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This study premeditated the synchronization of two fractional-order chaotic

systems (FOCSs)with uncertainties and external disturbances.We utilized fuzzy

logic systems (FLSs) to estimate unknown nonlinearities, and implemented

disturbance observers to estimate unknown bounded external disturbances.

Then, a robust control term was devised to compensate for the unavoidable

approximation error of the fuzzy system. In addition, a sliding mode surface

was devised to construct an adaptive fuzzy sliding mode controller (AFSMC)

that can guarantee that the synchronization error converges to a small

neighborhood of zero. Finally, the validity of the proposed control strategy was

verified via a numerical simulation.
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1. Introduction

Fractional calculus has been developing for over three centuries, which is seen as

an extension of ordinary calculus. It plays an important role in dealing with non-

integer order systems, which have caught the attention of several scholars owing to its

fascinating properties and potential application values. Over the past few decades, it

has been discovered that, in some actual systems related to time series, compared with

integer order systems, fractional order nonlinear systems (FONSs) have better modeling

accuracy due to their memory and inheritance, such as financial systems [1], viscoelastic

systems [2], dielectric polarization [3], and electrode-electrolyte polarization [4, 5].

Recently, some studies indicated that a considerable number of FONSs behave

in chaotic phenomena, which is a nonlinearity with complexity, randomness,

unpredictability, and extreme sensitivity to initial values [6–9] and has a great application

value in secure communication [10], signal processing, mathematics, biology, machinery

[8], etc. Therefore, many scholars conducted extensive and in-depth research on the

control and synchronization of fractional order chaotic systems (FOCSs). Zhu et al. [11]

proposed a one-way coupling means using a coupling matrix to discuss the synchronous
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control of the fractional-order Chua’s system. Lu [12] adopted

a scalar transmission signal to achieve the synchronization of

FOCSs that does not depend on Lyapunov exponent conditions.

Radwan et al. [13] noticed three switching synchronizations,

namely static synchronization, single dynamic synchronization,

and double dynamic synchronization, by designing two

switches for the slave system to perform active control. The

system models utilized in the above literature are widely

known. However, in the actual modeling, due to the external

environment, parameter uncertainties, and vulnerability to

disturbances and other factors, the accurate model of the

system is very difficult to be obtained. Thus, it is essential to

study the synchronization of FOCSs with uncertain models

and disturbances.

It is well known that the uncertainties of FOCSs will

affect the synchronization performance. Therefore, researchers

attempted to address this issue through various methods, such

as fuzzy logic system (FLS) [2, 14–16], adaptive sliding mode

control (SMC) [17–20], neural network [21–23]. Among these

methods, adaptive fuzzy SMC (AFSMC) is an efficacious and

common solution for handling uncertain items that have been

proven and recognized by many researchers. It has a relatively

quicker dynamic response and cuts down sensitivity to factors

such as external disturbances and uncertainties. Boulkroune

et al. [24] proposed a novel adaptive fuzzy controller light

of the Lyapunov scheme to bring about proper projection

synchronization. While Lin et al. [25] proposed an AFSMC

method to further reduce the chattering phenomenon in the

control by constructing an output feedback control law and an

adaptive law to adjust the free parameters online. In addition,

Yin et al. [26] put forward a robust controller designed directly

in the robot task space by utilizing AFSMC technology, which

can guarantee zero steady-state tracking error for a limited time.

Based on the AFSMC scheme, Zhu et al. [27] implemented

a specific performance of the tracking error by utilizing the

conversion function ofan error performance and used the

estimation of the weight vector norm in the FLS to cut down

the number of estimation parameters so that the designed

controller is concise and easy to implement. It is important

to note that the AFSMC used in the above literature can

handle uncertainties well, but the setup of the controller is

very complicated, and the results are not ideal in the presence

of disturbances. Therefore, how to devise an ideal controller

for uncertain FOCSs with external disturbances deserves

further research.

In most FOCSs, external disturbances are unavoidable

and have a certain impact on synchronization accuracy.

Fortunately, many researchers studied and proposed many

effective solutions. Mofid et al. [28] combined a disturbance

observation (DOB) with an adaptive SMC scheme to achieve

a rapid response for the synchronization of three-dimensional

FOCSs. Waghmare et al. [29] adopted a reduced-order extended

DOB to estimate unmodeled dynamic and disturbance, which

can further improve estimation accuracy, and, at the same time,

utilized an SMC technology to design a controller to stabilize

the fluctuations in the body, thereby improving the comfort

of people riding the vehicle. Guha et al. [30] developed a

DOB to estimate disturbance in the endogenous or exogenous

system to accelerate dynamic response with minimal flutter,

and utilized the Mittag-Leffler stability theorem to ensure the

limited time convergence of disturbance error. The above

literature provides several outstanding solutions for dealing with

disturbances. However, in this study, there have been few results

on the synchronization of FOCSs considering disturbances and

uncertainties simultaneously.

This study aimed to analyze the synchronization of FOCSs

with uncertainties and disturbances based on the AFSMC

technology. FLSs are used to estimate uncertain nonlinear terms,

while DOBs are designed to estimate external disturbances. The

proposed AFSMC strategy ensures that all signals are bounded,

and the synchronization errors are asymptotically converged

to a small neighborhood of zero. Finally, the effectiveness of

the method is demonstrated by Lyapunov’s stability theory.

The contributions of this article are as follows: (1) taking

into account both uncertainties and disturbances, the proposed

AFSMC technology can achieve a fast response. (2) a DOB was

designed to estimate the disturbance. Compared to traditional

fuzzy techniques, a more accurate estimation can be obtained by

using the proposed DOB.

The remaining part of the study is laid as follows. Section

2 raises some notations and preliminaries. Section 3 introduces

the master-slave systems and the FLSs. Section 4 devises

DOBs and adaptive fuzzy controllers, while stability analysis is

implemented by using the Lyapunov scheme. Section 5 employs

a simulation example to check out and validate this fashion.

Furthermore, Section 6 provides the conclusion.

2. Preliminaries

Several fundamental definitions and lemmas with respect

to fractional-order integrals and derivatives are useful for

stability analysis.

Definition 1. Liu et al. [31] the fractional integral with order

ϑ ∈ (0, 1) is defined as

I
ϑ f (t) =

1

Ŵ(ϑ)

∫ t

t0

f (ω)

(t − ω)1−ϑ
dω, (1)

where t ≥ t0, Ŵ(ϑ) =
∫ ∞
0 e−ttϑ−1dt, and (Re(ϑ) > 0) is the

familiar Gamma function, where Re(ϑ) is the real part of ϑ .

In this study, we mainly premeditated Caputo’s fractional

derivative owing to its initial conditions for fractional

differential equations possessing an identical physical meaning

with the integer-order one.
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Definition 2. Abbas and Benchohra [32] Caputo’s fractional

derivative with order ϑ ∈ (0, 1) is described as

c
D

ϑ f (t) =
1

Ŵ(1− ϑ)

∫ t

t0

f ′(ω)

(t − ω)ϑ
dω, (2)

where f (t) ∈ C
n([t0,+∞],R). Hereafter,Dϑ represents cDϑ

for convenience.

Lemma 1. Aguila-Camacho et al. [33] if ∂(t) ∈ R is a real-

valued continuous differentiable vector function, then we have

1

2
D

ϑ (∂T∂) ≤ ∂TDϑ∂ ∀ϑ ∈ (0, 1], t ≥ 0. (3)

Lemma 2. (Yong’s Inequality) For ∀a, b ≥ 0, the following

inequality holds

ab ≤
ap

p
+

bq

q
. (4)

Lemma 3. Li and Sun [34] considering the FONS below

D
ϑ9(t) ≤ −η09(t)+ η1, (5)

there exists a constant t1 > 0 such that, for ∀t ∈ (t1,∞), the

following condition can be fulfilled

‖9(t)‖ ≤
2η1

η0
, (6)

where the9(t) is the state variable and η0 and η1 are assumed

to be normal numbers.

3. Problem statement

We considered a class of uncertain FOCSs portrayed by the

master-slave system below

D
ϑx = F(x), (7)

D
ϑy = G(y)+ r(t, y)+ u, (8)

where x = [x1, . . . , xn]
T ∈ R

n and y = [y1, . . . , yn]
T ∈

R
n denote the state vector of the master system and the slave

system that are assumed to be measurable, respectively F(x) =

[f1, . . . , fn]
T ∈ R

n and G(y) = [g1, . . . , gn]
T ∈ R

n are the

smooth unknown nonlinear functions, u = [u1, . . . , un]
T ∈ R

n

represents the control input vector, and r = [r1, . . . , rn]
T ∈ R

n

is the unknown disturbance.

Remark 1. There exist numerous FOCSs in the form described in

Equations (7) and (8), such as fractional Chen system, fractional

Lu system, and fractional Chua’s system; thus, the proposed

method is also valid for most of FOCSs.

In particular, to estimate uncertainties, an FLS is required

and characterized as below.

Normally, an FLS involves a fuzzifier, a fuzzy inference

engine, a defuzzifier, and some fuzzy IF-THEN rules. Fuzzy

inference engine is greatly significant and indispensable, which

maps the control input vector xT ∈ R
n to an output 4̂ ∈ R

through a series of fuzzy rule numbers. The ith rule is portrayed

as follows: R
(i): if x1 is ϒ i

1, . . ., xn is ϒ i
n, then 4̂ is 3i,

where ϒ i
1, . . ., ϒ

i
n are fuzzy sets and 4̂ is the output. By taking

advantage of the defuzzification, the output of the FLS can be

manifested as follows:

4̂(x) =

∑q
i=1 ρi(

∏n
j=1 ̟

ϒ i
j
(xj))

∑q
i=1(

∏n
j=1 ̟

ϒ i
j
(xj))

= ρTτ (x), (9)

where ̟
ϒ i
j
(xj) is the degree of membership of xj to ϒ i

j , q is

the number of fuzzy rules, ρ = [ρ1, . . . , ρq]
T is an adjustable

parameter vector, and τ = [τ1, . . . , τq]
T is the fuzzy basis

function (FBF), where

τi(x) =

∏n
j=1 ̟

ϒ i
j
(xj)

∑q
i=1(

∏n
j=1 ̟

ϒ i
j
(xj))

Assuming that the picked FBFs have at least one active rule

count, i.e.,
∑q

i=1(
∏n

j=1 ̟
ϒ i
j
(xj)) > 0. Thus, FLS (Equation 9) is

greatly universally employed in control applications. According

to the general approximation outcomes, the FLS (Equation 9)

can appraise any nonlinear smooth function f with arbitrary

precision in a compact operation space. It should be noted

that the construction of the FLS (Equation 9), i.e., membership

function parameters and number of rules, can be correctly

predesigned by the designer. However, the parameter ρ must be

defined by the learning algorithm.

4. Main results

This section discussed about promoting proper

synchronization between the systems (Equations 7, 8) by

devising a fuzzy adaptive control law ui while guaranteeing

that all signals were bounded and the synchronization error

asymptotically converged to zero.

To realize the above objects, we first characterized the

synchronization errors as

ei = yi − xi, i = 1, . . . , n. (10)

then, we have

E = [e1, . . . , en]
T = y− x. (11)
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For an efficacious layout of the control system and stability

analysis, a fractional integral slidingmode surface is presented as

S = [S1, . . . , Sn]
T = λTE, (12)

where Si = λiei and λ = (λ1, . . . , λn)
T , where λi is the

positive constant.

From Equation (12), the dynamic of S can be obtained as

D
ϑS = λT(DϑE) = λT(Dϑy−D

ϑx) = λT(G(y)− F(x)

+ u+ r(t, y)).
(13)

If

h̄(x, y) = [h̄1(x, y), . . . , h̄n(x, y)]
T = λT(G(y)− F(x)),

(14)

then, we have

D
ϑS = h̄(x, y)− λT(u+ r(t, y)). (15)

To facilitate the following stability analysis, we made the

following assumptions.

Assumption 1. There exists an unknown smooth positive

function vector h̄(y) such that |h̄(x, y)| ≤ h̄(y), where h̄ =

[h̄1, . . . , h̄n]
T .

The unknown function h̄i(y) can be estimated on a compact

operation space �y by adopting the FLS (Equation 9), i.e.,

ˆ̄h̄i(y, ρi) = ρTi τi(y), (16)

where τi(y) is the FBF vector, which is devised in advance by

the projector, and simultaneously, ρi is a parameter vector and
ˆ̄h̄(y, ρ) = [ ˆ̄h̄1(y, ρ1), . . . ,

ˆ̄h̄n(y, ρn)]
T .

The optimal estimation of ρi can be described as

ρ∗i = argmin
ρi

[

sup
y∈�y

| ¯̄hi(y)−
ˆ̄h̄i(y, ρi)|

]

. (17)

Since the vector ρ∗i is only utilized for stability analysis,

it is not necessary to calculate its specific values in the

implementation process.

Now, ρ̃i = ρi − ρ∗i and

εi(y) = ¯̄hi(y)−
ˆ̄h̄i(y, ρ

∗
i ) =

¯̄hi(y)− ρ∗i
T
τi(y) (18)

are the parameter estimation error and the fuzzy estimation

error, respectively, where ε(y) = [ε1(y), . . . , εn(y)]
T and ρ∗i is a

normal number. Additionally, an assumption is given.

Assumption 2. For the fuzzy estimation error, it satisfies

|εi(y)| ≤ ε̄i, ∀y ∈ �y, where ε̄i is an unknown normal number

and ε̄ = [ε̄1, . . . , ε̄n]
T .

Then, from Equations (16) and (18), we have

ˆ̄h̄(y, ρ)− ¯̄h(y) = ˆ̄h̄(y, ρ)− ˆ̄h̄(y, ρ∗)+ ˆ̄h̄(y, ρ∗)− ¯̄h(y)

= ρTτ (y)− ρ∗
T
τ (y)+ ρ∗

T
τ (y)− ¯̄h(y)

= ρ̃Tτ (y)− ε(y).

(19)

4.1. Design of disturbance observer

We know that unknown external disturbances often appear

in real-world systems, which will affect the performance of

the system. Therefore, a DOB will be devised immediately to

estimate this unknown disturbance of the slave system.

To facilitate the design of the DOB, an auxiliary variable is

brought by

ξi = ri − λiei. (20)

The fractional derivative of ξi is

D
ϑ ξi = D

ϑ ri − λiD
ϑ ei. (21)

Substituting (Equations 7, 8, 10, and 20 into 21) yields

D
ϑ ξi = D

ϑ ri − λi(gi(y)− fi(x)+ ui + ri)

= D
ϑ ri − λi(gi(y)− fi(x)+ ui + ξi + λiei)

= D
ϑ ri − λi(gi(y)− fi(x))− λiui − λiξi − λ2i ei

= D
ϑ ri − ¯̄hi(x, y)− λiui − λiξi − λ2i ei.

(22)

To enhance the estimation performance of the disturbance,

the estimation of the ξi is introduced as

D
ϑ ξ̂i = −

ˆ̄h̄i(y, ρi)− λiui − λiξ̂i − λ2i ei. (23)

Next, using Equation (20), the DOB can be constructed as

r̂i = ξ̂i + λiei, (24)

where disturbance estimation error is

r̃i = ri − r̂i. (25)

Furthermore, based on Equations (20), (24), and (25),

we have

ξ̃i = ξi − ξ̂i = ri − r̂i = r̃i. (26)

Now, by using Equations (22) and (23), the fractional

derivative of ξ̃i is obtained as

D
ϑ ξ̃i = D

ϑ ξi −D
ϑ ξ̂i = D

ϑ ri − ¯̄hi(x, y)− λiui

− λiξi − λ2i ei +
ˆ̄h̄i(y, ρi)+ λiui + λiξ̂i + λ2i ei

≤ D
ϑ ri + ρ̃Ti τi − λiξ̃i.

(27)
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4.2. Controller design

In this subsection, we devised the synchronous control

input by using the adaptive fuzzy method, and further took the

Lyapunov method for the stability analysis.

The control input vector is devised to be

u = −
1

λT
(ρTτ (y)+ λT r̂ + κ0sign(S)+ κ1S), (28)

where κ0 = Diag(κ01, . . . , κ0n) and κ1 =

Diag(κ11, . . . , κ1n) are positive definite diagonal matrices.

Next, the adaptive law is designed as

D
ϑρi = µρ i(|Si|τi(y)− βρ i|Si|ρi), (29)

where µρ i and βρ i are normal numbers.

In light of the preceding foreshadowing, the theorem can be

formulated as follows:

Theorem 1. Premeditating the systems (Equations (7), (8)), if

a assumptions (Equations 1, 2) are fulfilled, while presuming

the sliding mode surface is characterized as Equation (12).

Furthermore, the DOB, the controller, and the fuzzy adaptive law

are described as Equations (24), (28), and (29), respectively. Then,

the system can ensure that the properties hold below.

• All signals remain bounded in a closed-loop system.

• The synchronization error converges asymptotically to a

small neighborhood of zero.

First, to accomplish the proof of Theorem 1, an assumption

is reasonable to be given.

Assumption 3. The ri(t) and its fractional-order derivative

are bounded, i.e., |ri(t)| ≤ ri(t) and D
ϑ ri(t) ≤ Mi,

where ri(t) and Mi are unknown positive function and normal

number, respectively.

FIGURE 1

The chaotic phenomenon of the master system.
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Proof: Selecting the Lyapunov function as

V = V1 + V2 + V3, (30)

where V1 = 1
2S

TS, V2 = 1
2

∑n
i=1

1
µρ i

ρ̃Ti ρ̃i, and V3 =

1
2

∑n
i=1 r̃

T
i r̃i, from Equations (15), (19), and Lemma 1, the

fractional-order derivative of V1 is calculated as

D
ϑV1 =

1

2
D

ϑSTS ≤ STDϑS ≤ ST[ ¯̄h(x, y)+ λTu+ λT r̄]

≤ ST[ρTτ − ρ̃Tτ + ε̄ + λTu+ λT r̃ + λT r̂].

(31)

Next, by using Lemma 1, we have

D
ϑV2 =

1

2
D

ϑ
n

∑

i=1

1

µρ i

ρ̃Ti ρ̃i ≤

n
∑

i=1

1

µρ i

ρ̃Ti D
ϑ ρ̃i

=

n
∑

i=1

1

µρ i

ρ̃Ti D
ϑρi.

(32)

At the same time, according to Lemma 1, Equations (25),

and (27), we get

D
ϑV3 =

1

2
D

ϑ
n

∑

i=1

r̃Ti r̃i =
1

2
D

ϑ
n

∑

i=1

ξ̃Ti ξ̃i ≤

n
∑

i=1

ξ̃Ti D
ϑ ξ̃i

≤

n
∑

i=1

ξ̃Ti (D
ϑ ri + ρ̃Ti τi − λTi ξ̃i).

(33)

Then, the fractional-order derivative of V can be acquired as

D
ϑV = D

ϑV1 +D
ϑV2 +D

ϑV3

≤ ST[ρTτ − ρ̃Tτ + ε̄ + λTu+ λT r̃ + λT r̂]

+

n
∑

i=1

1

µρ i

ρ̃Ti D
ϑρi +

n
∑

i=1

ξ̃Ti (D
ϑ ri + ρ̃Ti τi − λTi ξ̃i).

(34)

FIGURE 2

The synchronization performance of the master-slave systems.
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FIGURE 3

External disturbances.

Based on Lemma 2, we have

ξ̃iD
ϑ ri ≤

1

2
ξ̃Ti ξ̃i +

1

2
(Dϑ ri)

2, (35)

ξ̃iρ̃
T
i τi(y) ≤

1

2
δ0ξ̃

T
i ξ̃i +

1

2
ρ̃Ti ρ̃i, (36)

where δ0 = ‖τ (y)‖2 is the positive constant.

Then, we got

D
ϑV ≤ ST(ρTτ (y)− ρ̃Tτ (y)+ ε̄(y)+ λTu+ λT r̃ + λT r̂)

+

n
∑

i=1

1

µρ i

ρ̃Ti D
ϑρi +

1

2

n
∑

i=1

(ξ̃Ti ξ̃i + (Dϑ ri)
2)

+

n
∑

i=1

(
1

2
δ0ξ̃

T
i ξ̃i +

1

2
ρ̃Ti ρ̃i − λiξ̃

T
i ξ̃i).

(37)

In line with assumption Lemma 3, Equations (28), and (29),

we obtained

D
ϑV ≤ ST(−ρ̃Tτ + ε̄ + λT r̃ −

1

λT
κ0sign(S)−

1

λT
κ1S)

+

n
∑

i=1

1

µρ i

ρ̃Ti D
ϑρi −

1

2

n
∑

i=1

((2λi − 1− δ0i)ξ̃
T
i ξ̃i

+ M2
i + ρ̃Ti ρ̃i) = ST(ε̄ −

1

λT
κ0sign(S))−

1

λT
STκ1S

+ λTST r̃ − ST ρ̃Tτ +

n
∑

i=1

1

µρ i

ρ̃Ti D
ϑρi −

1

2

n
∑

i=1

((2λi

− 1− δ0)ξ̃
T
i ξ̃i +M2

i + ρ̃Ti ρ̃i) ≤ ST(ε̄ −
1

λT
κ0sign(S))

−
1

λT
STκ1S+

1

2
λTλSTS+

1

2
r̃T r̃ − ST ρ̃Tτ
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+

n
∑

i=1

1

µρ i

ρ̃Ti D
ϑρi −

1

2

n
∑

i=1

((2λi − 1− δ0i)r̃
T
i r̃i +M2

i

+ ρ̃Ti ρ̃i) = ST(ε̄ −
1

λT
κ0sign(S))−

1

2

n
∑

i=1

((2λi (38)

− 2− δ0i)r̃
T
i r̃i +M2

i + ρ̃Ti ρ̃i)−

n
∑

i=1

βρ i|Si|ρ̃
T
i ρi

− ST(
1

λT
κ1 −

1

2
λTλI)S ≤ ST(ε̄ −

1

λT
κ0sign(S))

−
1

2

n
∑

i=1

((2λi − 1− δ0i)r̃
T
i r̃i +M2

i + ρ̃Ti ρ̃i)

−
1

2

n
∑

i=1

βρ i|Si|(ρ̃
T
i ρ̃i − ρ∗

T
ρ∗)− ST(

1

λT
κ1

−
1

2
λTλI)S ≤ −ST(

1

λT
κ1 −

1

2
λTλI)S−

1

2

n
∑

i=1

(2λi

− 2− δ0i)r̃
T
i r̃i −

1

2

n
∑

i=1

(βρ i|Si| − 1)ρ̃Ti ρ̃i +
1

2

n
∑

i=1

M2
i

≤ −ι0V + ι1,

where ι0i = min{ 2
λi
min(κ1i − λ2i ), (2λi − δ0i −

2),µρ i(βρ i|Si| − 1)} and ι1i =
1
2M

2
i are positive constants, and

κ0i ≥ λi(ε̄i(y)+
1
2βρ i|Si|‖ρ

∗
i ‖

2).

In accordance with Lemma 3 and Equation (38), we have

|V(t)| ≤
2ι1

ι0
, (39)

and the above inequality (Equation 39) means that

‖Si‖ ≤

√

√

√

√

4ι1

ι0
−

n
∑

i=1

1

µρ i

ρ̃Ti ρ̃i −

n
∑

i=1

r̃Ti r̃i. (40)

FIGURE 4

Control inputs.
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From Equation (40), the e(t) and the S(t) will be finally

bounded as t → ∞. Thus, the synchronization of systems

(Equations 7 and 8) is realized. This completes the proof process.

�

Remark 2. It could be indicated that, in order to achieve a

good synchronization effect, k1i and µρi should be selected

as large as probable and to avoid parameter drift problem, if

they are chosen too large. At the same time, to get a good

control performance, βρ i and δ0i should be chosen as small

as probable.

5. Simulation results

To certificate the feasibility of the put forward controller for

uncertain FOCSs, we premeditated the following systems.

The master system:















D
ϑx1 = x2 − 3x1 + 2.7x2x3,

D
ϑx2 = 4.7x2 − x1x3,

D
ϑx3 = 2x1x2 − 9x3.

(41)

The slave system:















D
ϑy1 = y2 − 3y1 + 2.7y2y3 + u1 + r1,

D
ϑy2 = 4.7y2 − y1y3 + u2 + r2,

D
ϑy3 = 2y1y2 − 9y3 + u3 + r3,

(42)

where r1 = sin 2t, r2 = cos 2t, and r3 = sin 3t.

The initial conditions are given as follows: x(0) = [x1(0),

x2(0), x3(0)]
T = [1, 3, 0.1]T , y(0) = [y1(0), y2(0), y3(0)]

T =

[0.5, −1, 1]T , r̂1(0) = r̂2(0) = r̂3(0) = 0.1, and ξ̂1(0) =

ξ̂2(0) = ξ̂3(0) = 0.1. The opted parameters are revealed as

follows: ϑ = 0.85, λ1 = λ2 = λ3 = 2, κ01 = κ02 = κ03 = 0.5,

κ11 = κ12 = κ13 = 20, µρ1 = µρ2 = µρ3 = 10, and

βρ1 = βρ2 = βρ3 = 0.1.

There is an FLS adopted in the devised controller. The FLS

takes x and y as its input and defines six Gaussian membership

functions evenly distributed on [−6, 6]. The initial condition is

picked as ρ(0) = [1, . . ., 1]T ∈ R
729.

Finally, the simulation outcomes are exhibited in

Figures 1–4. Figure 1 displays the chaotic phenomenon

of the master system. Figure 2 displays that the master-slave

system is practically synchronized. The performances of external

disturbance are shown in Figure 3, and the ephemeral actions

of the controller are exhibited in Figure 4. This study results

showed that the synchronization error has fast convergence,

and the controller works well with external disturbances

and model uncertainties. Furthermore, we also observed

that all signals can remain bounded, so the control objective

was achieved.

6. Conclusion

This study investigated the synchronization of two FOCSs

with system uncertainties and external disturbances. It is proven

that all signals involved are bounded and the synchronization

errors asymptotically approached zero by the advanced adaptive

fuzzy controller and DOB. In addition, the DOB error and

the synchronization error were handled together by using

the proposed method. Simultaneously, the simulation results

also indicated that the proposed scheme achieved good

synchronization. However, the designed controller has the

problem of chattering. Future work should focus on addressing

this chattering problem.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

YC and FW contributed to the conception and controller

design of the proposed method. YC performed the simulation.

Both authors contributed to the manuscript revision, read, and

approved the submitted version.

Funding

This work was supported by the Key Scientific

and Technological Research Project of the Henan

Provincial Department of Education (13A520713) and

the Henan Provincial Science and Technology Research

Project (152102210112).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2022.1019047
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Chen and Wang 10.3389/fams.2022.1019047

References

1. Wang S, He S, Yousefpour A, Jahanshahi H, Repnik R, Perc M. Chaos and
complexity in a fractional-order financial system with time delays. Chaos Solitons
Fractals. (2020) 131:109521. doi: 10.1016/j.chaos.2019.109521

2. Liu H, Li S, Wang H, Sun Y. Adaptive fuzzy control for a class of unknown
fractional-order neural networks subject to input nonlinearities and dead-zones.
Inf Sci. (2018) 454:30–45. doi: 10.1016/j.ins.2018.04.069

3. Cunha-Filho A, Briend Y, de Lima A, Donadon M. A new and
efficient constitutive model based on fractional time derivatives for transient
analyses of viscoelastic systems. Mech Syst Signal Process. (2021) 146:107042.
doi: 10.1016/j.ymssp.2020.107042

4. He Y, Zhang Y, Sari HMK, Wang Z, Lü Z, Huang X, et al. New insight into Li
metal protection: regulating the Li-ion flux via dielectric polarization.Nano Energy.
(2021) 89:106334. doi: 10.1016/j.nanoen.2021.106334

5. Liu H, Pan Y, Cao J, Wang H, Zhou Y. Adaptive neural network backstepping
control of fractional-order nonlinear systems with actuator faults. IEEE Trans
Neural Netw Learn Syst. (2020) 31:5166–77. doi: 10.1109/TNNLS.2020.2964044

6. Wei Z. Dynamical behaviors of a chaotic system with no equilibria. Phys Lett
A. (2011) 376:102–8. doi: 10.1016/j.physleta.2011.10.040

7. Qi G, Chen G, Du S, Chen Z, Yuan Z. Analysis of a new chaotic system. Physica
A. (2005) 352:295–308. doi: 10.1016/j.physa.2004.12.040

8. Bouzeriba A, Boulkroune A, Bouden T. Projective synchronization of two
different fractional-order chaotic systems via adaptive fuzzy control. Neural
Comput Appl. (2016) 27:1349–60. doi: 10.1007/s00521-015-1938-4

9. Khan A, Jahanzaib LS, et al. Synchronization on the adaptive
sliding mode controller for fractional order complex chaotic systems
with uncertainty and disturbances. Int J Dyn Control. (2019) 7:1419–33.
doi: 10.1007/s40435-019-00585-y

10. Fradkov AL, Evans RJ. Control of chaos: methods and
applications in engineering. Annu Rev Control. (2005) 29:33–56.
doi: 10.1016/j.arcontrol.2005.01.001

11. Zhu H, Zhou S, Zhang J. Chaos and synchronization of the
fractional-order Chua¡s system. Chaos Solitons Fractals. (2009) 39:1595–603.
doi: 10.1016/j.chaos.2007.06.082

12. Lu JG. Nonlinear observer design to synchronize fractional-order
chaotic systems via a scalar transmitted signal. Physica A. (2006) 359:107–18.
doi: 10.1016/j.physa.2005.04.040

13. Radwan A, Moaddy K, Salama KN, Momani S, Hashim I. Control
and switching synchronization of fractional order chaotic systems using
active control technique. J Adv Res. (2014) 5:125–32. doi: 10.1016/j.jare.2013.
01.003

14. Ha S, Liu H, Li S, Liu A. Backstepping-based adaptive fuzzy
synchronization control for a class of fractional-order chaotic systems with
input saturation. Int J Fuzzy Syst. (2019) 21:1571–84. doi: 10.1007/s40815-019-0
0663-5

15. Mohammadzadeh A, Ghaemi S, Kaynak O, Khanmohammadi S. Observer-
based method for synchronization of uncertain fractional order chaotic systems
by the use of a general type-2 fuzzy system. Appl Soft Comput. (2016) 49:544–60.
doi: 10.1016/j.asoc.2016.08.016

16. Liu H, Pan Y, Cao J. Composite learning adaptive dynamic surface control
of fractional-order nonlinear systems. IEEE Trans Cybern. (2019) 50:2557–67.
doi: 10.1109/TCYB.2019.2938754

17. Yin C, Dadras S, Zhong Sm, Chen Y. Control of a novel class
of fractional-order chaotic systems via adaptive sliding mode control
approach. Appl Math Model. (2013) 37:2469–83. doi: 10.1016/j.apm.2012.
06.002

18. Hosseinnia SH, Ghaderi R, Mahmoudian M, Momani S, et al. Sliding mode
synchronization of an uncertain fractional order chaotic system. Comput Math
Appl. (2010) 59:1637–43. doi: 10.1016/j.camwa.2009.08.021

19. Deepika D, Kaur S, Narayan S. Uncertainty and disturbance estimator
based robust synchronization for a class of uncertain fractional chaotic system via
fractional order sliding mode control. Chaos Solitons Fractals. (2018) 115:196–203.
doi: 10.1016/j.chaos.2018.07.028

20. Wang P, Wen G, Huang T, Yu W, Lv Y. Asymptotical neuro-
adaptive consensus of multi-agent systems with a high dimensional leader
and directed switching topology. IEEE Trans Neural Netw Learn Syst. (2022).
doi: 10.1109/TNNLS.2022.3156279. [Epub ahead of print].

21. Wang R, Zhang Y, Chen Y, Chen X, Xi L. Fuzzy neural network-
based chaos synchronization for a class of fractional-order chaotic systems: an
adaptive sliding mode control approach. Nonlinear Dyn. (2020) 100:1275–87.
doi: 10.1007/s11071-020-05574-x

22. Li HL, Hu C, Zhang L, Jiang H, Cao J. Complete and finite-time
synchronization of fractional-order fuzzy neural networks via nonlinear feedback
control. Fuzzy Sets Syst. (2022) 443:50–69. doi: 10.1016/j.fss.2021.11.004

23. Wang P, Wen G, Huang T, YuW, Ren Y. Observer-based consensus protocol
for directed switching networks with a leader of nonzero inputs. IEEE Trans
Cybern. (2020) 52:630–40. doi: 10.1109/TCYB.2020.2981518

24. Boulkroune A, Bouzeriba A, Bouden T, Azar AT. Fuzzy adaptive
synchronization of uncertain fractional-order chaotic systems. In: Advances in
Chaos Theory and Intelligent Control. Berlin: Springer (2016). p. 681–97.

25. Lin TC, Lee TY, Balas VE. Adaptive fuzzy sliding mode control for
synchronization of uncertain fractional order chaotic systems. Chaos Solitons
Fractals. (2011) 44:791–801. doi: 10.1016/j.chaos.2011.04.005

26. Yin X, Pan L, Cai S. Robust adaptive fuzzy sliding mode trajectory tracking
control for serial robotic manipulators. Robot Comput Integr Manuf. (2021)
72:101884. doi: 10.1016/j.rcim.2019.101884

27. Zhu G, Nie L, Lv Z, Sun L, Zhang X,Wang C. Adaptive fuzzy dynamic surface
sliding mode control of large-scale power systems with prescribe output tracking
performance. ISA Trans. (2020) 99:305–21. doi: 10.1016/j.isatra.2019.08.063

28. Mofid O, Mobayen S, Khooban MH. Sliding mode disturbance observer
control based on adaptive synchronization in a class of fractional-order chaotic
systems. Int J Adapt Control Signal Process. (2019) 33:462–74. doi: 10.1002/acs.2965

29. Waghmare DB, Asutkar VG, Patre BM. Extended disturbance observer based
robust sliding mode control for active suspension system. Int J Dyn Control. (2021)
9:1681–94. doi: 10.1007/s40435-021-00761-z

30. Guha D, Roy PK, Banerjee S. Adaptive fractional-order sliding-
mode disturbance observer-based robust theoretical frequency controller
applied to hybrid wind-diesel power system. ISA Trans. (2022)
doi: 10.1016/j.isatra.2022.06.030. [Epub ahead of print].

31. Liu H, Pan Y, Li S, Chen Y. Adaptive fuzzy backstepping control of fractional-
order nonlinear systems. IEEE Trans Syst Man Cybern Syst. (2017) 47:2209–17.
doi: 10.1109/TSMC.2016.2640950

32. Abbas S, Benchohra M. Fractional order partial hyperbolic differential
equations involving Caputo¡s derivative. Stud Univ Babes-Bolyai Math. (2012)
57:469–79. doi: 10.1080/17476933.2011.555542

33. Aguila-Camacho N, Duarte-MermoudMA, Gallegos JA. Lyapunov functions
for fractional order systems. Commun Nonlin Sci Num Simulat. (2014) 19:2951–7.
doi: 10.1016/j.cnsns.2014.01.022

34. Li L, Sun Y. Adaptive fuzzy control for nonlinear fractional-order uncertain
systems with unknown uncertainties and external disturbance. Entropy. (2015)
17:5580–92. doi: 10.3390/e17085580

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2022.1019047
https://doi.org/10.1016/j.chaos.2019.109521
https://doi.org/10.1016/j.ins.2018.04.069
https://doi.org/10.1016/j.ymssp.2020.107042
https://doi.org/10.1016/j.nanoen.2021.106334
https://doi.org/10.1109/TNNLS.2020.2964044
https://doi.org/10.1016/j.physleta.2011.10.040
https://doi.org/10.1016/j.physa.2004.12.040
https://doi.org/10.1007/s00521-015-1938-4
https://doi.org/10.1007/s40435-019-00585-y
https://doi.org/10.1016/j.arcontrol.2005.01.001
https://doi.org/10.1016/j.chaos.2007.06.082
https://doi.org/10.1016/j.physa.2005.04.040
https://doi.org/10.1016/j.jare.2013.01.003
https://doi.org/10.1007/s40815-019-00663-5
https://doi.org/10.1016/j.asoc.2016.08.016
https://doi.org/10.1109/TCYB.2019.2938754
https://doi.org/10.1016/j.apm.2012.06.002
https://doi.org/10.1016/j.camwa.2009.08.021
https://doi.org/10.1016/j.chaos.2018.07.028
https://doi.org/10.1109/TNNLS.2022.3156279
https://doi.org/10.1007/s11071-020-05574-x
https://doi.org/10.1016/j.fss.2021.11.004
https://doi.org/10.1109/TCYB.2020.2981518
https://doi.org/10.1016/j.chaos.2011.04.005
https://doi.org/10.1016/j.rcim.2019.101884
https://doi.org/10.1016/j.isatra.2019.08.063
https://doi.org/10.1002/acs.2965
https://doi.org/10.1007/s40435-021-00761-z
https://doi.org/10.1016/j.isatra.2022.06.030
https://doi.org/10.1109/TSMC.2016.2640950
https://doi.org/10.1080/17476933.2011.555542
https://doi.org/10.1016/j.cnsns.2014.01.022
https://doi.org/10.3390/e17085580
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Disturbance observer based adaptive fuzzy synchronization controller design for uncertain fractional-order chaotic systems
	1. Introduction
	2. Preliminaries
	3. Problem statement
	4. Main results
	4.1. Design of disturbance observer
	4.2. Controller design

	5. Simulation results
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


