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1. Introduction

Despite the fact that mathematical applications to biology and medicine have been

mentioned since the eighteenth century [1] [or even earlier, if we think of Fibonacci’s

example of a rabbit population growth [2]], the evolution of this research field was

slow until the twentieth century. Unlike mathematical applications to physical problems

(where equations can describe accurately the physical reality), applications to biological

problems are much more complex due to the evolutionary nature of the living matter

[3, 4]. Moreover, this evolution of biological systems occurs on different spatial and

temporal scales (see Figure 1), which renders the modeling much more challenging.

Also, the mathematical and statistical investigation of these multi-scale models is more

challenging, due to the complexities of the interactions between the scales.

The multi-scale mathematical models developed to describe biological phenomena

can be qualitative or quantitative [5, 6]. While the qualitative models are used to make

general predictions about the biological system, the quantitative models are more precise

and specific about the system, being parameterized with specific data. The advances over

the last two decades in terms of collecting various types of single-scale and multi-scale

data in ecology, epidemiology, cell biology, immunology, neurobiology, plant biology,

social sciences, etc., led to the development of more and more models parameterized

with data and used to obtain new quantitative results [7, 8]. In the following we discuss

briefly some current research aspects related to multi-scale modeling in mathematical

biology, as well as model parametrization using multi-scale historical data, and conclude

bymentioning the digital twin concept—an emerging technology that uses real-time data

and will impact most biology/mathematical biology areas.

2. Multi-scale aspects in mathematical biology

The last decade has seen an emphasis on the multi-scale aspects of different

biological phenomena: from the multi-scale aspects of collective migration in

bacteria/cells/animals [9], to the multi-scale landscape studies investigating the impact of
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FIGURE 1

Diagram emphasizing the multi-scale aspects of various biological phenomena. Such biological processes can take place across di�erent spatial

and/or temporal scales. (A) Molecular level (inside cell), (B) cell level, (C) tissue level, (D) organs and organ systems, and (E) populations of

organisms.

environmental or habitat factors on the abundance or

occurrence of species [10, 11], the multi-scale structure of

cellular biological systems [12–14], or the multi-scale aspects of

viral infections in the context of immuno-epidemiology [15].

However, our mechanistic understanding of these multi-scale

aspects of various biological phenomena is still in its infancy,

and more quantitative and qualitative modeling studies are

necessary to advance the field. As an example, the current SARS-

CoV-2 pandemic has highlighted the need to understand the

impact of anti-viral immunity (at meso-scale) on virus evolution

(at micro-scale) and virus transmission among individuals

(at macro-scale), and the epidemiological and evolutionary

implications of immune escape [15]. Despite the large number

of mathematical studies investigating single-scale and multi-

scale dynamics of different viruses [e.g., influenza [16], HIV

[17]], the SARS-CoV-2 offered unexpected surprises that could

not have been predicted by past modeling approaches, and

which are still open questions. Such questions range from the

mechanisms underlying the development of long COVID-19, to

the number of viral particles a patient is exposed to (and how

to quantify it) and the impact of this viral load on immune

responses. Moreover, since current climate change will result

in the emergence of new pathogens with new characteristics

and increased cross-species transmission risks [18], one of

the challenges of the future will be the development of new

multi-scale models that combine evolutionary aspects of the new

pathogens, with immunological aspects of pathogen infections,

as well as epidemiological and ecological aspects of disease

transmission at the level of populations (see Figure 1).

The development of these different multi-scale models is

accompanied by challenges related to the development of new

mathematical theories required to understand the behavior

of these models. For example, new numerical approaches are

required to be developed to better deal with the numerical blow-

up of solution densities in a class of (advection dominated)

non-local multi-scale moving-boundary models developed in

the context of multi-scale cancer spread [19, 20]. As another

example, the current bifurcation theory will have to be extended

to consider also the bifurcation of patterns at multiple scales,

especially when the bifurcation parameter connects the different

scales; see Figure 1.

3. Data, model parametrization,
uncertainty

The last few decades, and especially the last few years, have

seen an explosion in data collection throughout all biological

fields and across multiple spatial and temporal scales [21–24].

As an example wemention the molecular-level data collected via
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super-resolution microscopy (SRM)—whose development was

acknowledged with a Nobel prize in 2014 [25, 26]. Such SRM

methods can be used to generate live imaging molecular maps

of protein complexes, and to extract quantitative information

on the number, size, distribution, and spatial organization of

various molecules inside cells [26–28], including viruses such

as SARS-CoV-2 [29]. While live imaging approaches will play

more and more important roles across all biological fields [26,

30], their use opens up new challenges in understanding the

huge amount of generated data: from new approaches to

deal with high data volumes generated at higher and higher

speeds and that could be presented in a variety of forms

(structured, semi-structured, and/or unstructured data) [24],

to new approaches to deal with data heterogeneity [22, 24],

or deal with incomplete data [21, 24] or even irreproducible

data—which is a major issue at least in immunology and cell

biology [31, 32], and even challenges in understanding the

biological mechanisms behind the data [33]. While artificial

intelligence techniques (e.g., machine learning, natural language

processing, computational intelligence) can provide faster and

more accurate results in data analytics compared to classical

statistical methods [24] (especially if the training data is not

biased in any way) they don’t provide us with a mechanistic

understanding of the data. This can be done by using collected

data to parameterize mathematical models. However, model

parametrization using poor data can lead to uncertainty in the

predictions, which adds to the uncertainty arising from model

formulation (e.g., deterministic vs. stochastic models, spatial

vs. non-spatial models, simple vs. complex models) and to the

uncertainty arising from the numerical approximation of the

solution [As a note, uncertainty can arise also from the whole

data analytics process: collecting, organizing, and analyzing the

data [24]].

Uncertainty in the model results can be investigated

using sensitivity analysis [34]. Sensitivity analysis for single-

scale models is a well-accepted approach across various sub-

disciplines of mathematical biology: from ecology [35], to

cancer research [36, 37], immunology [36], pharmacology [38],

epidemiology [39], etc. In the large majority of cases such

an analysis (either local—where one parameter is varied at a

time, or global—where multiple/all parameters are varied at a

time) has been applied mainly to deterministic and stochastic

ordinary differential equations models [34, 40]. For models

described by partial differential equations, the sensitivity and

uncertainty analysis approaches are not always standard, due to

challenges caused by the multi-dimensionality of such models.

In fact, very few studies perform spatially-explicit sensitivity and

uncertainty analysis, and many of these studies focus on various

environmental modeling aspects [41, 42].

In regard to the application of sensitivity analysis to multi-

scale models, there are various ways to approach this, as

summarized in Renardy et al. [34]: (a) all-in-one sensitivity,

which treats the whole model as a black box and model outputs

are evaluated after all or a subset of model parameters are varied;

(b) intra/inter-compartmental sensitivity analysis, which varies

parameters for a given scale and compares the results with the

outputs at the same scale or at a different scale; (c) hierarchical

sensitivity analysis, which focuses first on the analysis of the

top/highest-level model, then on the next lower level sub-

model where the outputs of this sub-model are replaced with

constant parameters that become inputs for the higher-level

model. It should be noted that very large numbers of model

parameters, which might even depend on time and/or space,

can lead to a computational burden when sensitivity analysis is

performed (due to the sampling of the parameter values within

specified ranges) [34]. Finding systematic approaches to reduce

the computational time by reducing model complexity and/or

reducing the number parameters investigated through this

analysis, while preserving the biological realism of the model,

is still an open problem for many multi-scale mathematical

models.

Overall, data-driven multi-scale mathematical models are

more challenging to be parameterized, and it is thus expected

that in the future new multi-scale methods for data assimilation

will be developed in the context of various biological problems.

Some of these data assimilation approaches will likely be

imported and adapted from other fields [e.g., from engineering

[43]]. Moreover, it is expected that such new data assimilation

approaches will focus on the automatic parameter estimation

[e.g., via Bayesian approaches [8, 44]] using collected as well as

real-time data, with the goal of making real-time forecasting.

4. The emergence of digital twins

One of the main issues associated with big data in biology

is related to the speed at which data is produced (e.g.,

continuously-produced medical sensor data), which should

meet the speed with which the data is processed so that fast

decisions are being made [24]. In this context, the COVID-19

pandemics has led to an explosion of references to the “digital

twins” concept across various areas of the mathematical biology

field. A digital twin is a computer replica of a real-life system

[e.g., cells [45], tissues [46], or even natural environment [47]],

which allows us to integrate real-time and historical data and

information about their functionality with the goal of making

predictions about their future. This concept, which initially

emerged in 1960’s in the engineering field [48, 49], is not always

very clear, mainly due to the interpretation of the connection

between the data and the mathematical model. In Figure 2 we

summarize the three sub-categories proposed by Kritzinger et

al. [50] based on the level of data integration, while adapting

them to biological systems [51]: (a) in a digital model, the

data between the biological object and the digital object is

exchanged manually; (b) in a digital shadow the data flow from

the biological object to the digital object is automatic, while
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FIGURE 2

Summary of three sub-categories of digital objects proposed in Kritzinger et al. [50] and adapted here to biological systems: (A) digital model;

(B) digital shadow; (C) digital twin. The diagram shows a caricature description of various cell–cell interactions (at cell/tissue levels) and a

zoom-in on a single cell and protein dynamics inside this cell (at molecular-level), to emphasize the multi-scale aspect of some of these

biological digital objects.

the reversed flow is manual; (c) in a digital twin there is a bi-

directional automatic data flow between the biological object

and the digital object.

The large majority of the published quantitative studies in

mathematical biology focus on the manual flow between the

biological object (i.e., molecules, cells, tissues, organs, whole

patients) and the corresponding digital object; i.e., these are

digital-model/digital-shadow types of models (see Figure 2).

Among the very few true digital twins developed in the context

of mathematical biology we mention here the artificial pancreas

[52], where mathematical models developed since 1970’s [53]

have been combined with real-time data to better control the

blood glucose levels. The slow application of digital twins in

biology and medicine is the result of a lack of understanding of

the many biological laws that govern the complex single-scale

and multi-scale processes in various living systems [51, 54, 55].

Very recently, the concept of digital twins has started to be

discussed also in the context of the human immune system [56],

as well as different environmental systems [47, 57, 58], and

more biological applications will be identified over the next

few years.

To return to the discussion in section 3, we emphasize that

the lack of understanding of biological laws it is expected to

diminish in the future due to the continuous development of

new live imaging methods [26, 59, 60]. The generation of huge

amounts of live imaging data will have a major impact on the

future of digital twins. It will lead not only to the development

of new (multi-scale) mathematical models to be parameterized

in real time by such live data, but it will also lead to the

development of various other mathematical areas: from the

development of new statistical and artificial intelligencemethods

to analyse the collected data [61, 62], to the development of

mathematical methods and computer algorithms for accurate

reconstruction of super-resolution images [59, 63].

5. Conclusion

The field of mathematical biology will continue to develop

over the next decades, being supported by the development

of new methods for real-time multi-scale data acquisition

and analysis at different space/time scales and across various

biological disciplines, which will then lead to the development

of new mathematical models that will be digital twins of real-life

biological processes. In turn, this will lead to the development

of new analytical and numerical approaches to investigate these

models and take our understanding of the real-life biological

phenomena even further.

The Mathematical Biology section of Frontiers in Applied

Mathematics and Statistics aims to promote the development

of a variety of mathematical/statistical/computational models

that describe various single-scale and multi-scale phenomena in

biology, as well as the investigation of the dynamics exhibited

by these models, with the overall aim of advancing the field.

Also, by supporting the development of joint research topics

between mathematics and various other biological disciplines,

the Mathematical Biology section aims to emphasize the

role of mathematical/statistical/computational approaches to

understand life in general.
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