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This paper presents numerical treatments for a class of singularly perturbed

parabolic partial di�erential equations with nonlocal boundary conditions. The

problem has strong boundary layers at x = 0 and x = 1. The nonstandard

finite di�erence method was developed to solve the considered problem in

the spatial direction, and the implicit Euler method was proposed to solve

the resulting system of IVPs in the temporal direction. The nonlocal boundary

condition is approximated by Simpsons 1
3

rule. The stability and uniform

convergence analysis of the scheme are studied. The developed scheme is

second-order uniformly convergent in the spatial direction and first-order

in the temporal direction. Two test examples are carried out to validate the

applicability of the developed numerical scheme. The obtained numerical

results reflect the theoretical estimate.

KEYWORDS

singularly perturbed problems, partial di�erential equations, reaction-di�usion,

method of lines, uniform convergence, nonlocal boundary condition

1. Introduction

Differential equations that involve a small parameter in their higher order

derivative term are said to be singularly perturbed problems (SPPs) or singularly

perturbed differential equations (SPDEs). Many mathematical models, starting

from fluid dynamics to mathematical biology, are modeled using (SPPs). For

example, high Reynold’s number flow in fluid dynamics, heat transport problems

with large Péclet numbers, elastic vibration, etc. [1] and the references therein.

Such mathematical problems are extremely difficult to solve exactly. Thus, for

treating such problems numerical methods are preferable. Various scientific and

engineering processes can be modeled as integral terms over the spatial domain

that appear inside or outside of the boundary conditions [2, 3]. Such problems

are said to be nonlocal problems. Many physical phenomena are formulated as

nonlocal mathematical models. For instance, problems in thermodynamics [4],
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plasma physics [5], heat conduction [6], underground water

flow, and populace dynamics [7] can be reduced to nonlocal

problems with integral conditions. SPPs having nonlocal

boundary conditions in which the highest order derivative term

is multiplied by way of a small parameter are referred to as

SPPs with integral boundary conditions. Such problems exhibit

boundary layer phenomena wherein the solution changes.

However, the numerical treatments of SPPs attract the attention

of researchers due to the boundary layer behavior of the solution.

Since the small parameter multiplies the highest derivative,

the small regions adjoin the domain of interest’s boundaries

or any interior stage at which the variable quantity undergoes

a very unexpected change. As a result, these problems have

strong boundary layers, which ensures that there are small areas

where the solution rapidly changes within very small layers near

the boundary or within the problem domain [8]. Numerically

treating such SPPs with nonlocal boundary conditions is a

challenging task due to a very small perturbation parameter (ε).

In recent times, a class of SPPs involving nonlocal boundary

conditions have been obtained great attention from scholars.

To mention few of them, the authors in Bahuguna and Dabas

[9], Feng et al. [10], and Li and Sun [11] studied the existence

and uniqueness of a class of SPPs with nonlocal boundary

conditions. The authors in Raja and Tamilselvan [12] developed

a finite difference scheme for solving a class of a system of

singularly perturbed reaction diffusion equations with integral

boundary conditions. Debala and Duressa [13] built a uniformly

convergent numerical scheme for solving SPPs with nonlocal

boundary conditions. Numerical methods for solving singularly

perturbed delay differential equations (SPDDEs) are considered

in Sekar and Tamilselvan [14–17]. The authors developed finite

difference schemes with suitable piecewise uniform Shiskin

meshes. The authors in Debela and Duressa [18] used an

exponentially fitted numerical scheme to solve SPDDEs of the

convection-diffusion kind with nonlocal boundary conditions.

Debela and Duressa [19] improved the order of accuracy for

the method proposed in Debela and Duressa [18]. Kumar

and Kumari [20] developed the method based on the idea

of B-spline functions and an efficient numerical method on

a piecewise-uniform mesh was recommended to approximate

the solutions of SPPs having a delay of unit magnitude with

an integral boundary condition. In the literature, only few

authors considered a class of singularly perturbed parabolic

partial differential equations (SPPPDEs) with integral boundary

conditions. Sekar and Tamislevan [21] investigate a numerical

solution for singularly perturbed delay partial differential

equations (SPDPDEs) of the reaction-diffusion type with

integral boundary conditions. They developed the standard

finite difference on a rectangular piecewise uniform mesh for

spatial discretization and a backward difference scheme in

time derivative. Gobena and Duressa [22] constructed and

analyzed an accurate numerical method for solving SPDPDEs

with integral boundary conditions.

In general, the classical numerical methods used for solving

SPDEs are not well-posed and fail to provide an exact solution

when a perturbation parameter (ε) goes to zero. Therefore, it

is essential to develop a numerical method that offers suitable

results for small values of the perturbation parameter. As far

as the researchers’ knowledge, singularly perturbed parabolic

partial differential equations with nonlocal boundary conditions

are first being considered and have not yet been treated

numerically. In this study, we investigate a uniformly convergent

numerical method for solving the problem under consideration.

We used the nonstandard finite difference method for space

direction and the implicit Euler method for time direction.

The contents of the paper are arranged in the following

manner: A brief introduction of the given problem is discussed

in Section 1. In Section 2, the properties of continuous solutions

are given. In Section 3, a numerical method is formulated by

using the method of lines for the given problem. Stability and

convergence analysis for developed numerical methods are also

studied. Numerical results and discussions are given in Section

4. In Section 5, the conclusion of the paper is given.

Notation: In this paper, N and M denote the number

of mesh intervals in spatial and temporal discretization,

respectively. C is a generic positive constant independent of

ε, N, and M. The norm used for studying the convergence

of numerical solutions is the maximum norm defined as
∣

∣

∣

∣z(s, t)
∣

∣

∣

∣ : = sup
∣

∣z(s, t)
∣

∣ , (s, t) ∈ D.

2. Properties of continuous problem

In this paper, we consider a class of singularly perturbed 1D

parabolic partial differential equations of the reaction-diffusion

type with non-local boundary conditions,



































Lz(s, t) =
(

−ε ∂2

∂s2
+ ∂

∂t + a(s, t)
)

z(s, t) = f (s, t) (s, t) ∈ D,

z(s, 0) = φb(s), φb(s, t) ∈ Ŵb =
{

(s, 0)
}

,

z(0, t) = φl(t), φl(s, t) ∈ Ŵl =
{

(0, t); 0 ≤ t ≤ T
}

,

Kz(s, t) = z(1, t)− ε
∫ 1
0 g(s)z(s, t)ds = φr(s, t), φr(s, t) ∈

Ŵr =
{

(1, t); 0 ≤ t ≤ T
}

.

(1)

where (s, t) ∈ D = �x × �t = (0, 1) × (0,T], D̄ =
[0, 1] × [0,T], and ε is a small parameter (0 < ε ≪ 1). Suppose

that a(s, t) ≥ α > 0, f (s, t), φl, φr , φb are sufficiently

smooth functions and g(s) is nonnegative monotone function

and satisfies
∫ 1
0 g(s)ds < 1. The existence and uniqueness

of the problem (1) can be established under the assumption

that the data are Hölder continuous and imposing proper

compatibility conditions at the corners [23]. Note that φl

and φr are only functions of t, while φb is a function of x

only. The problems necessarily satisfies the following sufficient

compatibility conditions φb(0, 0) = φl(0, 0), φb(1, 0) =
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φr(1, 0), and

− ε
∂2φb(0, 0)

∂s2
+ a(0, 0)φb(0, 0)+

∂φl(0, 0)

∂t
= f (0, 0),

−ε
∂2φb(1, 0)

∂s2
+ a(1, 0)φb(1, 0)+

∂φr(1, 0)

∂t
= f (1, 0).

Note that φl,φr , and φb are assumed to be sufficiently smooth

for Equation (1) to make sense, namely φl,φr ∈ C1([0,T]), and

φb ∈ C(2,1)(Ŵb).

Next, we analyze some properties of the continuous solution

(Equation 1) which guarantee the existence and uniqueness of

the analytical solution. A replication of this belonging in semi-

discrete form can be used to present the approximate solution,

which we provide in the following section.

Lemma 1. (Continuous Maximum Principle) Let 9(s, t) ∈
C(0,0)(D̄)∩C(1,0)(D)∩C(2,1)(D) be a sufficiently smooth function

such that 9(0, t) ≥ 0,9(s, 0) ≥ 0,K9(1, t) ≥ 0,L9(s, t) ≥
0,∀(s, t) ∈ D. Then 9(s, t) ≥ 0, ∀(s, t) ∈ D̄, where L9(s, t) =
9t(s, t)− ε9ss(s, t)+ a9(s, t).

Proof. Assume (s∗, t∗) be defined as 9(s∗, t∗) =
min(s,t)∈D̄ 9(s, t) and suppose that 9(s∗, t∗) ≤ 0. It is

known that (s∗, t∗) /∈ ∂D. Thus,

L9(s∗, t∗) = 9t(s
∗, t∗) − ε9ss(s

∗, t∗) + a(s, t)9(s∗, t∗).
Since 9(s∗, t∗) = min(s,t)∈D̄ 9(s, t), which indicates that

9(s∗, t∗) = 0, 9t(s
∗, t∗) = 0, 9ss(s

∗, t∗) ≥ 0 and implies that

L9(s∗, t∗) < 0, which is contradicts with the above assumption.

L9(s∗, t∗) > 0,∀s ∈ D. So that, 9(s, t) ≥ 0, ∀(s, t) ∈ D. �

Lemma 2. (Stability Result) Assume z(s, t) is the solution to the

continuous problem in Equation (1). Then we have the bound

z(s, t) ≤ α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

,

where
∣

∣

∣

∣f
∣

∣

∣

∣ = max
{

f (s, t)
}

.

Proof. We prove this by using the maximum principle Lemma

(1) and by constructing the barrier functions θ±(s, t) =
CM ± z(s, t), (s, t) ∈ D̄, where M = α−1

∣

∣

∣

∣f
∣

∣

∣

∣ +
max

{

φb(s),max
{

φl(s, t),φr(s, t)
}}

. At initial, we have

θ±(s, 0) = α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, 0),φr(s, 0)
}}

±z(s, 0)

= α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s)
}

± φb(s) ≥ 0.

For x = 0, we have

θ±(0, t) = α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(0),max
{

φl(0, t),φr(0, t)
}}

±z(0, t)

= α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φl(t)
}

± φl(t) ≥ 0.

For x = 1, we have

Kθ±(1, t) = α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(1),max
{

φl(1, t),Kφr(1, t)
}}

±Kz(1, t)

= α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φr(1, t)
}

± φr(1, t) ≥ 0.

For 0 < s < 1, we have

Lθ±(s, t)

= θ±t (s, t)− εθ±ss (s, t)+ a(s, t)θ±(s, t),

=
[

α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

± z(s, t)
]

t

−ε
[

α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

± z(s, t)
]

ss

+a(s, t)
(

α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

± z(s, t)
)

= max
{

φl t(s, t),φr t(s, t)
}

± zt(s, t)− εmax
{

φbss(s),φl ss(s, t),φr ss(s, t)
}

±− εuss(s, t)+ αα−1
∣

∣

∣

∣f
∣

∣

∣

∣+ αmax
{

φb(s), max
{

φl(s, t),φr(s, t)
}}

±αz(s, t)

≥ 0,

where ε > 0, a(s, t) ≥ α > 0. This implies that Lθ±(s, t) ≥
0. Hence, by Lemma 1, we have, θ±(s, t) ≥ 0, ∀(s, t) ∈ D̄,

which indicates

z(s, t) ≤ α−1
∣

∣

∣

∣f
∣

∣

∣

∣+max
{

φb(s),max
{

φl(s, t),φr(s, t)
}}

. �

The sufficient conditions for the existence of a unique solution is

given in Lemma 3 and Theorem 1.

Lemma 3. If the coefficient satisfies a(s, t), f (s, t) ∈ C0(D̄)

and boundary conditions satisfies φl ∈ C1([0,T]),φb ∈
C(2,1)(Ŵb),φr ∈ C1([0,T]) and suppose that the compatibility

conditions are satisfied. Then, the problem (Equation 1) has a

unique solution z(s, t) which is satisfy z(s, t) ∈ C(2,1)(D̄).

Proof. Refer to Ladyženskaja et al. [23] �

To estimate the error for the fitted numerical technique below,

the idea that the solution of Equation (1) is more regular than

the one guaranteed by using the result in Theorem 1. To attain

this greater regularity, stronger compatibility conditions are

imposed at the corners.

Theorem 1. If the coefficient satisfies a(s, t), f (s, t) ∈ C(2,1)(D̄)

and boundary conditions satisfies φl ∈ C2([0,T]),φb ∈
C(4,2)(Ŵb),φr ∈ C2([0,T]), Then the problem (Equation 1)

having a unique solution z which satisfies z ∈ C(4,2)(D̄). And

also the derivatives of solution z are bounded, ∀i, j ∈ Z ≥ 0 such

that 0 ≤ i+ 2j ≤ 4,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ i+jz

∂si∂tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Cε
−i
2 .

Proof. The boundedness of the solutions and its derivative is

given as follows. Under the stretched transformation s̃ = s√
ε

problem (Equation 1) can be rewritten as























Lz̃(s̃, t) =
(

−ε ∂2

∂ s̃2
+ ∂

∂t + ã(s̃, t)
)

z̃(s̃, t) = f (s̃, t), (s̃, t) ∈ D̃ε

z̃(s̃, t) = φl(s̃, t), (s̃, t) ∈ Ŵ̃l

Kz̃(s̃, t) = z̃(1, t)− ε
∫ 1
0 g(s)z̃(s̃, t)ds = φr(s̃, t), (s̃, t) ∈ Ŵ̃r

z̃(s̃, t) = φb(s̃, t), (s̃, t) ∈ Ŵ̃b

(2)
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where D̃ε = (0, 1√
ε
)× (0,T), and the boundary condition Ŵ̃ to

Ŵ, where Equation (2) is independent of ε. Then, by taking the

idea of estimation (10.6) of Ladyženskaja et al. [23] (p. 352), we

will obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ i+jz̃

∂ s̃i∂tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ñδ

≤ C
(

1+ ||z̃||Ñ2δ

)

,

∀ Ñδ in D̃ε . Here, Ñδ , δ > 0 is a neighborhood with diameter δ

in D̃ε . Returning to the original variable

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ i+jz

∂ s̃i∂tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

D̄

≤ Cε
−i
2
(

1+ ||z||D̄
)

.

Hence, the proof is complete by using the bound on z of

Lemma 2. �

The bounds of the derivatives of the solution given in Theorem 1

were derived from classical results. They are not adequate for the

proof of the ε -uniform error estimate. Stronger bounds on these

derivatives are now obtained by a method originally devised in

Shishkin [24]. The main idea is to decompose the solution z into

smooth and singular components.

Lemma 4. If the coefficient satisfies a(s, t), f (s, t) ∈ C(4,2)(D̄),

and the boundary conditions satisfies φl ∈ C(3)([0,T]),φb ∈
C(6,3)(Ŵb),φr ∈ C(3)([0,T]). Then we have

‖
∂ i+jv

∂si∂tj
‖D̄ ≤ C

(

1+ ε1−i/2
)

, (s, t) ∈ D

|
∂ i+jwl

∂si∂tj
| ≤ Cε

−i
2 e

s√
ε , (s, t) ∈ D

|
∂ i+jwr

∂si∂tj
| ≤ Cε

−i
2 e

−(1−s)√
ε , (s, t) ∈ D

where C is a constant independent of parameter ε, (s, t) ∈
D̄, i, j ≥ 0, 0 ≤ i+ 2j ≤ 4.

Proof. For proof, the interested reader can refer to Elango et al.

[21]. �

3. Numerical scheme

3.1. Spatial semi-discretization

The fundamental idea of non-standard discrete modeling

techniques is the development of the exact finite difference

technique. Micken presented methods and rules for developing

nonstandard FDMs for various types of problems [25]. To

develop a discrete scheme in keeping with Mickens’ guidelines,

the denominator characteristic for the discrete derivatives

should be described in terms of more complicated functions

with larger step sizes than those used in classical methods. These

complicated functions are a general property of the method

that may be useful when constructing dependable methods for

such problems.

To construct a genuine finite difference scheme for the

problem of the form in Equation (1), we use the methods

described in Woldaregay and Duressa [26]. The constant

coefficient given in Equation (3) without the time variable is

considered as follows.

− ε
d2z(s)

ds2
+ az(s) = 0. (3)

By solving Equation (3), we obtain two independent solutions

eµ1s and eµ2s, where

µ1,2 = ±
√

α/ε.

The spatial domain [0, 1] is discretized on uniform

mesh length 1s = h as follows. DN =
{

si = s0 + ih, i = 1(1)N, s0 = 0, sN = 1, h = 1/N
}

, N is

taken as number of mesh points in the spatial discretization.

The approximate solution of z(si) will be denoted by Zi. Here,

the main aim is to compute difference equations that have

similar results with the problem (Equation 1) at the mesh point

si which is given by Zi = B1e
µ1si + B2e

µ2si . Applying the

procedures given in Mickens [25], we get

det







Zi−1 exp
(

µ1si−1
)

exp
(

µ2si−1
)

Zi exp (µ1si) exp (µ2si)

Zi+1 exp
(

µ1si+1
)

exp
(

µ2si+1
)






= 0. (4)

After simplification, Equation (4) becomes

Zi−1 − 2 cosh

(
√

α

ε
h

)

Zi + Zi+1 = 0. (5)

which is an exact difference scheme for Equation (3).

By performing some arithmetic manipulation and making

rearrangement on Equation (5) for the variable coefficient

problem, we obtain

− ε
Zi+1 − 2Zi + Zi−1

λ2i

+ aiZi = 0. (6)

The denominator function λ2i becomes

λ2i =
4

β2
i

sinh2
(

βi

2
h

)

, (7)

where λ2 is a function of ε,βi, h, and βi =
√

ai
ε .

For more information about nonstandard finite difference

methods for reaction diffusion problems, an interested reader

can refer to the study of Munyakazi and Patidar [27].

By using Equation (7), and applying the nonstandard finite

difference method to a semi-discrete problem, we have

dZi(t)

dt
− ε

Zi+1(t)− 2Zi(t)+ Zi−1(t)

λ2i (ε, h, t)
+ aiZi(t) = f (si, t). (8)
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with boundary conditions



























Zi = φl i(t), i = 0,

Zi = φb, i = 1(1)N − 1,

K
NZN = ZN7− ε

∑N
i=1

gi−1Z
j+1
i−1 + 4giZ

j+1
i + gi+1Z

j+1
i+1

3
h = φrN , i = N.

(9)

Here, for i = N, the integral boundary condition
∫ 1
0 g(s)z(s)ds approximated by composite Simpson’s

integration rule.

∫ 1

0
g(s)z(s)ds =

h

3



g(0)z(0)+ g(N)z(N)+ 2

N−1
∑

i=1

g(s2i)z(s2i)

+ 4

N
∑

i=1

g(s2i−1)z(s2i−1)





= φr . (10)

Substituting Equation (10) in to Equation (9), we obtain

z(N)−
h

3



g(0)z(0)+ g(N)z(N)+ 2

N−1
∑

i=1

g(s2i)z(s2i)

+4

N
∑

i=1

g(s2i−1)z(s2i−1)



 = φr . (11)

Equation (11) can be rewritten as

−
4εh

3

N
∑

i=1

g(s2i−1)z(s2i−1)−
2εh

3

N−1
∑

i=1

g(s2i)z(s2i)

+
(

1−
εh

3
g(N)

)

z(N) = φr +
εh

3
g(0)z(0).

Assume that the approximation of z(si, t) is denoted as Zi(t),

by using the non-standard finite difference approximation. At

this level, Equation (1) is reduced in the form of semi-discrete

as follows.











































LhZi(t) = dZi(t)
dt

−ε
Zi+1(t)− 2Zi(t)+ Zi−1(t)

λ2i (ε, h, t)
+ aiZi(t) = f (si, t),

Zi(0) = φb(si),

Z0(t) = φl(0, t),

KZN (t) = φr(N, t).

(12)

Equation (12) is the system of IVPs and its compact form is

written as

dZi(t)

dt
+ BZi(t) = Fi(t), (13)

where B is (N − 1)× (N − 1) tridiagonal matrix, Zi(t) and Fi(t)

are (N − 1) entries of the column vector. The entries of B and F

respectively given as























bi,i = 2ε
λ2i (ε,h,t)

+ a(si), i = 1(1)N − 1

bi,i−1 = − 2ε
λ2i (ε,h,t)

, i = 2(1)N − 1

bi,i+1 = − 2ε
λ2i (ε,h,t)

, i = 1(1)N − 1,

and























F1(t) = f1(t)−
(

a(s1)+ 2ε
λ21(ε,h,t)

)

φl(0, t),

Fi(t) = fi(t), i = 2(1)N − 1

FN−1(t) = fN−1(t)− 2ε
λ2N−1(ε,h,t)

φrN (t)

3.2. Stability and convergence analysis

Here, we present the maximum principle and uniform

stability estimate of the semi-discrete operator Lh and its

convergence analysis.

Lemma 5. (Semi-discrete Maximum Principle): Assume that

Z0(t) ≥ 0, KZN (t) ≥ 0. Then LhZi(t) ≥ 0 ∀ i = 1(1)N − 1,

implies that Zi(t) ≥ 0 ∀ i = 0(1)N.

Proof. Assume there exists q ∈ {0, · · · ,N} such that Zq(t) =
min0≤i≤N Zi(t). Suppose Zq(t) ≤ 0, which implies q 6= 0,N.

Also, we have Zq+1−Zq > 0 and Zq−Zq−1 < 0. Here, we have

L
hZq(t) =

dZq(t)

dt
− ε

Zq+1(t)− 2Zq(t)+ Zq−1(t)

λ2q
+ aqZq(t).

By using the above assumption, we get that LhZi(t) < 0, for

i = 1(1)N − 1. Thus, the assumption Zi(t) < 0, i = 0(1)N is not

correct. Hence, Zi(t) ≥ 0 ∀ i = 0(1)N. �

This Lemma 5 is used to obtain the bounds of the discrete

solution given in Lemma 6. In general, the discrete maximum

principle is widely used to show the boundedness and positivity

of a discrete solution.

Lemma 6. The solution Zi(t) of the semidiscrete problem in

Equations (12) or (13) satisfies the following bound.

∣

∣Zi(t)
∣

∣ =
1

α
max
i

∣

∣

∣
L
hZi(t)

∣

∣

∣
+max

i

{

φb(si), max
i

{

φl(si, t),φr(si, t)
}

}

.

Proof. Suppose q = 1
α maxi

∣

∣

∣
LhZi(t)

∣

∣

∣
+

maxi
{

φb(si), maxi
{

φl(si, t),φr(si, t)
}}

and define a comparison

function θ±i (t) as

θ±i (t) = q± Zi(t).
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For the points on the boundary, we have

θ±0 (t) = q± Z0(t) = q± φl(0, t) ≥ 0,

K
Nθ±N (t) = q±K

NZN (t) = q± φr(1, t) ≥ 0.

For 1 ≤ i ≤ N − 1, we have

L
hθ±i (t) =

d(q± Zi(t))

dt

− ε

(

q± Zi−1(t)− 2(q± Zi(t))+ q± Zi+1(t)
)

λ2

+ ai(q± Zi(t))

= aiq± L
hZi(t)

= ai

(

α−1max
i

∣

∣

∣
L
hZi(t)

∣

∣

∣

+ max
i

{

φb(si), max
i

{

φl(si, t),φr(si, t)
}

})

± fi,j

≥ 0, since ai ≥ α.

From Lemma 5, we get, θ±i (t) ≥ 0, ∀ (si, t) ∈ �̄N
x × (0,T). �

Next, we present the convergence analysis of spatial

discretization. We denoted Zi(t) as approximate solution

for the spatial semidiscretization to the exact solution z(s, t) at

s = si , i = 0(1)N. Let us define the backward and forward finite

differences in space as:

D−z(si, t) =
z(si, t)− z(si−1)

h
, D+z(si, t) =

z(si+1, t)− z(si, t)

h
,

respectively, and the second order central finite difference

operator as

δ2z(si, t) = D+D−z(si, t) =
D+z(si, t)− D−z(si, t)

h
.

Lemma 7. Let N be a fixed mesh. Then, for ε → 0, we have

lim
ε→0

max
1≤i≤N−1

exp(−psi/
√

ε)

εm/2
= 0 and

lim
ε→0

max
1≤i≤N−1

exp(−p(1− si)/
√

ε)

εm/2
= 0.

wherem = 1, 2, 3, · · · .

Proof. Refer to Munyakazi and Patidar [27]

Theorem 2. Let the coefficient function a(s) and the

function f (s, t) in Equation (12) be sufficiently smooth

and z(s, t) ∈ C4
(

D̄
)

. Then the semidiscrete solution Zi(t) of

Equation (12) satisfies

∣

∣

∣
L
h (z(si, t)− Zi(t)

)

∣

∣

∣
≤ Ch2.

Proof. The truncation error in spatial direction is considered as

L
h
(

z(si, t)− Zi(t)
)

= L
hz(si, t)− L

hZi(t)

= −ε
d2

ds2
z(si, t)+

D+
s D

+
s h

2

λ2
z(si, t)

= −ε
d2

ds2
z(si, t)+

ε

λ2

(

h2
d2

ds2
z(si, t)+

h4

12

d4

ds4
z(si, t)

)

. (14)

Note that we have used Taylor expansions of zi−1(t) and

zi+1(t). A truncated Taylor expansion of 1
λ2

of order five

becomes

1

λ2
=

β2

4

(

4

β2h2
−

1

3
+

β2h2

60

)

. (15)

Using Equation (15) in Equation (14), we obtain

L
h (z(si, t)− Zi(t)

)

=
ε

12

(

d4

ds4
z(si, t)− β2 d2

ds2
z(si, t)

)

h2

+ εβ2h4

(

β2

240

d2z(si, t)

ds2
−

1

144

d4z(si, t)

ds4

)

+ h6
εβ4

2880

d4z(si, t)

ds4
.

(16)

We use Lemma (7), to obtain the boundedness of Equation (16).

Using Lemma (7) and Theorem (1), we obtain

∣

∣

∣
L
h (z(si, t)− Zi(t)

)

∣

∣

∣
≤ CN−2.

The truncation error at s = sN , become

K
N (Z(si)− z(si)

)

= K
NZ(sN )−K

N s(si),

= φr −K
NZ(sN ),

= Kz(si)−K
NZ(sN ),

= z(sN )− ε

∫ 1

0
g(s)z(s)ds−

(

Z(sN )− ε

∫ sN

s0

g(s)z(s)ds

)

,

= ε

∫ sN

s0

g(s)z(s)ds− ε

N
∑

i=1

gi−1zi−1 + 4gizi + gi+1zi+1

3
h,

= ε

[∫ s1

s0

g(s)z(s)ds+
∫ s2

s1

g(s)z(s)ds+ · · · (17)

+
∫ sN+1

sN

g(s)z(s)ds

]

−ε

[

g0z0 + 4g1z1 + g2z2

3
h+ · · ·

+
gN−1zN−1 + 4gNzN + gN+1zN+1

3
h

]

,

∣

∣

∣
K
N (Z(si)− z(si)

)

∣

∣

∣

=
∣

∣

∣
Cε
(

h4z(4)(ξ1)+ h4z(4)(ξ2)+ · · · + h4z(4)(ξN )
)∣

∣

∣
,

∣

∣

∣
K
N (Z(si)− z(si)

)

∣

∣

∣

≤ Cεh4
(

z(4)(ξ1)+ z(4)(ξ2)+ · · · + z(4)(ξN )
)

,

≤ Cεh4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d4z(ξi)

dx4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Ch2 = CN−2. �

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2022.1005330
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Wondimu et al. 10.3389/fams.2022.1005330

Theorem 3. The semidiscrete solutions satisfy the uniform

error bound

sup
0<ε≪1

max
i

∣

∣z(si, t)− Zi(t)
∣

∣

D̄ ≤ CN−2. (18)

Proof. The proof follows from Theorem (1) and Lemma (7)

under the properties of boundedness of a semi-discrete solution

and the required bound is satisfied.

3.3. Temporal discretization

A mesh with length 1t = tj+1 − tj, j = 0(1)M − 1

is constructed on the time domain Dt = [0,T], where M

is a positive integer. The IVPs Equation (13) are discretized

using the implicit Euler method on a uniform mesh. By

denoting the approximation of zi(tj) as Z
j
i , we construct the time

discretization as follows.

Z
j
i − Z

j−1
i

1t
= BZ

j
i + F

j
i (19)

with the initial condition Z0(t) = φl(tj), and by rearranging

Equation (19), we obtain

Z
j
i = [I + 1tB]−1

[

1tF
j
i + Zi−1

i

]

. (20)

Lemma 8. Suppose

∣

∣

∣

∣

∂ iz(s,tj)

∂ti

∣

∣

∣

∣

≤ C, ∀(s, t) ∈ D̄, i = 0, 1, 2. Then

the local truncation error associated with the time direction

satisfies
∣

∣ej
∣

∣ ≤ C(1t)2.

Proof. The local truncation error is defined as

ej = z(tj)− Z
j
i

= z(tj)− [I + 1tB]−1
[

1tF
j
i + Z

j−1
i

]

.

Using Taylor expansion, we obtain z(tj−1) as

z(tj−1) = z(tj)−1tzt(tj)+
(1t)2

2
ztt(tj)+

(1t)3

3!
zttt(tj)+O((1t)4).

However, zt(tj) = F(tj)− B(tj)z(tj). Thus,

z(tj−1) = z(tj)− 1t[F(tj)− B(tj)z(tj)]+
(1t)2

2
ztt(tj)

+
(1t)3

3!
zttt(tj)+O((1t)4).

Now, the local truncation error ej becomes

ej = z(tj)− [I + 1tB]−1
[

1tF
j
i + Z

j−1
i

]

= z(tj)− [I + 1tB]−1

[

[I + 1tB(tj)]z(tj)+
(1t)2

2
ztt(tj)+ · · ·

]

= [I + 1tB]−1

[

(1t)2

2
ztt(tj)−

(1t)3

3!
zttt(tj)+O((1t)4)

]

.

Since the matrix B is invertible, using the relation (1t)2 > (1t)3

for small 1t and z(tj) ≤ C , we obtain

∣

∣

∣

∣ej
∣

∣

∣

∣ ≤
∣

∣

∣

∣[I + 1tB]−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1t)2

2
ztt(tj)−

(v)3

3!
zttt(tj)+O((1t)4)

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣[I + 1tB]−1
∣

∣

∣

∣ (1t)2 ≤ C(1t)2.

�

Lemma 9. The global error estimate in the time direction is

given by
∣

∣

∣

∣Ej+1

∣

∣

∣

∣ ≤ C1t, ∀j ≤ T/1t, where Ej+1 =
maxi

∣

∣Zi(tj+1)− Zi,j+1

∣

∣

D
.

Proof. The global error estimate at (j+1)th time step is obtained

by using the local error estimate up to jth time step as follows.

∣

∣

∣

∣Ej+1

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i=1

ej

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

j ≤ T/1t

≤ ||e1|| + ||e2|| + ||e3|| + ||e4|| + · · · +
∣

∣

∣

∣ej
∣

∣

∣

∣

≤ C1(j1t)1t

≤ C1T1t since j1t ≤ T

≤ C1t.

Hence,
∣

∣

∣

∣

∣

∣
Ej+1

∣

∣

∣

∣

∣

∣
= max

i

∣

∣

∣
Zi(tj+1)− Z

j+1
i

∣

∣

∣

D
≤ C1t. (21)

where C is a positive constant independent of ε and 1t. By

taking the supremum ∀ ε ∈ (0, 1], we obtained

sup
0<ε≪1

max
i

∣

∣

∣
Zi(tj+1)− Z

j+1
i

∣

∣

∣

D
≤ C1t. (22)

�

We summarizes the results of this work by considering the error

estimate obtained in Equations (18) and (22) and we conclude

by the following theorem.

Theorem 4. The error estimate for the solution of the

continuous and fully discrete problems is given by

sup
0<ε<<1

max
0≤i≤N

max
0≤i≤M

∣

∣

∣

∣

∣

∣
z(s, t)− Z

j+1
i

∣

∣

∣

∣

∣

∣
≤ C

(

N−2 + 1t
)

,

where z(s, t) and Z
j+1
i are the solutions to problems Equations

(1) and (12), respectively.

Proof. The error estimation of the fully discrete scheme is given

as follows.

sup
ε

max
i,j

∣

∣

∣
z(si, tj)− Z

j
i

∣

∣

∣
= sup

ε
max
i,j

∣

∣

∣
z(si, tj)− Zi(tj)+ Zi(tj)− Z

j
i

∣

∣

∣

≤ sup
ε

max
i,j

∣

∣z(si, tj)− Zi(tj)
∣

∣+ sup
ε

max
i,j

∣

∣

∣
Zi(tj)− Z

j
i

∣

∣

∣
.

Then, by combining the bound given in Theorem 3 and

Lemma 9, the theorem gets proved.
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FIGURE 1

3-D graph of numerical solution for Example (1) which displays the existing layer. (A) ε = 10−2. (B) ε = 10−12.

FIGURE 2

3-D graph of numerical solution for Example (2) that displays the existing layer. (A) ε = 10−2. (B) ε = 10−12.

4. Numerical examples, results, and
discussions

Here, we developed an algorithm for the proposed method

for the problem and perform experiments to validate the

theoretical justifications and results. Since the exact solutions

of the given examples are not known, we use double mesh

techniques to obtain the maximum pointwise error of the

developed scheme. Now, let UN,1t be a conducted solution of

a problem using mesh points N and time step size 1t. Again,

U
2N,1t/2
i,j be a conducted solution on double mesh points of 2N

and half of time step size 1t/2.

We calculate the maximum absolute error as EN,1t
ε =

maxi,j

∣

∣

∣
ZN,1t
i,j − Z

2N,1t/2
i,j

∣

∣

∣
, and the parameter uniform error

estimate by using EN,1t = maxε

(

EN,1t
ε

)

. We calculate

the rate of convergence of the developed scheme by using

PN,1t
ε = log2(E

N,1t
ε ) − log2(E

2N,1t/2
ε ). The parameter rate

of convergence is calculated as PN,1t = log2(E
N,1t) −

log2(E
2N,1t/2).

Example 1.







































∂z(s,t)
∂t − ε

∂2z(s,t)
∂s2

+ 1+s2

2 z(s, t) = e−t − 1

+ sin(π s), (s, t) ∈ (0, 1)× (0, 1]

z(s, 0) = 0, s ∈ (0, 1),

z(0, t) = 0, t ∈ (0, 1],

Kz(1, t) = z(1, t)− ε
∫ 1
0

s
6 z(s, t)ds = 0, t ∈ (0, 1].
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TABLE 1 Maximum absolute error and rate of convergence of the scheme for Example (1).

ε N = 32 N = 64 N = 128 N = 256 N = 512

↓ 1t = 0.1 1t = 0.1/4 1t = 0.1/42 1t = 0.1/43 1t = 0.1/44

10−6 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−8 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−10 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−12 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

10−14 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−20 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

1.8951 1.9645 1.9859 1.9938 -

EN,1t 1.2294e-02 3.3054e-03 8.4694e-04 2.1381e-04 5.3681e-05

PN,1t 1.8951 1.9645 1.9859 1.9938 -

TABLE 2 Maximum absolute error and rate of convergence of the scheme for Example (2).

ε N = 32 N = 64 N = 128 N = 256 N = 512

↓ 1t = 0.1 1t = 0.1/4 1t = 0.1/42 1t = 0.1/43 1t = 0.1/44

10−6 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−8 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−10 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−12 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

10−14 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−20 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

1.5354 1.8919 1.9736 1.9935 -

EN,1t 1.5809e-02 5.4540e-03 1.4696e-03 3.7419e-04 9.3970e-05

PN,1t 1.5354 1.8919 1.9736 1.9935 -

Example 2.



























∂z(s,t)
∂t − ε

∂2z(s,t)
∂s2

+ 1+s2

2 z(s, t) = t3, (s, t) ∈ (0, 1)× (0, 1]

z(s, 0) = 0, s ∈ (0, 1),

z(0, t) = 0, t ∈ (0, 1],

Kz(1, t) = z(1, t)− ε
∫ 1
0 cos(s)z(s, t)ds = 0, t ∈ (0, 1].

The solutions of the above two examples exhibit strong

boundary layers near x = 0 and x = 1. We presented the

surface plots for numerical solutions of Examples 1 and 2 in

Figures 1, 2 respectively, which display the presence of boundary

layers formation on the left and right side of the spatial domain

for different values of ε. The maximum pointwise error and

rate of convergence of the proposed schemes of Examples 1

and 2 are given in Tables 1, 2 respectively for various values of

the perturbation parameter ε, mesh number N and time step

size 1t. From these tables, one can observe that the developed

scheme is parameter uniform convergent, which supports the

theoretical results. Figure 3 indicates the Log-Log plots for the
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FIGURE 3

The Log-Log plot of the maximum absolute error for di�erent values of ε for Examples 1 and 2, respectively. (A) Log-Log plot for Example (1). (B)

Log-Log plot for Example (2).

maximum absolute error vs. mesh number N for the singular

perturbation parameter ε. One can observe that as ε goes very

small, the developed method converges uniformly independent

of the perturbation parameter ε.

5. Conclusion

This paper investigates a numerical treatment for a class of

singularly perturbed parabolic partial differential equations of

the reaction-diffusion type with nonlocal boundary conditions.

To solve the problem at hand, we employed the method of

lines. A nonstandard finite difference scheme is used to semi-

discretize the spatial direction, and the implicit Euler method

is used to discretize the results of initial value problems. To

deal with the integral boundary condition, we used a composite

Simpson’s 1
3 rule. The stability of the evolved numerical

scheme is established, and the scheme’s uniform convergence is

demonstrated. To validate the problem’s applicability, two test

examples are carried out for numerical computation for different

values of the perturbation parameter ε and mesh points. The

entire procedure has been demonstrated to be second-order

uniformly convergent in the spatial direction and first-order in

the temporal direction. The theoretical estimation is reflected in

our numerical results.
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