similar to the boundary condition

scenario of a conventional finite volume method. In this paper,

we restrict our attention on Dirichlet or periodic boundary

conditions. During training and implementation, we simply

copy cell averages from inside the domain to accommodate

periodic boundary conditions.

2.3. Implementation and discussion of
the CANN method

It follows from the discussion in previous sections that,

with the spatial and temporal mesh sizes 1x and 1t chosen,

the network input vector EV in
j picked, and the optimal network

Require: Generate data set S of (2.8)

1: identify one initial value u0(x) for the given

KdV type PDE (1.1-1.4)

2: choose 1x and 1t, solve the given PDE and

obtain training data
(

ūk1, ū
k
2, . . . , ū

k
J

)n

k=0
.

3: identify the network input vector EV in
j and

network structure of the CANN method (2.5)

4: choose batch size jb, error tolerance ǫ and

upper bound K for total epoch iterations

Ensure: Obtain optimized network parameter set 2∗

5: initialize 20 from normal distribution around

zero and set 2old = 20

6: while squared error L22(tn) > ǫ or epochs iteration

≤ K do

7: set v̄0j ← ū0j , ∀j = 1, . . . , J

8: for k← 1 to n do

9: randomly choose jb cells(1 ≤ jm1, . . . , jmjb ≤ J)

for each batch m = 1, . . . , J/jb

10: for m← 1 to J/jb do

11: assemble EV in
j from v̄k−1j and output

v̄outj ← v̄k−1j +N (EV in
j ;2old), ∀j = jm1, . . . , jmjb

12: calculate squared loss function Lm,k(2
old)

of (2.9)

13: update 2new ← 2old from mini-batch

stochastic gradient descent

14: set 2old = 2new

15: end for

16: for j← 1 to J do

17: update approximations v̄kj ← v̄k−1j +
N (EV in

j ;2new) at tk through 2new

18: end for

19: end for

20: calculate global square error L22(tn) of (2.10)

21: end while

22: return 2∗ = 2new

Algorithm 1. Training of the network parameter 2
∗ for the CANN

method.

parameter 2∗ successfully trained, the CANN method is well

defined. Now, with N (EV in
j ;2∗) available, the trained CANN

method can be implemented as an explicit one-step time

discretization method as follows: starting from cell averages of a

TABLE 1 Errors of the CANN simulation for Example 3.1 at T = 0.25

with di�erent c.

c 0.3 0.31 0.32 0.29 0.28

L2 error 1.149E-03 1.489E-02 2.935E-02 1.297E-02 2.409E-02

L∞ error 3.355E-03 2.909E-02 5.993E-02 2.785E-02 5.446E-02

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 3

Soliton solutions (3.2) of Example 3.1: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 0.5 with c = 0.3 for di�erent

values of x0.

TABLE 2 Errors of the CANN solution for Example 3.2 at T = 1 with

di�erent A or x0.

A L2 error L∞ error x0 L2 error L∞ error

0.2275 1.136E-04 6.078E-04 0.5 1.136E-04 6.078E-04

0.2375 1.680E-04 1.070E-03 0 1.136E-04 6.078E-04

0.2475 2.803E-04 1.867E-03 1 1.136E-04 6.078E-04

0.2175 1.139E-04 6.876E-04 2 1.137E-04 6.064E-04

0.2075 1.339E-04 7.379E-04 −2 1.135E-04 7.752E-04

solution {v̄kj }
J
j=1 at time level tk (for the initial condition, {v̄0j }

J
j=0

is taken as the cell averages of the given initial condition),

we would like to advance it to next time level tk+1 to obtain

{v̄k+1j }Jj=1 by

v̄k+1j = v̄kj +N (EV in
j ;2∗), j = 1, . . . , J. (2.11)

Implementation of the CANNmethod

1 Compute the initial cell averages {v̄0j }
J
j=0 at t0 from the given

initial condition.

2 Run through the CANN method (2.11) to generate cell

average approximations
{

{v̄k1, . . . , v̄kJ }, k ≥ 1
}

for later time.

3 Repeat Step 2 until the expected time is reached.

Periodic or Dirichlet type boundary conditions are

implemented in the same way as a conventional finite volume

method. It is worth mentioning again that the CANN method

trained with the data generated from one generic initial

condition of the given problem (1.1–(1.4 can be applied to a

suitable family of initial value equations.

One typical phenomena observed is that the CANNmethod

as an explicit method can be relieved from the stringent

CFL restriction on time step size. For third order dispersive

equations, i.e., ut + uxxx = 0, conventional explicit methods

require the time step size to be as small as 1t ≈ O(1x)3.

For fifth order equations, i.e., ut − uxxxxx = 0, the restriction

is more stringent with 1t ≈ O(1x)5. Instability and blowup

phenomena will be observed if a larger time step size is applied.

Explicit methods are limited by the small time step size, thus are

time consuming and inefficient especially for multi-dimensional

problems. Many efforts are made to investigate implicit or semi-

implicit time discretization methods. Implicit methods have the

advantage of large time step size, though the algorithms are

usually complicated and sometimes are also expensive.

It is worth emphasizing that the neural network method is

based on the integral format of the PDE

ūj(tk+1)− ūj(tk) =
1

1x

∫ tk+1

tk

∫

Ij

L(u) dxdt.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 4

K(2, 2) equation in Example 3.3: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 0.5 with di�erent λ.

It is equivalent to the original PDE, i.e., ut = L(u), given in

differentiation form. Due to unknown reason behind, the CANN

method is able to catch up solution information at the next time

level tk+1 and adapt large time step size for solution evolution,

which is similar to an implicit method. Numerical tests show

that the CANN method can adopt very large time step size as

1t = O(1x) for KdV type equations involving third order or

fifth order terms.

The following is a summary of the properties of the CANN

method.

• The CANN method is based on the integral formulation of

the PDE.

• Numerical tests show that CANN method can adopt very

large time step size of 1t = O(1x) for third order or fifth

order KdV type equations.

• Small data set can be used to effectively train the network

and obtain a stable and accurate explicit one-step finite

volume type method.

• The CANN method can sharply evolve the compacton

propagation with no oscillation at the singular corners and

has no difficulty to capture solution with sharp transition.

• The CANN method generates little dispersive and

dissipation errors for long time simulation.

The CANNmethod, trained from a single solution trajectory

with a single wave speed, is able to solve a collection of wave

propagation problems with different wave amplitudes and wave

speeds. We end this section with some comments on the

limitations associated with the current version of the method. In

this paper, we explore extremely small-sized data set generated

from one single solution trajectory corresponding to the chosen

choice of wave speed and wave amplitude among the family of

soliton wave solutions. In some cases, the CANN method is less

accurate when tested on soliton solutions with the parameter

such as the wave speed that is far away from the one used in

training. Furthermore, the CANN method needs a rather wider

or larger input vector EV in
j , while conventional numerical method

has more compact stencil for scheme definition.

3. Numerical results

In this section, we carry out a series of numerical

experiments to demonstrate the accuracy and capability of the

CANNmethod for the KdV type equations (1.1–1.4). The major

objective is to verify that large time step size, i.e., 1t = 1x/8,

can be applied to explicitly solve high order PDEs. One initial

value is picked and one single solution trajectory is explored to

generate the training data set (2.8). The well-trained network

solver is able to solve a group of initial value problems with

insignificant generation error.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 5

KdV-Burgers equation of Example 3.4: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 1.0 with di�erent θ .

FIGURE 6

KdV-Burgers equation of Example 3.4: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 1.0 with di�erent b.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 7

mKdV-Burgers equation of Example 3.5: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 1.0. (Left) Di�erent values

of θ with a = 1 and b = 1; (Middle) Di�erent values of b with a = 1 and θ = 0; (Right) Di�erent values of a with b = 1 and θ = 0.

We present simulations of the CANN method for the third

order KdV equations in Section 3.1, for the fully nonlinear

K(m, n) equation in Section 3.2, for the KdV-Burgers equations

in Section 3.3, and for the fifth order KdV equations in Section

3.4. To show the performance of the CANNmethod, we examine

the following two error measures.

• L2 error:
√

1
J

∑J
j=1

(

v̄j(T)− ūj(T)
)2
,

• L∞ error: max1≤j≤J
∣

∣v̄j(T)− ūj(T)
∣

∣,

where v̄j(T) denotes the numerical solution obtained by the

proposed CANN method and ūj(T) denotes the cell average of

the exact solution. Here the final time T is always taken as a

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 8

Kawahara equation of Example 3.6: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 1.0 with di�erent x0.

FIGURE 9

Kawahara equation of Example 3.6: the CANN solution (red circles) and the exact solution (solid blue lines) at di�erent T with x0 = 5.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

multiple of the time step since the time step 1t is chosen first

and is a part of the CANNmethod (2.11).

3.1. Third order KdV equations

In this subsection, we present numerical results for the third

order generalized KdV equations (1.1) with the CANN method

(2.11).

Example 3.1. In this example, we consider the following classical

KdV equation

ut + (
u2

2
)x + ǫuxxx = 0 (3.1)

with ǫ = 5 × 10−4. The computational domain is set as [0, 2],

and periodic boundary conditions are applied. There exist classical

soliton wave solutions [50] given by

u(x, t) = 3c sech2(κ(x− x0 − ct)), (3.2)

where x0 is the wave center, c relates to the wave amplitude and

speed, and κ is determined by c and by the dispersive coefficient ǫ

via κ = 1
2

√
c/ǫ.

Now we explore the CANN method for the above soliton

wave solutions of the KdV equation (3.1). We adopt the spatial

mesh size 1x = 0.0125 and large time step size 1t = 1x
2 for

setting up the CANNmethod. The network input vector

EV in
j =

[

ūkj−12, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, . . . , ū

k
j+9

]T
(3.3)

is considered since the wave propagates from left to right. The

network structure consists of three hidden layers with 40, 20, and

10 neurons in the first, second, and third layers, respectively.

The training data set is generated from the solution of (3.2)

with c = 0.3 and x0 = 0.5. A total of K = 2 × 105 epoch

iterations are applied to train the network. After well trained,

the CANN network solver is applied to test on a group of soliton

solutions (3.2) with various values of c and x0. For the first test,

we fix the wave center location x0 = 0.5 in (3.2) and change

the values of c relating to both wave speed and wave amplitude.

Table 1 lists the L2 and L∞ errors between the CANN solution

and the exact solution at T = 0.25 for different values of c. For

the second test, we fix the wave speed/amplitude c = 0.3 in (3.2)

and change the locations of the wave center x0. Figure 3 plots

the simulations of the CANN method at T = 0.5 with different

locations x0. It can be observed that the CANNmethod is able to

accurately capture a decent collection of soliton waves (3.2) for

the KdV equation (3.1).

Example 3.2. In this example, we consider the following

generalized KdV equation

ut + ux + (
u4

4
)x + ǫuxxx = 0 (3.4)

with ǫ = 0.2058× 10−4 over the computational domain [−2, 3].
Zero boundary conditions are applied. Similar to (3.1), soliton

wave solutions [7] exist and are given by

u(x, t) = A sech
2
3 (B(x− x0)− ωt). (3.5)

Here A is the wave amplitude, and x0 is the initial wave center.

The wave frequency B = 3

√

A3

40ǫ is determined by A and ǫ. The

wave speed ω is given by ω = B(1+ A3

10).

Similar to previous example, we set the spatial mesh size as

1x = 0.0125 and the time step size as 1t = 1x
2 . A relatively

narrower network input vector

EV in
j =

[

ūkj−3, ū
k
j−2, ū

k
j−1, ū

k
j , ū

k
j+1, ū

k
j+2, ū

k
j+3

]T
(3.6)

is adopted, and only one hidden layer of 40 neurons is taken for

the network structure.

The training data set is generated from the soliton solution

of (3.5) with A = 0.2275 and x0 = 0.5. A total of K =
2 × 105 epochs are applied for training the network. Once well

trained, the network solver is applied to test on a group of soliton

solutions (3.5) with different values of A and x0. We show the

L2 and L∞ errors between the CANN simulation and the exact

solution at T = 1 in Table 2. The left column lists the errors with

the location x0 = 0.5 fixed but with different values of A in (3.5),

while the right column lists the errors with A = 0.2275 fixed

but with different locations x0. For the group of soliton solutions

(3.5) with various values of A or x0, the CANN approximations

agree well with the exact solutions.

3.2. Fully nonlinear K(m,n) equation

In this subsection, numerical tests with the CANN method

for the fully nonlinear K(m, n) equations (1.2) are presented,

where solutions with singular corners are typical, that are

referred as compacton solutions; see e.g., [51, 52] for more

details.

Example 3.3. In this example, we consider the following K(2, 2)

equation

ut + (u2)x + (u2)xxx = 0 (3.7)

over the domain −20 ≤ x ≤ 20 and with periodic boundary

conditions. We study the CANNmethod to the canonical traveling

wave solutions of

u(x, t) =
{

4λ
3 cos2

(

x−λt
4

)

, |x− λt| ≤ 2π ,

0 otherwise
(3.8)

given in [51], where the parameter λ determines both the wave

speed and the wave amplitude.

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 10

Ito’s fifth order mKdV equation of Example 3.7: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 1.0 with di�erent

x0 where κ = 0.25 is fixed.

FIGURE 11

Ito’s fifth order mKdV equation of Example 3.7: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 1.0 with di�erent κ

where x0 = −10 is fixed.

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 12

Ito’s fifth order mKdV equation of Example 3.7: the CANN solution (red circles) and the exact solution (solid blue lines) at di�erent time T with

κ = 0.25 and x0 = 0.

FIGURE 13

Generalized fifth order KdV equation of Example 3.8: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 0.5 with

di�erent values of λ where x0 = −5 is fixed.

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 14

Generalized fifth order KdV equation of Example 3.8: the CANN solution (red circles) and the exact solution (solid blue lines) at T = 0.5 with

di�erent values of x0 where λ = 0.1 is fixed.

For the CANN method, the spatial mesh size 1x = 0.1

and the temporal mesh size 1t = 1x
4 are taken. The network

structure consists of two hidden layers with 40 and 20 neurons

in the first and second layers, respectively. Due to the fact that

the wave propagates from the left to right, the following neural

network input vector is chosen

EV in
j =

[

ūkj−9, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, . . . , ū

k
j+6

]T
. (3.9)

The training data set is generated from the compacton

solution of (3.8) with λ = 1. A total of K = 2 × 105 epochs are

used to train the network. After well trained, the network solver

is applied to simulate the evolution of the compacton (3.8) with

different λ values. Figure 4 plots the CANN solutions at T = 0.5

with different λ. The CANN method trained from λ = 1 can

be generalized to the compactons (3.8) with different values of λ

not far away from 1.

3.3. The KdV-Burgers equations

In this subsection, we present numerical results for

the compound KdV-Burgers equation (1.3) in the form

of

ut + αuux + µu2ux + βuxx − ǫuxxx = 0, (3.10)

where α, µ, β , and ǫ are the constants to balance the

convection, diffusion, and dispersive effects. These equations

can be considered as a composition of the KdV and Burgers

equations. We refer to [3] for more details of the equations

and to [53] for the explicit form of exact solutions in

(3.10).

Example 3.4. In this example, we consider the KdV-Burgers

equation

ut + αuux + βuxx − ǫuxxx = 0 (3.11)

over the computational domain −20 ≤ x ≤ 20 with α = 1, ǫ =
1, and β = −2. We study a group of traveling waves given by

u(x, t) = − 3β2

25αǫ
sech2

1

2
(cx+ ωt + θ)

+ 6β2

25αǫ
tanh

1

2
(cx+ ωt + θ)− 6β2

25αǫ
+ b,

where c and ω are determined by c = β
5ǫ and ω = αβb

5ǫ −
6β3

125ǫ

with b and θ being arbitrary constants. Exact solutions at the

boundaries are applied.

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

FIGURE 15

Generalized fifth order KdV equation of Example 3.8: the CANN solution (red circles) and the exact solution (solid blue lines) at di�erent time T

with x0 = 0 and λ = 0.1.

For the simulation, we choose 1x = 0.0125 and 1t = 1x
2 .

The network contains two hidden layers with 40 neurons in the

first layer and 20 neurons in the second layer. The network input

vector is taken as

EV in
j =

[

ūkj−9, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, . . . , ū

k
j+6

]T
. (3.12)

The training data set is generated from the wave solution (3.12)

with b = 0 and θ = 0. A total of K = 1× 105 epochs are applied

to train the network. After well-trained, the network solver is

applied to solve wave solutions (3.12) with various values of b

and θ . We first fix b = 0 in (3.12 and change the values of θ

and plot the CANN simulations in Figure 5. We then fix θ = 0

and change the values of b, and plot the CANN simulations

in Figure 6. It can be observed that the CANN method can be

well-generalized to a family of wave solutions in the form of

(3.12).

Example 3.5. In this example, we consider the mKdV-Burgers

equation

ut + µu2ux + βuxx − ǫuxxx = 0 (3.13)

with µ = 1.5, β = −1 × 10−4, and ǫ = 1. The computational

domain is taken as −10 ≤ x ≤ 10. We study the following group

of traveling wave solutions

u(x, t) = c

2

√

6ǫ

µ

(

tanh
1

2
(cx+ ωt + θ)+ 1

)

+ b, (3.14)

where c = 1
3ǫ

(

β − µab
√

6ǫ
µ

)

and ω = ǫ3−βc2−µa2b2c with

a > 0, b, and θ being arbitrary constants. Exact solutions are

applied as the given Dirichlet boundary condition for the CANN

method.

The mesh sizes 1x = 0.0125 and 1t = 1x
8 are used to set

up the CANN method. We adopt the following network input

vector

EV in
j =

[

ūkj−9, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, . . . , ū

k
j+6

]T
. (3.15)

The network structure is composed of three hidden layers with

40, 20, and 10 neurons in the first, second, and third layers,

respectively. The training data set is generated from the solution

of (3.14) with a = 1, b = 1, and θ = 0. A total of K = 2 × 105

epochs are applied for training the network. After well trained,

the network solver is applied to solve a group of wave solutions

(3.14) with various values of a, b, and θ . Figure 7 shows the

simulation of the CANN method with different values of a, b,

and θ . We observe that the network solver can approximate

the mKdV-Burgers equation well. The CANN method can be

generalized to a large class of wave solutions in (3.14).

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

3.4. Fifth order KdV equations

In this section, we extend the study of the CANNmethod to

the fifth order KdV equations (1.4).

Example 3.6. In this example, we consider the Kawahara

equation

ut + uux + uxxx − uxxxxx = 0 (3.16)

over the domain −20 ≤ x ≤ 20 with zero boundary conditions.

We study the group of soliton wave solutions [5] given by

u(x, t) = 105

169
sech4

(

1

2
√
13

(x− 36

169
t − x0)

)

, (3.17)

where the wave center x0 is an arbitrary constant.

To set up the CANN method, we take 1x = 0.0125 and

1t = 1x
2 and adopt the following network input vector

EV in
j =

[

ūkj−6, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, ū

k
j+2, ū

k
j+3

]T
. (3.18)

The structure of the network contains two hidden layers with

40 neurons in the first layer and 20 neurons in the second layer.

The training data set is generated from the solution (3.17) with

x0 = 0. A total of K = 2 × 105 epochs are applied to train the

network. Once well trained, the network solver is applied to solve

a group of solutions (3.17) with different values of x0. Figure 8

presents the CANN simulations with x0 changing from −10 to

10. The CANN solutions match well with the exact solutions,

and the CANNmethod can be applied to solve the group of wave

solutions (3.17) with indistinguishable generalization error.

Moreover, we run the CANN solver for long time simulation

to test the stability of the method. Figure 9 shows the CANN

approximation to the solution (3.17) with x0 = 5 at T =
0, 10, 20, and 40. The method generates little numerical

dissipation and dispersive error after long time simulation.

Example 3.7. In this example, we consider Ito’s fifth order mKdV

equation [4]

ut + (6u5 + 5αu(u2)xx − uxxxx)x = 0 (3.19)

with α = −1. The computational domain is [−30, 30]. We

consider to approximate the group of wave solutions in the form of

u(x, t) = κ tanh(κ(x− ωt − x0)). (3.20)

With the wave amplitude κ chosen, the wave speed is determined

by ω = 6κ4. Here x0 is the wave center. Dirichlet boundary

conditions from the exact solutions are applied.

For the CANN method, we set 1x = 0.0125 and choose

1t = 1x
2 . The network input vector

EV in
j =

[

ūkj−6, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, . . . , ū

k
j+6

]T
(3.21)

is adopted. The structure of the network consists of two hidden

layers with 40 neurons in the first layer and 20 neurons in the

second layer. The training data set is generated from the solution

(3.20) with κ = 0.25 and x0 = −10. A total of K = 2 × 105

epochs are applied for training the network.

Once well-trained, the network solver is applied to solve

a group of wave solutions (3.20) with different values of κ

and x0. We first fix κ = 0.25 and change the locations of

x0, and show the CANN simulations in Figure 10. Figure 11

show the CANN simulations with the fixed location x0 =
−10 but with different values of κ . The CANN method can be

generalized to a family of wave solutions (3.20) over the range

−10 ≤ x0 ≤ 20 and 0.25 ≤ κ ≤ 0.5. We also test the

CANN method to approximate the solution (3.20) with x0 = 0

and κ = 0.25 for long time simulation. Figure 12 shows the

CANN simulations at T = 0, 100, 200, and 1, 000. The CANN

method well-captures the wave evolution for this very long

time run.

Example 3.8. In this example, we consider the generalized fifth

order KdV equation [52]

ut + (u3)x + (u(u2)xx)x + δ(u(u2)xxxx)x = 0 (3.22)

with δ = 0.16. The computational domain is taken as−10 ≤ x ≤
20 and periodic boundary conditions are applied. This is a fifth

order equation involving nonlinear first order, third order, and

fifth order terms. We consider the following group of compacton

solutions

u(x, t) =

√

8
3λ cos2

(√
1−(x− λt − x0)/2

)

,
∣

∣

√
1−(x− λt − x0)

∣

∣ ≤ π ,

0,

otherwise,

(3.23)

where 1− = (1 −√1− 4δ)/2δ with the wave center x0 and the

wave speed/amplitude λ being arbitrary constants.

The spatial mesh size 1x = 0.0125 and the time step size

1t = 1x
2 are taken to set up the CANN method. The network

input vector

EV in
j =

[

ūkj−12, . . . , ū
k
j−1, ū

k
j , ū

k
j+1, . . . , ū

k
j+9

]T
(3.24)

is chosen. The structure of the network consists of three

hidden layers with 40 neurons in the first, 20 neurons in

the second and 10 neurons in the third layers. The training

data set is generated from the solution (3.23) with λ = 0.1

and x0 = −5. The total number of epoch iterations is

set as K = 2× 105.

After well-trained, the network solver is applied to solve

a group of compacton solutions (3.23) with different values

of λ and x0. Figure 13 shows the CANN simulations with

different values of λ while x0 = −5 is fixed. Figure 14

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

shows the CANN simulations with different values of x0

while λ = 0.1 is fixed. The CANN method can be

generalized and accurately approximate the solutions (3.23)

over the range 0.05 ≤ λ ≤ 0.2 and −5 ≤ x0 ≤
15. We also test this example for long time simulation

(up to T = 150) for the solution (3.23) with λ =
0.1 and x0 = 0 and plot the solutions at T =
0, 50, 100, and 150 in Figure 15. The CANN method can

approximate the single compacton propagation well after long

time simulation.

4. Conclusions

In this paper, we investigate the CANN method for solving

four classes of KdV type equations involving third order or

fifth order derivatives. This method is based on the integral

formulation of the equation as the finite volume method

and apply a feedforward network to learn the cell average

between two consecutive time steps. The training data set

is generated by one generic initial value of the given PDE,

i.e., one single solution trajectory, and the training process

uses multiple time levels (five time steps) of cell averages to

maintain the stability and control the accumulation errors in

time. Once well trained, the CANN solver can be applied

to solve a group of initial values problems with insignificant

generalization error. Numerical tests for four classes of the

KdV equations are carried out to verify that the CANN

method can be generalized to a group of PDEs with different

wave amplitudes, different wave centers, or even different

wave speed. Although this paper restricts on uniform mesh,

it is worth mentioning that the proposed CANN method is

a finite volume type neural network method which inherits

the advantage and flexibility on geometry and thus can

also work well on non-uniform regular mesh in space.

Investigation on nonuniform temporal sizes and applications

for more complicated nonlinear PDEs will be conducted in the

future work.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

YC, JY, and XZ contributed to conception and design of the

study. YC performed all the numerical simulations and wrote

the first draft of the manuscript. JY and XZ revised critically

for important content. All authors contributed to manuscript

revision, read, and approved the submitted version.

Funding

Research work of JY was partially supported by the NSF

grant DMS-1620335 and Simons Foundation grant 637716.

Research work of XZ was partially supported by the NSFC Grant

11871428.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Qiu C, Yan J. Cell-average based neural network method for hyperbolic and
parabolic partial differential equations. arXiv:210700813. (2021).

2. Korteweg DJ, de Vries G. On the change of form of long waves advancing in
a rectangular canal, and on a new type of long stationary waves. Philos Mag Ser 5.
(1895) 39:422–43. doi: 10.1080/14786449508620739

3. Su CH, Gardner CS. Korteweg-de Vries equation and generalizations. III.
Derivation of the Korteweg-de Vries equation and Burgers equation. J Math Phys.
(1969) 10:536–9. doi: 10.1063/1.1664873

4. ItoM. An extension of nonlinear evolution equations of the KdV (mKdV) type
to higher orders. J Phys Soc Jpn. (1980) 49:771–8. doi: 10.1143/JPSJ.49.771

5. Yamamoto Y, Iti Takizawa E. On a solution on non-linear time-evolution
equation of fifth order. J Phys Soc Jpn. (1981) 50:1421–2. doi: 10.1143/JPSJ.
50.1421

6. Canosa J, Gazdag J. The Korteweg-de Vries-Burgers equation. J Comput Phys.
(1977) 23:393–403. doi: 10.1016/0021-9991(77)90070-5

7. Bona JL, Dougalis VA, Karakashian OA, McKinney WR. Computations
of blow-up and decay for periodic solutions of the generalized Korteweg-
de Vries-Burgers equation. Appl Numer Math. (1992) 10:335–55.
doi: 10.1016/0168-9274(92)90049-J

8. Yan J, Shu CW. A local discontinuous Galerkin method
for KdV type equations. SIAM J Numer Anal. (2002) 40:769–91.
doi: 10.1137/S0036142901390378

9. Xu Y, Shu CW. Local discontinuous Galerkin methods for three classes of
nonlinear wave equations. J Comput Math. (2004) 22:250–74.

10. Ahmat M, Qiu J. Compact ETDRK scheme for nonlinear dispersive wave
equations. Comput Appl Math. (2021) 40:286. doi: 10.1007/s40314-021-01687-0

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://doi.org/10.1080/14786449508620739
https://doi.org/10.1063/1.1664873
https://doi.org/10.1143/JPSJ.49.771
https://doi.org/10.1143/JPSJ.50.1421
https://doi.org/10.1016/0021-9991(77)90070-5
https://doi.org/10.1016/0168-9274(92)90049-J
https://doi.org/10.1137/S0036142901390378
https://doi.org/10.1007/s40314-021-01687-0
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Chen et al. 10.3389/fams.2022.1021069

11. EW. A proposal on machine learning via dynamical systems. CommunMath
Stat. (2017) 5:1–11. doi: 10.1007/s40304-017-0103-z

12. Ruthotto L, Haber E. Deep neural networks motivated by partial differential
equations. J Math Imaging Vis. (2020) 62:352–64. doi: 10.1007/s10851-019-00903-1

13. Rudy SH, Brunton SL, Proctor JL, Kutz JN. Data-driven discovery of partial
differential equations. Sci Adv. (2017) 3:e1602614. doi: 10.1126/sciadv.1602614

14. Long Z, Lu Y, Dong B. PDE-Net 2.0: learning PDEs from data with
a numeric-symbolic hybrid deep network. J Comput Phys. (2019) 399:108925.
doi: 10.1016/j.jcp.2019.108925

15. Beck C, E W, Jentzen A. Machine learning approximation algorithms
for high-dimensional fully nonlinear partial differential equations and second-
order backward stochastic differential equations. J Nonlin Sci. (2019) 29:1563–619.
doi: 10.1007/s00332-018-9525-3

16. Lye KO, Mishra S, Ray D. Deep learning observables in computational fluid
dynamics. J Comput Phys. (2020) 410:109339. doi: 10.1016/j.jcp.2020.109339

17. Khoo Y, Lu J, Ying L. Solving parametric PDE problems with artificial
neural networks. Eur J Appl Math. (2021) 32:421–35. doi: 10.1017/S09567925200
00182

18. Chan S, Elsheikh AH. A machine learning approach for efficient uncertainty
quantification using multiscale methods. J Comput Phys. (2018) 354:493–511.
doi: 10.1016/j.jcp.2017.10.034

19. Zhu Y, Zabaras N. Bayesian deep convolutional encoder–decoder networks
for surrogate modeling and uncertainty quantification. J Comput Phys. (2018)
366:415–47. doi: 10.1016/j.jcp.2018.04.018

20. Tripathy RK, Bilionis I. Deep UQ: learning deep neural network surrogate
models for high dimensional uncertainty quantification. J Comput Phys. (2018)
375:565–88. doi: 10.1016/j.jcp.2018.08.036

21. Zhang D, Lu L, Guo L, Karniadakis GE. Quantifying total uncertainty
in physics-informed neural networks for solving forward and inverse
stochastic problems. J Comput Phys. (2019) 397:108850. doi: 10.1016/j.jcp.2019.
07.048

22. Winovich N, Ramani K, Lin G. ConvPDE-UQ: convolutional neural
networks with quantified uncertainty for heterogeneous elliptic partial
differential equations on varied domains. J Comput Phys. (2019) 394:263–79.
doi: 10.1016/j.jcp.2019.05.026

23. Zhao Y, Mao Z, Guo L, Tang Y, Karniadakis GE. A spectral method
for stochastic fractional PDEs using dynamically-orthogonal/bi-orthogonal
decomposition. J Comput Phys. (2022) 461:111213. doi: 10.1016/j.jcp.2022.
111213

24. Guo L, Wu H, Zhou T. Normalizing field flows: solving forward and inverse
stochastic differential equations using physics-informed flow models. J Comput
Phys. (2022) 461:111202. doi: 10.1016/j.jcp.2022.111202

25. Ray D, Hesthaven JS. An artificial neural network as a troubled-cell indicator.
J Comput Phys. (2018) 367:166-191. doi: 10.1016/j.jcp.2018.04.029

26. Wang Y, Shen Z, Long Z, Dong B. Learning to discretize: solving 1D scalar
conservation laws via deep reinforcement learning. Commun Comput Phys. (2020)
28:2158–79. doi: 10.4208/cicp.OA-2020-0194

27. Sun Z, Wang S, Chang LB, Xing Y, Xiu D. Convolution neural network
shock detector for numerical solution of conservation laws.CommunComput Phys.
(2020) 28:2075–108. doi: 10.4208/cicp.OA-2020-0199

28. Yu X, Shu CW. Multi-layer perceptron estimator for the total variation
bounded constant in limiters for discontinuous Galerkin methods. La Matemat.
(2022) 1:53–84. doi: 10.1007/s44007-021-00004-9

29. Cybenko G. Approximation by superpositions of a sigmoidal
function. Math Control Signals Syst. (1989) 2:303–14. doi: 10.1007/BF025
51274

30. Barron AR. Universal approximation bounds for superpositions
of a sigmoidal function. IEEE Trans Inform Theory. (1993) 39:930–45.
doi: 10.1109/18.256500

31. Leshno M, Lin VY, Pinkus A, Schocken S. Multilayer feedforward
networks with a nonpolynomial activation function can approximate
any function. Neural Netw. (1993) 6:861–7. doi: 10.1016/S0893-6080(05)
80131-5

32. Lagaris I, Likas A, Fotiadis D. Artificial neural networks for solving ordinary
and partial differential equations. IEEE Trans Neural Netw. (1998) 95:987–1000.
doi: 10.1109/72.712178

33. Rudd K, Ferrari S. A constrained integration (CINT) approach to solving
partial differential equations using artificial neural networks. Neurocomputing.
(2015) 155:277–85. doi: 10.1016/j.neucom.2014.11.058

34. Berg J, Nyström K. A unified deep artificial neural network approach
to partial differential equations in complex geometries. Neurocomputing. (2018)
317:28–41. doi: 10.1016/j.neucom.2018.06.056

35. Sirignano J, Spiliopoulos K. DGM: a deep learning algorithm for
solving partial differential equations. J Comput Phys. (2018) 375:1339–64.
doi: 10.1016/j.jcp.2018.08.029

36. Zang Y, Bao G, Ye X, Zhou H. Weak adversarial networks for high-
dimensional partial differential equations. J Comput Phys. (2020) 411:109409.
doi: 10.1016/j.jcp.2020.109409

37. Cai Z, Chen J, Liu M. Least-squares ReLU neural network (LSNN) method
for linear advection-reaction equation. J Comput Phys. (2021) 2021:110514.
doi: 10.1016/j.jcp.2021.110514

38. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks:
a deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J Comput Phys. (2019) 378:686–707.
doi: 10.1016/j.jcp.2018.10.045

39. Raissi M. Deep hidden physics models: Deep learning of nonlinear partial
differential equations. J Mach Learn Res. (2018) 19:932–55.

40. Raissi M, Yazdani A, Karniadakis GE. Hidden fluid mechanics: learning
velocity and pressure fields from flow visualizations. Science. (2020) 367:1026–30.
doi: 10.1126/science.aaw4741

41. Sun Y, Zhang L, Schaeffer H. NeuPDE: Neural network based ordinary and
partial differential equations for modeling time-dependent data. In: Proceedings
of The First Mathematical and Scientific Machine Learning Conference. (2020). p.
352–72.

42. Li Y, Lu J, Mao A. Variational training of neural network approximations
of solution maps for physical models. J Comput Phys. (2020) 409:109338.
doi: 10.1016/j.jcp.2020.109338

43. Lu Y, Wang L, Xu W. Solving multiscale steady radiative transfer
equation using neural networks with uniform stability. Res Math Sci. (2022) 45:9.
doi: 10.1007/s40687-022-00345-z

44. Li Z, Kovachki NB, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart AM,
et al. Neural operator: graph Kernel network for partial differential equations.
In: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations. (2020).

45. Li Z, Kovachki NB, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart AM,
et al. Fourier neural operator for parametric partial differential equations. In:
International Conference on Learning Representations. (2020).

46. Wu K, Xiu D. Data-driven deep learning of partial differential equations in
modal space. J Comput Phys. (2020) 408:109307. doi: 10.1016/j.jcp.2020.109307

47. Bilotta E, Pantano P. Cellular nonlinear networks meet KdV
equation: a new paradigm. Int J Bifurc Chaos. (2013) 23:1330003–8125.
doi: 10.1142/S0218127413300036

48. Shen Z, Yang H, Zhang S. Neural network approximation: three hidden layers
are enough. Neural Netw. (2021) 141:160–73. doi: 10.1016/j.neunet.2021.04.011

49. Loshchilov I, Hutter F. Decoupled weight decay regularization. In:
International Conference on Learning Representations. (2018).

50. Debussche A, Printems J. Numerical simulation of the
stochastic Korteweg-de Vries equation. Phys D. (1999) 134:200–26.
doi: 10.1016/S0167-2789(99)00072-X

51. Rosenau P, Hyman JM. Compactons: solitons with finite wavelength. Phys
Rev Lett. (1993) 70:564-567. doi: 10.1103/PhysRevLett.70.564

52. Rosenau P, Levy D. Compactons in a class of nonlinearly quintic equations.
Phys Lett A. (1999) 252:297–306. doi: 10.1016/S0375-9601(99)00012-2

53. Wang M. Exact solutions for a compound KdV-Burgers equation. Phys Lett
A. (1996) 213:279–87. doi: 10.1016/0375-9601(96)00103-X

Frontiers in AppliedMathematics and Statistics 19 frontiersin.org

https://doi.org/10.3389/fams.2022.1021069
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1007/s10851-019-00903-1
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1007/s00332-018-9525-3
https://doi.org/10.1016/j.jcp.2020.109339
https://doi.org/10.1017/S0956792520000182
https://doi.org/10.1016/j.jcp.2017.10.034
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1016/j.jcp.2018.08.036
https://doi.org/10.1016/j.jcp.2019.07.048
https://doi.org/10.1016/j.jcp.2019.05.026
https://doi.org/10.1016/j.jcp.2022.111213
https://doi.org/10.1016/j.jcp.2022.111202
https://doi.org/10.1016/j.jcp.2018.04.029
https://doi.org/10.4208/cicp.OA-2020-0194
https://doi.org/10.4208/cicp.OA-2020-0199
https://doi.org/10.1007/s44007-021-00004-9
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/18.256500
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1109/72.712178
https://doi.org/10.1016/j.neucom.2014.11.058
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2020.109409
https://doi.org/10.1016/j.jcp.2021.110514
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1016/j.jcp.2020.109338
https://doi.org/10.1007/s40687-022-00345-z
https://doi.org/10.1016/j.jcp.2020.109307
https://doi.org/10.1142/S0218127413300036
https://doi.org/10.1016/j.neunet.2021.04.011
https://doi.org/10.1016/S0167-2789(99)00072-X
https://doi.org/10.1103/PhysRevLett.70.564
https://doi.org/10.1016/S0375-9601(99)00012-2
https://doi.org/10.1016/0375-9601(96)00103-X
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Cell-average based neural network method for third order and fifth order KdV type equations
	1. Introduction
	2. Cell-average based neural network approximation
	2.1. Problem setup and the CANN method
	2.2. Data generation and training of the CANN method
	2.3. Implementation and discussion of the CANN method

	3. Numerical results
	3.1. Third order KdV equations
	3.2. Fully nonlinear K(m,n) equation
	3.3. The KdV-Burgers equations
	3.4. Fifth order KdV equations

	4. Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

