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The finite horizon should be considered for products with a limited lifecycle.

To introduce this possibility, multiple orders and partial backlogging policies

are established under trade credit in an inventory model, where demand is

a time-varying function and the backlogging rate is a decreasing function

about a customer’s waiting time. This paper presents lemmas and theories

to determine optimal replenishment time and backlogging time to maximize

total profit for the retailer. A search algorithm to solve the optimal order

strategy is proven based on the theoretical results. Numerical examples are

presented, and the optimal order strategy is obtained. A sensitivity analysis

of the main parameters is carried out. The e�ects of total profit on the

main parameter of trade credit are analyzed from both macroscopic and

microscopic perspectives.

KEYWORDS
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Introduction

With increasing uncertainties about demand, shortages are inevitable. Uncertain

factors include the situation of demand exceeding supply. For products that are favored,

some customers are willing to wait for the next delivery. As a result, the enterprise

adopts the partial backlogging strategy accordingly. Concurrently, to improve customer

service and reduce unnecessary inventory backlog, the retailer takes a small-batch and

multi-batch order strategy in the finite planning horizon, utilizing smooth traffic and

convenient information channel.

Uncertainties have penetrated real life and many interdisciplinary fields, such as

ecology [1], computer science [2], and nonlinear dynamics [3]. To deal with these

uncertainties, a great deal of feasible approaches were proposed and put into practical

application, for instance, fuzzy model [4] and signal filtering [5].
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On one hand, shortages are allowed and the part of low

demand is canceled at the end of the sales period, that is, a

retailer deletes the part with a low profit margin and improves

the overall profit margin to achieve the sales goal. At the same

time, scholars have different methods for different shortage

situations, which can be roughly divided into three situations:

the first is no replenishment for shortage, the second is complete

backlogging for shortage, and the third is partially delayed

replenishment. The three situations have their own scope of

application. Such as, the reason for not replenishing out of

stock may be that customers are unwilling to wait or the

product has strong timeliness [6]. While completely delaying

replenishment if customers are willing to wait or the product

is particularly favored by customers [7]. Among them, some

of the reasons for the delay in supply may lie between the

abovementioned two situations because some customers are

prepared to wait [8].

On the other hand, in the universal inventory model,

the planning period is infinite, and scholars mainly consider

the optimal solution of the ordering strategy of the single-

cycle model [9]. However, the retailer’s actual sales are

not only single cycle or repeating most cycles indefinitely.

Therefore, the optimal ordering strategy of each sales

cycle should be gradually decided in the planning period

according to the actual situation, so that the retailer

can achieve the goal of maximum profit in the planning

period [10].

To sum up, the main contribution of this paper is given

in the following three aspects. Firstly, the trade credit strategy

and partial trade credit replenishment were introduced in

the limited planning period and the corresponding inventory

model was established. Secondly, in the process of classification

discussion, the optimal ordering strategy is deduced to solve

each case, and the existence and uniqueness of the optimal

solution are proven. Thirdly, according to the theoretical

results and corresponding algorithms, the optimal solution

of each sales cycle is solved gradually until the end of the

planning period.

The remainder of this paper is outlined as follows.

The literature is retrospect in section “ Literature review”.

Section “Notation and assumptions” presents assumptions

and notations of the model. The model is established in

section “Model formulation”, and the calculation process

is shown about the retailer’s revenue and cost under

different situations. In section “Theoretical results and

optimal solutions”, the optimal solution of the model

is deduced and the algorithm is given according to the

theorem. Section “Numerical example” describes the numerical

simulation and sensitivity analysis of the main parameters

to prove the validity of the model. Based on the theory

and numerical examples, Section “Conclusion” summarizes

the management enlightenment of this paper and future

research directions.

Literature review

Combined with the research theme of this paper, the

literature review is carried out from the three aspects: trade

credit in an inventory model, finite horizon research, and

shortages and backlogging.

Trade credit in an inventory model

To increase market share and enhance market

competitiveness, the supplier allows the retailer to delay

the payment, namely, trade credit. In the case of the sale price

being equal to the order price, Goyal [11] first introduced trade

credit into the classical economic order quantity (EOQ) model.

Then, Ouyang et al. [12] constructed the model closer to the

actual market by modifying four assumptions according to the

classical model of Goyal [11]: (1) the retailer’s selling price per

unit is significantly higher than per unit purchase price; (2) the

interest rate charged by a bank is not necessarily higher than the

retailer’s investment return rate; (3) many items such as fruits

and vegetables deteriorate continuously, and (4) the supplier

may offer a partially permissible delay in payments even if the

order quantity is less than the predetermined value. The trade

credit policy is a strategy stimulating demand, but a certain risk

exists. Therefore, considering their own interests, the supplier

provides the trade credit policy through some restrictive

conditions, for example, the credit period is associated with the

order quantity with two cases comprising complete credit and

partial credit.

The full trade credit means that the supplier will provide

the trade credit policy as long as the retailer’s order quantity

arrives in the preset values, otherwise the retailer must pay all

the payments immediately, as mentioned by Chung et al. [13],

Chung and Liao [14], Chung and Liao [15], Kreng and Tan

[16], and Ouyang et al. [17]. Yu [18] proposed an inventory

model for deteriorating and backlogging under a two-warehouse

system. The partial trade credit means that the retailer first pays

a certain percentage of payment and the remaining payments

are paid through trade credit strategy when the order quantity is

less than preset values, otherwise the retailer can enjoy full trade

credit. Nonetheless, Yung-Fu [9] and Chen et al. [19] extended

the full credit inventory model to partial credit to render the

inventory model closer to the real market. Tiwari et al. [20]

built an EOQ model with partial trade credit for deteriorating

items under complete backlogging. Xu et al. [21] considered the

trapezoidal-type demand with warehouse mode selection under

trade credit.

As discussed earlier, a single-level and two-level trade credit

inventory models were built for exponentially deteriorating

items by Chang et al. [22]. Tiwari et al. [23] formulated a

two-level partial trade credit model for deteriorating items

with partial backlogging. Vandana and Kaur [24] presented an
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integrated inventory model with a two-level trade credit under

stochastic demand. Zou and Tian [25] discovered that offering

a two-level trade credit contract will increase the retailer’s total

cost and reduce the retailer’s early payment fraction through

the model.

Finite horizon research

All the abovementioned inventory models with credit

payment for a single cycle in the infinite horizon were decided

as the optimal replenishment policies. However, most items

have a lifecycle, based on the item’s demand, the finite horizon

has been divided into equal period or unequal period in

the actual market. Panda et al. [26] introduced an inventory

model for deteriorating and seasonal items with no shortages

over the finite horizon, the maximum objective function of

the model was calculated through a search algorithm and

Newton–Raphson for the equations. Dey et al. [27] presented

an inventory model with two-warehouses in the basal model,

where the demand rate is an inverse function. Dye [10]

established an inventory model with the equal period and

time-varying deterioration rate under a dual function of

the demand rate about time and price, which decided the

optimal replenishment number and the optimal sale price. Lin

et al. [28] proposed an inventory model with production rate

depending on the demand rate and the inventory level for

practitioners with a finite planning horizon. Palanivel et al.

[29] complemented the two-warehouse in the past model.

Udayakumar and Geetha [30] discussed two cases of no

shortage and partial backlogging under trade credit. Pramanik

and Maiti [31] obtained the optimal solution of the mode

through artificial bee colony (ABC) and genetic algorithm

(GA) under two-level partial trade credit. Xu et al. [32]

introduced a supply chain optimization problem with selling

price-dependent demand. In the abovementioned eight models

where Panda et al. [26] and Pramanik and Maiti [31] built the

unequal cycle inventory models, the rest of them were equal

cycle models.

Shortages and backlogging

Shortages are not allowed in the classical EOQ models.

However, a shortage exists in the actual market. The ways

of treating shortages can be roughly divided into three

types: shortages allowed and no backlogging; shortages

allowed and fully backlogged; and shortages allowed and

partially backlogged.

First, comparing with the optimal solution for traditional

replenishment policies, Goyal et al. [6] extended no shortage to

shortage and no backlogging.

Second, Kar et al. [7] complement the shortcomings of

Goyal et al.’s [6] mode and assumed complete backlogging.

Simultaneously, Jaggi et al. [33], Hui-Ling [34], and Jaggi et al.

[35] considered inflation, two warehouses, and trade credit

under full backlogging. San-José et al. [36] given an EOQ

model with price- and time-dependent demand, Nath and Sen

[37] expanded Nath and Sen’s model with non-instantaneous

deterioration. Sicilia et al. [38] extended the newsvendor model

for stochastic demands.

Third, shortages allowed and partially backlogged are not

only in accordance with the rule of the market but also

satisfy customer needs. Based on the original model of Hui-

Ling [34], the partially backlogged rate about the customer’s

waiting time was added by Hui-Ling [39]. To further improve

the model, Yang and Chang [40] introduced trade credit into

the model. Sana [8] assumed that the backlogging rate is

an inverse proportional function about the waiting time and

the deterioration rate of products is a linear function about

quality guarantee period. Hsieh and Dye [41] established an

inventory model with partial backlogging and decided the

optimal replenishment number and sales prices, where the

demand rate is a binary function about the time and sale

price. Khan et al. [42] proposed an inventory model for non-

instantaneous deteriorating items with a fixed backlogging rate

and two warehouses. Sumon and Bibhas [43] assumed that

the backlogging rate was a binary function about a customer’s

waiting time and an item’s selling price. Soni and Suthar

[44] supposed that the demand rate function is a negative

and positive exponential effect of price and promotional

effort. Rana et al. [45] developed an EOQ mode for optimal

dispatching policies under inflation and partial backlogging.

Among the models mentioned above with backlogging, Kar

et al. [7] and Hsieh and Dye [41] studied the equal cycle

problem in the finite planning horizon. The advancements

in this paper related to the existing literature are presented

in Table 1.

In this paper, a multi-order problem for deteriorating items

with an unequal period and partial backlogging is studied

under trade credit. Supposing that the demand rate is an

increasing exponential function, and the backlogging rate is

a decreasing function about the waiting time, an inventory

model that regarded the retailer’s profit as the objective is

established. A corresponding search algorithm for the order

strategy is designed, and the optimality of every search step is

proven. Concurrently, a numerical example is presented, and the

sensitivity analysis of the main parameters is given.

Notation and assumptions

The following notation and assumptions are used in

this paper.
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TABLE 1 Summary of some related literature studies with major assumptions.

Research article Trade credit Shortage Backlogging Horizon Deterioration

Goyal [11] Full credit No No Infinite No

Kar et al. [7] No Yes Complete backlogging Finite Yes

Chung et al. [13] Partial credit No No Infinite No

Panda et al. [26] No NO No Finite Yes

Hsieh and Dye [41] No Yes Partial backlogging Finite Yes

Dye [10] Two levels No No Finite No

Palanivel and

Uthayakumar [46]

No Yes Partial backlogging Finite Yes

Goyal et al. [6] No Yes No Finite No

Tiwari et al. [23] Two levels Yes Partial backlogging Infinite Yes

Pramanik and Maiti [31] Partial credit No No Finite Yes

Soni and Suthar [44] No Yes Partial backlogging Infinite Yes

Xu et al. [21] No Yes Partial backlogging Infinite No

This paper Full credit Yes Partial backlogging Finite Yes

Notations

p: the selling price per unit.

c0: the purchasing cost per unit.

h: the holding cost per unit time excluding the capital cost.

c1: backlogging cost per unit time.

c2: opportunity cost per unit of lost sale.

ti: the (i+ 1)th replenishment time.

si: the time when the inventory level reaches 0 in the

ith cycle.

Ti: the ith replenishment cycle.

Ii(t): the ith inventory level at time t ∈ [ti−1, si] ∪ [si, ti].

qi: the order quantity of the ith replenishment cycle.

θ : the parameter of the deterioration rate of the stock.

Ie: the interest rate earned per unit of time.

Ic: the interest rate charged per unit of time.

M: the length of the trade credit period.

Assumptions

(1) Time horizon is finite and is of length H.

(2) Selling price is greater than purchasing cost, that

is, p > c0.

(3) The product’s demand rate is a time-varying function

with an exponential form, if D(t) = D0e
λt is an

increasing function; if D(t) = D0e
λ(H−t)is a non-

negative decreasing function, where D0 > 0, λ > 0.

(4) Instantaneous replenishment: the lead time is 0. Shortages

are allowed and partially backlogged for the next

replenishment, the backlogging rate is a decreasing

function, β(t) = e−δt , δ > 0, where t is the waiting time

of a customer.

(5) The number of replenishments is m in the finite time

horizon, which satisfies the relation ti−1 < si ≤ ti,

i = 1, · · · ,m.

(6) During the trade credit period [ti−1,M + ti−1], the

account is not settled and the sales revenue is deposited

in an interest-bearing account. At the end of the period,

the retailer pays off all units bought and starts to pay the

capital opportunity cost for the products in stock.

Model formulation

Under the abovementioned notation and assumptions, the

inventory level Ii(t) of the ith cycle is described by

dIi(t)

dt
= −θIi(t)− D(t), ti−1 ≤ t ≤ si.

With the boundary condition Ii(si) = 0, we have Ii(t) =
∫ si
t eθ(x−t)D(x)dx.

The inventory level Ii(t) at time t ∈ [si, ti] of the ith cycle is

described by

dIi(t)

dt
= −β(ti − t)D(t), si ≤ t ≤ ti.

With the boundary condition Ii(si) = 0, we have Ii(t) =

−
∫ t
si
e−δ(ti−x)D(x)dx, si ≤ t ≤ ti.

Given that Qi = Ii(ti−1) + (−Ii(ti)), the ordering quantity

of the ith cycle is

Qi =

∫ si

ti−1

eθ(x−ti−1)D(x)dx+

∫ ti

si

e−δ(ti−x)D(x)dx.

The retailer’s profit comprises the following components:
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(a) The sales revenue: Pi = p(
∫ si
ti−1

D(x)dx +
∫ ti
si
e−δ (ti−x)D(x)dx).

(b) The purchasing cost: Ci = c0Qi =

c0(
∫ si
ti−1

eθ(x−ti−1)D(x)dx+
∫ ti
si
e−δ (ti−x)D(x)dx).

(c) The holding cost: Hi = h
∫ si
ti−1

Ii(t)dt =

hθ−1
∫ si
ti−1

(eθ (x−ti−1) − 1)D(x)dx.

(d) The shortage cost: Si = c1
∫ ti
si
[−Ii(t)]dt =

c1
∫ ti
si
(ti − x)e−δ (ti−x)D(x)dx.

(e) The lost sale cost: Oi = c2
∫ ti
si
(1− e−δ (ti−x))D(x)dx.

(f) The interest earned IEi and interest charged ICi. Two

cases are considered as follows (see Figure 1):

Case 1: si − ti−1 < M.

IEi1 = pIe

∫ si

ti−1

(M + ti−1 − x)D(x)dx, ICi1 = 0.

Case 2: si − ti−1 ≥ M.

IEi2 = pIe

∫ M+ti−1

ti−1

(M + ti−1 − x)D(x)dx,

ICi2 = c0Icθ
−1

∫ si

M+ti−1

D(x)(eθ(x−M−ti−1) − 1)dx.

Therefore, the retailer’s profit is defined in the interval

(ti−1,H] as follows:

πi(si, ti) =

{

πi1(si, ti), si < M + ti−1;

πi2(si, ti), si ≥ M + ti−1.

where πij(si, ti) = Pi−Ci−Hi−Si−Oi+IEij−ICij, j = 1, 2.

πi1(si, ti) = (p+ hθ−1 − c2)

∫ si

ti−1

D(x)dx

+

∫ ti

si

[p− c0 + c2 − c1(ti − x)]e−δ(ti−x)D(x)dx

− (c0 + hθ−1)

∫ si

ti−1

eθ(x−ti−1)D(x)dx

+ pIe

∫ si

ti−1

(M + ti−1 − x)D(x)dx,

πi2(si, ti) = (p+ hθ−1 − c2)

∫ si

ti−1

D(x)dx

+

∫ ti

si

[(p− c0 + c2)− c1(ti − x)]e−δ(ti−x)D(x)dx

− (c0 + hθ−1)

∫ si

ti−1

eθ(x−ti−1)D(x)dx

+ pIe

∫ M+ti−1

ti−1

(M + ti−1 − x)D(x)dx

− c0Icθ
−1

∫ si

M+ti−1

(eθ(x−M−ti−1) − 1)D(x)dx.

This paper aims to determine the optimal replenishment

time si and the optimal replenishment time ti with ti−1 < si ≤

ti, i = 1, ...,m, t0 = 0, tm = H such that the retailer’s profit,

π(s1, t1, · · · , sm, tm) =
∑m

i=1
πi(si, ti),

is maximized in the finite horizon H. The corresponding

mathematical model is

(P)











max π(s1, t1, · · · , sm, tm)

s.t. ti−1 < si ≤ ti, i = 1, · · · ,m;

t0 = 0, tm = H .

Theoretical results and optimal
solutions

Considering the complexity of the objective function, we

adopt the following method to solve this model: assuming that

t0, . . . , ti−1 are known, we search si and ti, with si ≤ ti in the

interval (ti−1,H] to maximize πi(si, ti), i = 1, · · · ,m. Therefore,

first, we search ti (denoted by ti = t(si)) in the interval [si,H]to

maximize πi(si, ti) for any given si, then we search si with si >

ti−1 (denoted by s∗i ) to maximize πi(si, t(si)), thus (s
∗
i , t

∗
i ) is the

solution, where t∗i = t(s∗i ).

For convenience, we denote ti and πi(ti) as t and πi(t),

respectively. Based on the relation between si − ti−1 andM, two

cases are discussed.

Sales cycle less than the trade credit,
namely, si − ti−1 <M

Now the retailer’s profit function is πi1(s, t). Taking the

derivative of πi1(s, t) with respect to t will give

∂πi1(s, t)

∂t
= (δ + λ)−2D(t)E(s, t). (1)

where

E(s, t) = (δ + λ)2(p− c0)− δ(δ + λ)(p− c0 + c2)− c1λ

+ e(δ+λ)(s−t)[δ(δ + λ)(p− c0 + c2)

− c1
(

δ(δ + λ)(t − s)− λ
)

]. (2)

Namely, x = t − s, from Equation 2, it follows that

E(x) = (δ + λ)2(p− c0)− δ(δ + λ)(p− c0 + c2)− c1λ

+ e−(δ+λ)x[δ(δ + λ)(p− c0 + c2)

+ c1λ − c1δ(δ + λ)x]. (3)
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FIGURE 1

Interest earned and charged for si − ti−1 < M or si − ti−1 ≥ M.

Taking the derivative of E(x) will give

E′(x) = −(δ + λ)2e−(δ+λ)x[δ(p− c0 + c2)+ c1(1− δx)]. (4)

From E′(x) = 0, it follows that

x0 = [δ(p− c0 + c2)+ c1]/c1δ. (5)

Given that p > c0, hence x0 > 0.

Lemma 1: Let t1 is the maximum point of πi1(s, t) on [s,H]

for any given s. Then, the following conclusions are obtained:

(i) If E(x0) ≥ 0, or E(x0) < 0 and H < x1 + s, then t1 = H.

(ii) If E(x0) < 0 and H ≥ x1 + s, then t1 = x1 + s, where

x0 is computed by Equation 5, x1 is a unique solution of

equation E(x) = 0 in the interval [0, x0].

Proof. From Equation 4, we obtain that x0 is the minimum

point of E(x), because if x < x0, then E′(x) < 0, hence E(x) is a

decreasing function, if x > x0, then E′(x) > 0, hence E(x) is an

increasing function.

(1) If E(x0) ≥ 0, then E(x) ≥ 0 for any given x > 0. From

Equation 1, it follows that ∂πi1(s, t)/∂t > 0 for any given

s and t. Given that t ≤ H, hence πi1(s, t) obtains the

maximum at t = H, which says t1 = H.

(2) If E(x0) < 0, because of E(0) = (δ + λ)2(p − c0) > 0

and E′(x) < 0, based on the intermediate value theorem,

the unique solution x1 exists in the interval (0, x0), which

allows E(x1) = 0 and only if 0 < x < x1, then E(x) > 0,

if x1 < x < x0, E(x) < 0. According to x = t − s

and Equation 1, if s < t < x1 + s, ∂πi1(s, t)/∂t > 0; if

t = x1 + s, ∂πi1(s, t)/∂t = 0; if x1 + s < t < x0 + s, then

∂πi1(s, t)/∂t < 0. Hence, if x1 + s > H, when t ∈ [s,H],

t ≤ H < x1 + s, hence ∂πi1(s, t)/∂t > 0, then the

maximum point of πi1(s, t) is H in the interval t ∈ [s,H],

which says t1 = H. If x1 + s ≤ H, then the maximum

point of πi1(s, t) is x1 + s, which says t1 = x1 + s.

Lemma 1 reveals that t1 is a function about s. Motivated by

t = t1(s), we obtain πi1(s, t
1(s)). Next, we search s ∈ [ti−1,H] to

let πi1(s, t
1(s)) acquire the maximum. Based on Lemma 1, three

cases are discussed as follows:

(a) E(x0) ≥ 0. Now, t1(s) = H, taking the derivative of

πi1(s, t
1(s)) will give

dπi1(s, t
1(s))

ds
= D(s)Fi(s). (6)

where

Fi(s) = (p− c0 + c2)[1− e−δ(H−s)]+ c1(H − s)e−δ(H−s)

+ (c0 + hθ−1)(1− eθ(s−ti−1))+ pIe(M + ti−1 − s).

Given that ti−1 ≤ s ≤ t ≤ H and si < M + ti−1, then

ti−1 ≤ s ≤ ai, where ai = min{M + ti−1,H},. We summarize

our finding for πi1(s, t
1(s)) in Lemma 2.

Lemma 2: Let s1 be the maximum point of πi1(s, t
1(s)) on

[ti−1, ai]. Then, the following conclusions are obtained:

(i) If Fi(ai) ≥ 0, then s1 = ai.

(ii) If Fi(ai) < 0, then s1 = s′0, where s
′
0 is a unique solution

for Fi(s) = 0 in the interval [ti−1, ai].
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Proof. Taking the derivative of Fi(s) will give

Fi
′(s) = −{δ(p− c0 + c2)+ c1[1+ δ(H − s)]}e−δ(H−s)

− (θc0 + h)eθ(s−ti−1) − pIe.

Then F′i(s) < 0, hence Fi(s) is a decreasing function about s.

If Fi(ai) ≥ 0, based on F′i(s) < 0, Fi(s) ≥ 0, ti−1 ≤ s ≤ ai,

from Equation 6, dπi1(s, t
1(s))/ds ≥ 0, hence s1 = ai.

If Fi(ai) < 0, from p > c0 and ti−1 ≤ H, it follows that

Fi(ti−1) = (p− c0 + c2)[1− e−δ(H−ti−1)]

+ c1(H − ti−1)e
−δ(H−ti−1) + pIeM.

Given that Fi(ti−1) > 0, equation Fi(s) = 0 holds a unique

solution (denoted by s′0) in the interval [ti−1, ai], and only if

s ∈ (ti−1, s
′
0), Fi(s) > 0, s ∈ (s′0, ai), Fi(s) < 0. From

Equation 6, we unveil that if s ∈ (ti−1, s
′
0), dπi1(s, t

1(s))/ds > 0;

s ∈ (s′0, ai), dπi1(s, t
1(s))/ds < 0, hence s1 = s′0.

(b) E(x0) < 0 and H < x1 + s. Now, t1(s) = H. Given

that ti−1 ≤ s ≤ t ≤ H and s < M + ti−1, then bi ≤ s ≤ ai,

where bi = max{ti−1,H − x1}. We summarize our finding for

πi1(s, t
1(s)) in Lemma 3.

Lemma 3: Let s1 be the maximum point of πi1(s, t
1(s)) on

[bi, ai]. Then, the following conclusions are obtained:

(i) If Fi(bi) ≤ 0, then s1 = bi.

(ii) If Fi(ai) ≥ 0, then s1 = ai.

(iii) If Fi(bi) > 0 and Fi(ai) < 0, then s1 = s′1, where s
′
1 is a

unique solution for Fi(s) = 0 in the interval [bi, ai].

Proof. Given that Fi(s) is a decreasing function, hence three

cases are discussed as follows:

If Fi(bi) ≤ 0, from F′i(s) < 0, Fi(s) ≤ 0, bi ≤ s ≤ ai.

From Equation 6, dπi1(s, t
1(s))/ds ≤ 0, then πi1(s, t

1(s)) is a

decreasing function, hence s1 = bi.

If Fi(ai) ≥ 0, from F′i(s) < 0, Fi(s) ≥ 0, bi ≤ s ≤ ai.

From Equation 6, dπi1(s, t
1(s))/ds ≥ 0, then πi1(s, t

1(s)) is an

increasing function, hence s1 = ai.

If Fi(bi) > 0 and Fi(ai) < 0, based on F′i(s) < 0 and the

intermediate value theorem, a unique solution exists (denoted

by s′1), and if s ∈ (bi, s
′
1), Fi(s) > 0; if s ∈ (s′1, ai), Fi(s) < 0.

From Equation 6, if s ∈ (bi, s
′
1), then dπi1(s, t

1(s))/ds > 0; if

s ∈ (s′1, ai), then dπi1(s, t
1(s))/ds < 0, hence s1 = s′1.

(c) E(x0) < 0 and H ≥ x1 + s. Now, t1(s) = x1 + s, taking

the derivative of πi1(s, t
1(s)) will give

dπi1(s, t
1(s))

ds
= D(s)Gi(s). (7)

where Gi(s) = (p − c0 + c2)[1 − e−δx1 ] + c1x1e
−δx1 + (c0 +

hθ−1)(1− eθ(s−ti−1))+ pIe(M + ti−1 − s).

Given that ti−1 ≤ s ≤ t ≤ H, s < M+ ti−1 and x1 + s ≤ H,

then ti−1 ≤ s ≤ di, where di = min{M + ti−1,H − x1}. We

summarize our finding for πi1(s, t
1(s)) in Lemma 4.

Lemma 4: Let s1 be the maximum point of πi1(s, t
1(s)) on

[bi, ai]. Then, the following conclusions are obtained:

(i) If Gi(di) ≥ 0, then s1 = di.

(ii) IfGi(di) < 0, then s1 = s′2, where s
′
2 is a unique solution

for Gi(s) = 0 in the interval [ti−1, di].

Proof. Taking the derivative of Gi(s) will give

Gi
′(s) = −(θc0 + h)eθ(s−ti−1) − pIe.

Then, G′
i(s) < 0. Hence Gi(s) is a decreasing function

about s.

If Gi(di) ≥ 0, based on G′
i(s) < 0, Gi(s) ≥ 0, ti−1 ≤ s ≤

di. From Equation 7, if s ∈ [ti−1, di], dπi1(s, t
1(s))/ds ≥ 0,

hence s1 = di.

If Gi(di) < 0, from p > c0, it follows that

Gi(ti−1) = (p− c0 + c2)[1− e−δx1 ]+ c1x1e
−δx1 + pIeM > 0.

Then, equation Gi(s) = 0 holds a unique solution (denoted

by s′2) in the interval [ti−1, di], and only if s ∈ (ti−1, s
′
2),

Gi(s) > 0, if s ∈ (s′2, di), Gi(s) < 0. From Equation 7, we learn

that if s ∈ (ti−1, s
′
2), dπi1(s, t

1(s))/ds > 0; if s ∈ (s′2, di), then

dπi1(s, t
1(s))/ds < 0, hence s1 = s′2.

Theorem 1. Let (s1, t1) be the maximum of πi1(s, t), which

satisfies s1 − ti−1 < M and ti−1 ≤ s1 ≤ t1 ≤ H. Then, the

following conclusions are obtained:

(i) When E(x0) ≥ 0, then t1 = H, and if Fi(ai) ≥ 0, s1 = ai;

if Fi(ai) < 0, then s1 = s′0, where s
′
0 is a unique solution

for Fi(s) = 0 in the interval [ti−1, ai].

(ii) When E(x0) < 0 and H < x1 + s, then t1 = H, and if

Fi(bi) ≤ 0, then s1 = bi; if Fi(ai) ≥ 0, then s1 = ai; if

Fi(bi) > 0 and Fi(ai) < 0, then s1 = s′1, where s′1 is a

unique solution for Fi(s) = 0 in the interval [bi, ai].

(iii) When E(x0) < 0 and H ≥ x1 + s, then if Gi(di) ≥ 0,

then s1 = di; if Gi(di) < 0, then s1 = s′2, hence t1 =

x1 + s1, where s′2 is a unique solution for Gi(s) = 0 in the

interval [ti−1, di].

Based on Theorem 1, we can design the following

Algorithm 1.
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Step 1. Compute ai and x0.

Step 2. If E(x0) ≥ 0, when Fi(ai) ≥ 0, then (s1, t1) = (ai,H);

when Fi(ai) < 0, then solving equation Fi(s) = 0 will give s′0

on [ti−1, ai], (s
1, t1) = (s′0,H). Otherwise, solving equation

E(x) = 0 will give x1 on (0, x0), and compute bi and di.

Step 3. If E(x0) < 0 and H < x1 + s, when Fi(bi) ≤ 0, then

(s1, t1) = (bi,H); when Fi(ai) ≥ 0, then (s1, t1) = (ai,H); when

Fi(bi) > 0 and Fi(ai) < 0, solving equation Fi(s) = 0 will give

s′1 on [bi, ai], then (s1, t1) = (s′1,H).

Step 4. If E(x0) < 0 and H ≥ x1 + s, when Gi(di) ≥ 0,

then (s1, t1) = (di, x1 + di); when Gi(di) < 0, solving equation

Gi(s) = 0 will give s′2 on [ti−1, di], then (s
1, t1) = (s′2i, x1+s′2).

Algorithm 1. Search for the optimal solution of πi1(Si, ti) under Si <

M + ti−1.

Sales cycle greater than the trade credit,
namely, si − ti−1 ≥ M

Now, the retailer’s profit function is πi2(s, t). Taking the

derivative of πi2(s, t) with respect to t will give

∂πi2(s, t)

∂t
= (δ + λ)−2D(t)E(s, t). (8)

where E(s, t) and E(x) are Equations 2, 3, respectively.

Lemma 5: For any given s and x0 given by Equation 5, let t2

is the maximum of πi2(s, t) on [s,H]. Then, we will obtain the

following conclusions:

(i) If E(x0) ≥ 0 or E(x0) < 0 and H < x1 + s, then t2 = H.

(ii) If E(x0) < 0 and H ≥ x1 + s, then t2 = x1 + s, where

x0 is computed by Equation 5, x1is a unique solution of

equation E(x) = 0 in the interval [0, x0].

Proof. Similar to Lemma 1.

Lemma 5 reveals that t2 is a function about s. Motivated by

t = t2(s), we obtain πi2(s, t
2(s)). Next, we search s ∈ [M +

ti−1,H] to let πi2(s, t
2(s)) to obtain the maximum. According

to Lemma 5, three cases are discussed as follows:

(a) E(x0) ≥ 0. Now, t2(s) = H, taking the derivative of

πi2(s, t
2(s)) will give

dπi2(s, t
2(s))

ds
= D(s)Ui(s) (9)

where

Ui(s) = (p− c0 + c2)[1− e−δ(H−s)]

− (c0 + hθ−1)(eθ(s−ti−1) − 1)+ c1(H − s)e−δ(H−s)

− c0Icθ
−1(eθ(s−M−ti−1) − 1) (10)

Given that M + ti−1 ≤ s ≤ t ≤ H and t2(s) = H, then

M + ti−1 ≤ s ≤ H. We summarize our finding for πi2(s, t
2(s))

in Lemma 6.

Lemma 6: Let s2 be the maximum point of πi2(s, t
2(s)) on

[M + ti−1,H]. Then, the following conclusions are obtained:

(i) If Ui(M + ti−1) ≤ 0, then s2 = M + ti−1.

(ii) If Ui(H) ≥ 0, then s2 = H.

(iii) If Ui(M + ti−1) > 0 and Ui(H) < 0, then s2 = s′3,

where s′3 is a unique solution for Ui(s) = 0 in the

interval [M + ti−1,H].

Proof. Taking the derivative of Ui(s) will give

U′
i(s) = −δ(p− c0 + c2)e

−δ(H−s) − (θc0 + h)eθ(s−ti−1)

−c1[1+ δ(H − s)]e−δ(H−s) − c0Ice
θ(s−M−ti−1).

Then, U′
i(s) < 0. Hence Ui(s) is a decreasing function

about s.

If Ui(M + ti−1) ≤ 0, based on U′
i(s) < 0, then Ui(s) ≤ 0,

s ∈ [M + ti−1,H], based on Equation 9, dπi2(s, t
2(s))/ds ≤ 0,

hence s2 = M + ti−1.

If Ui(H) ≥ 0, based on U′
i(s) < 0, then Ui(s) ≥ 0,

s ∈ [M + ti−1,H]. Based on Equation 9, if s ∈ [M + ti−1,H],

then dπi2(s, t
2(s))/ds ≤ 0, hence s2 = M + ti−1.

If Ui(M + ti−1) > 0 and Ui(H) < 0, based on the

intermediate value theorem, equation Ui(s) = 0 holds a unique

solution (denoted by s′3) in the interval (M+ ti−1,H), and only

if s ∈ (M + ti−1, s
′
3), Ui(s) > 0, if s ∈ (s′3,H), Ui(s) < 0. From

Equation 9, we get that if s ∈ (M + ti−1, s
′
3), dπi2(s, t

2(s))/ds >

0; if s ∈ (s′3,H), dπi2(s, t
2(s))/ds < 0, hence s2 = s′3.

(b) E(x0) < 0 and H < x1 + s. Now, t2(s) = H. Given

that s ≥ M + ti−1, then ki ≤ s ≤ H, where ki = max{M

+ti−1,H − x1}. We summarize our finding for πi2(s, t
2(s)) in

Lemma 7.

Lemma 7: Let s2 be the maximum point of πi2(s, t
2(s)) on

[ki,H]. Then, the following conclusions are obtained:

(i) If Ui(ki) ≤ 0, then s2 = ki.

(ii) If Ui(H) ≥ 0, then s2 = H.

(iii) If Ui(ki) > 0 and Ui(H) < 0, then s2 = s′4, where s
′
4 is

a unique solution for Ui(s) = 0 in the interval (ki,H).

Proof. Given that Ui(s) is a decreasing function, three cases

are discussed as follows:

If Ui(ki) ≤ 0, from U′
i(s) < 0, then Ui(s) ≤ 0, s ∈ [ki,H].

Based on Equation 9, when s ∈ [ki,H], then dπi2(s, t
2(s))/ds ≤

0, hence πi2(s, t
2(s)) is a decreasing function and s2 = ki.

If Ui(H) ≥ 0, from U′
i(s) < 0, Ui(s) ≥ 0, s ∈ [ki,H]. Based

on Equation 9, when s ∈ [ki,H], then dπi2(s, t
2(s))/ds ≥ 0 hence

πi2(s, t
2(s)) is an increasing function and s2 = H.
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If Ui(ki) > 0 and Ui(H) < 0, based on the intermediate

value theorem, Ui(s) = 0 holds a unique solution (denoted by

s′4), and if s ∈ (ki, s
′
4), Ui(s) > 0; if s ∈ (s′4,H), Ui(s) < 0.

Based on Equation 9, if s ∈ (ki, s
′
4), then dπi2(s, t

2(s))/ds > 0; if

s ∈ (s′4,H) then dπi2(s, t
2(s))/ds < 0, hence s2 = s′4.

(c) E(x0) < 0 and H ≥ x1 + s. Now, t2(s) = x1 + s, taking

the derivative of πi2(s, t
2(s)) will give

dπi2(s, t
2(s))

ds
= D(s)Vi(s). (11)

where

Vi(s) = (p− c0 + c2)[1− e−δx1 ]− (c0 + hθ−1)(eθ(s−ti−1) − 1)

+ c1x1e
−δx1 − c0Icθ

−1(eθ(s−M−ti−1) − 1).

Given that s ≥ M + ti−1, t = x1 + s, and t ≤ H, then

M + ti−1 ≤ s ≤ H − x1. We summarize our finding for

πi2(s, t
2(s)) in Lemma 8.

Lemma 8: Let s2 be the maximum point of πi2(s, t
2(s)) on

[M+ti−1,H−x1]. Then, the following conclusions are obtained:

(i) If Vi(M + ti−1) ≤ 0, then s2 = M + ti−1.

(ii) If Vi(H − x1) ≥ 0, then s2 = H − x1.

(iii) If Vi(M + ti−1) > 0 and Vi(H − x1) < 0, then s2 = s′5,

where s′5 is a unique solution for Vi(s) = 0 in the

interval (M + ti−1,H − x1).

Proof. Taking the derivative of Vi(s) will give

Vi
′(s) = −(θc0 + h)eθ(s−ti−1))− c0Ice

θ(s−M−ti−1).

Then, V ′
i(s) < 0, hence Vi(s) is a decreasing function

about s.

If Vi(M + ti−1) ≤ 0, based on V ′
i(s) < 0, Vi(s) ≤ 0,

s ∈ [M + ti−1,H − x1]. Based on Equation 11, if s ∈ [M + ti−1,

H − x1], dπi2(s, t
2(s))/ds ≤ 0, then s2 = M + ti−1.

If Vi(H − x1) ≥ 0, based on V ′
i(s) < 0, Vi(s) ≥ 0, s ∈ [M +

ti−1,H − x1]. Based on Equation 11, if s ∈ [M + ti−1,H − x1],

dπi2(s, t
2(s))/ds ≥ 0, then s2 = H − x1.

If Vi(M + ti−1) > 0 and Vi(H − x1) < 0, based on

the intermediate value theorem, Vi(s) = 0 holds on a unique

solution (denoted by s′5) in the interval (M + ti−1,H − x1),

and only if s ∈ (M + ti−1, s
′
5), Vi(s) > 0, if s ∈ (s′5,H − x1),

Vi(s) < 0. From Equation 11, we learn that if s ∈ (M+ ti−1, s
′
5),

dπi2(s, t
2(s))/ds > 0; if s ∈ (s′5,H− x1), then dπi2(s, t

2(s))/ds <

0, hence s2 = s′5.

Theorem 2. Let (s2, t2) be themaximum of πi2(s, t) such that

it satisfies s1 − ti−1 ≥ M and ti−1 ≤ s1 ≤ t1 ≤ H. Then, the

following conclusions are obtained:

(i) When E(x0) ≥ 0, then t2 = H, and if Ui(M + ti−1) ≤

0, s2 = M + ti−1; if Ui(H) > 0, then s2 = H; if

Ui(M + ti−1) > 0 and Ui(H) ≤ 0, then s2 = s′3,

where s′3 is a unique solution for Ui(s) = 0 in the

interval [M + ti−1,H].

(ii) When E(x0) < 0 and H < x1 + s, then t2 = H, and if

Ui(ki) ≤ 0, then s2 = ki; if Ui(H) ≥ 0, then s2 = H; if

Ui(ki) > 0 and Ui(H) < 0, then s2 = s′4, where s
′
4 is a

unique solution for Ui(s) = 0 in the interval (ki,H).

(iii) When E(x0) < 0 and H ≥ x1 + s, if Vi(M + ti−1) ≤ 0,

then s2 = M+ ti−1; ifVi(H−x1) ≥ 0, then s2 = H−x1;

if Vi(M + ti−1) > 0, and Vi(H − x1) < 0, then s2 = s′5,

hence t2 = x1 + s2, where s′5 is a unique solution for

Vi(s) = 0 in the interval (M + ti−1,H − x1).

Based on Theorem 2, we can design Algorithm 2.

Step 1. If H < M + ti−1, let s
2 = t2 = ti−1 and πi2(s

2, t2) = 0,

otherwise, compute ki.

Step 2. If E(x0) ≥ 0, when Ui(M + ti−1) ≤ 0, then

(s2, t2) = (M+ti−1,H); whenUi(H) > 0, then (s2, t2) = (H,H);

if Ui(M + ti−1) > 0 and Ui(H) ≤ 0, then solving equation

Ui(s) = 0 will give s′3 on [M+ ti−1,H], hence (s2, t2) = (s′3,H).

Step 3. If E(x0) < 0 and H < x1 + s, when Ui(ki) ≤ 0, then

(s2, t2) = (ki,H); when Ui(H) ≥ 0, then (s2, t2) = (H,H); when

Ui(ki) > 0 and Ui(H)< 0, solving equation Ui(s) = 0 will give

s′4 on (ki,H), then (s2, t2) = (s′4,H).

Step 4. If E(x0) < 0 and H ≥ x1 + s, when Vi(M + ti−1) ≤ 0,

then (s2, t2) = (M+ ti−1, x1+M +ti−1); when Vi(H− x1) ≥ 0,

then (s2, t2) = (H − x1,H); if Vi(M + ti−1) > 0 and

Vi(H − x1) < 0, solving equation Vi(s) = 0 will give s′5 on

(M + ti−1,H − x1), then (s2, t2) = (s′5, x1 + s′5).

Algorithm 2. Search for the optimal solution of πi2(Si, ti) under Si ≥

M + ti−1.

Step 1. Input the parameters. Compute x0 from Equation 5.

Let t0 = 0, i = 1.

Step 2.Use Algorithm 1 to solve (s1, t1), and compute πi1(s
1, t1).

Step 3.Use Algorithm 2 to solve (s2, t2), and compute πi2(s
2, t2).

Step 4. If πi1(s
1, t1) > πi2(s

2, t2), then si = s1, ti = t1, and

πi = πi1(s
1, t1), otherwise, si = s2, ti = t2, and πi = πi2(s

2, t2).

Step 5. If ti < H, let i = i+ 1, go to Step 2, otherwise, letm = i,

output (si, ti) and πi, i = 1, 2, ...,m.

Algorithm 3. Solution for problem (P).

Numerical example

Example 1: The parameters of the inventory system, refer

to Experiment 1 of Gupta et al.’s [47] model, are as follows:
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TABLE 2 Order strategies for example 1.

D(t) = D0e
λt

D(t) = D0e
λ(H−t)

i 1 2 3 4 1 2 3 4

s1 0.25 2.1694 4.0888 5.9673 0.25 2.1694 4.0888 5.9673

t1 0.65236 2.5717 4.4911 6 0.65236 2.5717 4.4911 6

πi1 49.125 188.28 721.62 1,435.8* 2,181.8 569.26 148.53 25.613*

s2 1.517 3.4364 5.3558 5.7581 1.517 3.4364 5.3558 5.7581

t2 1.9194 3.8388 5.7581 5.7581 1.9194 3.8388 5.7581 5.7581

πi2 153.75* 589.26* 2,258.4* 0 3,828.70* 998.96* 260.64* 0

Ti 1.9194 1.9194 1.9194 0.24185 1.9194 1.9194 1.9194 0.24185

qi 404.1 1,548.8 5,936.1 1,491.5 7,229.3 1,886.2 492.14 26.49

πi 153.75 589.26 2,258.4 1,435.8 3,828.70 998.96 260.64 25.61
∑

πi 4,437.2 5,113.9

*Indicates the optimal solution for this cycle.

FIGURE 2

E�ects of p, c0, M, and θ on total profit.

D0 = 100, λ = 0.7, p = $2/unit, c0 = $1/unit,

c1 = $0.8/unit, c2 = $2/unit, h = $0.5/unit/month, Ie =

0.12/$/unit/month, Ic = 0.15/$/unit/month, θ = 0.08, δ =

0.9, M = 0.25 month, and H = 6 month. Using the proposed
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algorithm, we have two order strategies in Table 2 with different

demand function.

Table 2 shows the ordering strategies under two different

demand functions, the finite horizon is divided into four sale

cycles. Among them, the first three cycles are the same. Due to

horizon limitation, the remaining time of the horizon is regarded

as the fourth period. The total profit of the ordering policy with

an increasing demand function is $4,437.2, which is smaller than

that with a decreasing demand function ($5,113.9). The reason is

that when the last cycle is insufficient, and demand is small, the

impact on total profit is small and vice versa. The order quantity

of the first three periods under the two ordering strategies has

the change trend similar to the demand function.

Based on the initial value of system parameters from

Example 1, the demand function is D(t) = D0e
λt . The effect

of the main parameters (p, c0,M, and θ) on total profit is shown

in Figure 2.

Figure 2 reveals that total profit is increasing as the selling

price increases in the interval (1.5, 2.5); the overall tendency of

total profit is rising in the same way as the selling price in the

interval. The figure of changes in total profit floats up and down

irregularly, the reason is that the length of the last cycle depends

on the finite horizon surplus under the first (m− 1) equal cycles.

Purchasing cost is outlay items, thus the overall tendency falls in

the interval (0.5, 1.5), as mentioned above.

The effect on trade credit and the deterioration rate on

total profit is drawn in the interval (Figure 2). The overall

change trend of total profit with respect to these two parameters

is increasing, but the range of change is larger because the

sensitivity of these two parameters is higher. We analyzed the

effects of selling price and purchase cost on total profit from

a macro perspective. As for why the overall trend fluctuates,

we can understand from a micro perspective by showing the

important nodes of trade credit change.

To understand the reasons why the parameters

affect total profit fluctuation in more detail, trade credit

is taken as an example. Based on the parameters of

Example 1 and the figures of several important nodes in

trade credit, the total profit change data are studied in

Table 3.

Generally, total profit also rises with a rise in trade credit,

details of the curve floating up or down are presented in Table 3.

The first three cycles become longer as trade credit increases.

However, the last cycle diminishes until it reaches 0, whenM =

0.66, that is to say, there are only three cycles in finite horizon.

WhenM ∈ [0.05, 0.2] is increasing, the total profit increased

from the first three cycles is greater than the decreased profit

from the last one, hence the total profit is increasing. When

M ∈ [0.2, 0.65] is increasing, the total profit increased from the

first three cycles is less than the decreased profit from the last

one, hence the total profit is decreasing. When M ∈ [0.66, 1.55]

is increasing, order strategies only have three cycles, and the

third cycle is basically the same as the first two cycles, that is,

TABLE 3 Order strategies for di�erent values ofM.

i M = 0.05 M = 0.2 M = 0.5 M = 0.65 M = 0.66

π1 145.04 151.51 165.61 173.31 173.84

π2 540.29 576.58 657.41 702.43 705.55

π3 2,012.6 2,194.2 2,609.7 2,847 2,863.6

π4 1,249.6 1,552.7 638.77 17.323 0
∑

πi 3,947.5 4,475 4,071.5 3,740.1 3,743

T1 1.8787 1.9093 1.9695 1.9992 2.0012

T2 1.8787 1.9093 1.9695 1.9992 2.0012

T3 1.8787 1.9093 1.9695 1.9992 1.9976

T4 0.36397 0.272244 0.0914 0.0023 0

all three cycles are in the best sales state. As there is no limited

planning period, this results in a very short cycle.

Conclusion

In this paper, a model for deteriorating products with

multiple orders and partial backlogging under the condition

of permissible delay in payments is studied. Suppose the

deterioration rate of products is constant, the demand rate

is a time-varying function, the backlogging rate is variable

and dependent on the customer’s waiting time for the next

replenishment. Two kinds of situations for the model objective

function are discussed, the existence and uniqueness of

the optimal solution for each cycle are proven, a search

algorithm corresponding to the order strategy is designed, and

the optimality of each search step is presented. Ultimately,

numerical examples are presented and the effect of the main

parameters on total profit is analyzed.

Through the research conclusions of this paper, we can

obtain some management enlightenment, listed as follows:

(1) By comparing the two demand functions, replenishment

should be ensured as much as possible in the stage of a

large demand during the finite horizon, so as to maximize

retailers’ overall profit.

(2) Sales price determination is also a very important

consideration during the planning period as it affects not

only the length and number of cycles, but also retailers’

overall profit.

(3) As for trade credit and deterioration, through

microscopic analysis, small changes in the parameters will

lead to large changes in total profit, the reason of this factor

is included in this paper.

At the same time, there are many shortcomings in this

paper, which needs to be studied in the future. As for the

partial backlogging rate, we only consider the waiting time
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of customers, and should also consider the price discount

and other issues. In addition, global warming and carbon

emissions are also significant factors for inventories and

supply chains. I hope to be able to study a more realistic

inventory model.
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