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The beta regression is a widely known statistical model when the response (or the

dependent) variable has the form of fractions or percentages. In most of the situations in

beta regression, the explanatory variables are related to each other which is commonly

known as the multicollinearity problem. It is well-known that the multicollinearity problem

affects severely the variance of maximum likelihood (ML) estimates. In this article, we

developed a new biased estimator (called a two-parameter estimator) for the beta

regressionmodel to handle this problem and decrease the variance of the estimation. The

properties of the proposed estimator are derived. Furthermore, the performance of the

proposed estimator is compared with the ML estimator and other common biased (ridge,

Liu, and Liu-type) estimators depending on the mean squared error criterion by making

a Monte Carlo simulation study and through two real data applications. The results of

the simulation and applications indicated that the proposed estimator outperformed ML,

ridge, Liu, and Liu-type estimators.

Keywords: biased estimation, Fisher’s scoring, mean squared error (MSE), multicollinearity, Liu beta regression,

relative efficiency, ridge beta regression, two-parameter estimator

INTRODUCTION

The beta regression model has been common in many areas, primarily economic and medical
research, such as income share, unemployment rates in certain nations, the Gini index for each
region, graduation rates inmajor universities, or the percentage of body fat inmedical subjects. Beta
regression model, such as any regression model in the context of generalized linear models (GLMs)
is used to examine the effect of certain explanatory variables on a non-normal response variable.
However, in the case of beta regression, the response component is restricted to an interval (0, 1),
such as proportions, percentages, and fractions.

Multicollinearity is a popular issue in econometric modeling. It indicates that there is a strong
association between the explanatory variables. It is well-established that the covariance matrix of
the maximum likelihood (ML) estimator is ill-conditioned in the case of severing multicollinearity.
One of the negative consequences of this issue is that the variance of the regression coefficients
gets inflated. As a consequence, the significance and the magnitude of the coefficients are affected.
Many of the conventional approaches used to address this issue include: gathering additional data,
re-specifying the model, or removing the correlated variable/s.
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During the last years, shrinkage methods have become a
commonly recognized and more effective methodology for
solving the impact of the multicollinearity problem in several
regression models. To solve this problem, Hoerl and Kennard
[1, 2] proposed the ridge estimator. The concept of the ridge
estimator is to add a small definite amount (k) to the diagonal
entries of the covariance matrix to increase the conditioning of
this matrix, reduce the mean squared error (MSE), and achieve
consistent coefficients. For a review of the ridge estimator in both
linear and GLMs, e.g., as shown in References Rady et al. [3],
Abonazel and Taha [4], Qasim et al. [5], Alobaidi et al. [6], and
Sami et al. [7].

One of the drawbacks of the ridge estimator is that estimated
parameters are non-linear functions of the ridge parameter
and the small k selected might not be high enough to solve
multicollinearity. As a solution to this problem, Liu [8] developed
the Liu estimator which is a linear function of the shrinkage
parameter. The Liu estimator is a combination of the ridge
estimator and the Stein estimator suggested by Stein [9]. For
a review of the Liu estimator in both linear and GLMs,
e.g., as shown in References. Liu [8], Karlsson et al. [10],
Qasim et al. [11], and Naveed et al. [12]. Furthermore, Liu
[13] proved the supremacy of the Liu-type estimator over the
ridge and Liu estimators. Details about Liu-type estimator,
properties, and applications in regression models are shown in
References Liu [14], Özkale and Kaciranlar [15], Li and Yang
[16], Kurnaz and Akay [17], Sahriman and Koerniawan [18],
and Algamal and Abonazel [19]. As a good alternative for the
Liu-type estimator, Özkale and Kaciranlar [15] proposed the two-
parameter estimator, and they proved that the two-parameter
estimator utilizes the power of both the ridge estimator and the
Liu estimator. Extensions of two-parameter estimator in GLMs
include Huang and Yang [20], Algamal [21], Asar and Genç [22],
Rady et al. [23, 24], Çetinkaya and Kaçiranlar [25], Abonazel and
Farghali [26], Akram et al. [27], and Lukman et al. [28].

The rest of the article is arranged as follows: Section
Methodology presents an introduction about the beta regression
model, its estimation using the ML method, and the proposed
two-parameter estimator; Section Choosing the Shrinkage
Parameters provides suggested shrinkage parameters for our
estimator; Sections Simulation Study and Real Data Applications
provide a numerical evaluation using both Monte Carlo
simulation and two empirical data applications, respectively; and
Section Conclusion offers some concluding remarks.

METHODOLOGY

Beta Regression Model
Practitioners usually use linear regressionmodeling to investigate
the relationship and effect of some selected explanatory variables
on the normal response variable. However, this is not suitable
for circumstances where the response variable is constrained
to the interval (0, 1) because it may give fitted values for the
variable of concern that surpass its lower and upper limits.
Therefore, inference based on the normality assumption can
be deceptive. The beta regression model was first developed by
Ferrari and Cribari-Neto [29] by connecting the mean function

of its response variable to a set of linear predictors via a
monotone differentiable function called the link function. This
model contains a precision parameter, the inverse of which is
called a dispersion scale. In the basic type of a beta regression
model, the precision parameter is believed to be constant through
observations. Nevertheless, the precision parameter might not
be constant through findings such as those of Smithson and
Verkuilen [30] and Cribari-Neto and Zeileis [31].

Let y is a continuous random variable that follows a beta
distribution with the following probability density function:

f
(

y; µ,φ
)

= Ŵ(φ)

Ŵ(µφ)Ŵ((1− µ) φ) y
(µφ)−1(1− y

)(φ−µφ−1);

0 < y < 1; 0 < µ < 1;φ > 0, (1)

where Ŵ(·) is the gamma function and φ is the precision
parameter [32]:

φ = 1− σ 2

σ 2
.

The mean and variance of the beta probability distribution
are: E

(

y
)

= µ, var
(

y
)

= µ (1− µ) σ 2. Using the logit
link function, the model allows µi, depending on covariates
as follows:

g (µi) = log

(

µi

1− µi

)

= xTi β = ηi, (2)

where g(·) be a monotonic differentiable link function used to
relate the systematic component with the random component,

β =
(

β1, . . . ,βp
)T

is a p × 1 vector of unknown parameters,

xi =
(

xi1, . . . , xip
)T

is the vector of p regressors, and ηi is a
linear predictor.

Estimation of the beta regression parameters is done by using
the ML method [33]. The log-likelihood function of the beta
regression model is given by:

L
(

µi,φ; yi
)

=
∑n

i=1

{

logŴ(φ)− logŴ(µi (φ))

− logŴ((1− µi) (φ))+ (µi (φ)− 1) log
(

yi
)

+ ((1− µi) (φ)− 1) log
(

1− yi
)}

(3)

By differentiating the log-likelihood function in Eq. (3) with
respect to β , gives us the score function for β :

S (β) = φXTA
(

y∗ − µ∗) , (4)

where A = diag
(

1
g′(µ1)

, . . . , 1
g′ (µn)

)

, y∗ =
(

y∗1 , . . . , y
∗
n

)T
,

µ∗ =
(

µ∗
1 , . . . ,µ

∗
n

)T
, y∗i = log

(

yi
1−yi

)

, and µ∗
i = ψ (µiφ) −

ψ ((1− µi) φ), such that ψ(·) denoting the digamma function,
and g′(·) is the first derivative of g(·). The iterative reweighted
least-squares (IWLS) algorithm or Fisher’s scoring algorithm was
used for estimating β [34, 35]. The form of this algorithm can be
written as:

β(r+1) = β(r) +
(

I
(r)
ββ

)−1
S
(r)
β (β) ,
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where S(r)β is the score function defined in Eq. (4), and I(r)ββ is the
information matrix for β , as shown in References Espinheira
et al. [35] for more details. The initial value of β can be obtained
by the least-squares estimation, while the initial value for each
precision parameter is:

φ̂i =
µ̂i

(

1− µ̂i

)

σ̂ 2
i

, (5)

where µ̂ and σ̂ 2
i values are obtained from linear regression.

Given r = 0, 1, 2, . . . is the number of iterations that are
performed, convergence occurs when the difference between
successive estimates becomes smaller than a given small constant.
At the final step, the ML estimator of β is obtained as:

β̂BML =
(

XTŴX
)−1

XTŴẑ, (6)

whereX is an n×pmatrix of regressors, ẑ = η̂+Ŵ−1Â
(

y∗ − µ∗),
and Ŵ = diag

(

ŵ1, . . . , ŵn

)

;

ŵi =
(

1− σ̂ 2
)

σ̂ 2

{

ψ
′
(

µ̂i

(

1− σ̂ 2
)

σ̂ 2

)

+ψ ′
(

(

1− µ̂i

) (

1− σ̂ 2
)

σ̂ 2

)}

1
{

g′
(

µ̂i

)}2 ,

where Ŵ and Â are the estimated ML matrices of W and A,
respectively. The ML estimator of β is normally distributed

with asymptotic mean vectors E
(

β̂BR

)

= β and asymptotic

covariance matrix:

Cov
(

β̂BML

)

= 1

φ

(

XTŴX
)−1

(7)

Hence, the asymptotic trace mean squared error (TMSE) of
β̂BML is

TMSE
(

β̂BML

)

= tr

[

1

φ
(XTŴX)

−1
]

(8)

Ridge and Liu Estimators
Recently, Abonazel and Taha [4] and Qasim et al. [5] introduced
the ridge beta regression (RBR) estimator as follows:

β̂RBR =
(

XTŴX + kI
)−1

XTŴẑ; k > 0 (9)

It can note that if k = 0, then β̂RBR = β̂BML. The bias vector of
the RBR estimator is

Bias
(

β̂RBR

)

= −k
(

XTŴX + kI
)−1

β (10)

Suppose that λ1 ≥ . . . ≥ λp ≥ 0 are the ordered eigenvalues

of XTŴX matrix and Q is the matrix whose columns are the
eigenvectors of XTŴX matrix. Then 3 = diag

(

λ1, . . . , λp
)

=

QTXTŴXQ and α = QTγ . Then, the matrix mean squared error
(MMSE) of the RBR estimator is:

MMSE
(

β̂RBR

)

= Cov
(

β̂RBR

)

+ Bias
(

β̂RBR

)

Bias
(

β̂RBR

)T

= 1

φ

(

Q3−1
k
33−1

k
QT
)

+ k2Q3−1
k
ααT3−1

k
QT,

(11)

where 3k = diag
(

λ1 + k, . . . , λp + k
)

, and the TMSE of the
RBR estimator is

TMSE
(

β̂RBR

)

= tr
(

MMSE
(

β̂RBR

))

(12)

= 1

φ

∑p

j=1

λj

(λj + k)2
+ k2

∑p

j=1

α2j

(λj + k)2

The first term in Eq. (12) is an asymptotic variance, and the
second term is a square bias. Abonazel and Taha [4] and Qasim
et al. [5] showed the derivation of the MSE properties of the
RBR estimator.

The Liu estimator can be extended to the beta regression
model, the Liu beta regression (LBR) estimator is given by
Karlsson et al. [10] as:

β̂LBR =
(

XTŴX + I
)−1 (

XTŴX + dI
)

β̂BML;
0 < d < 1, (13)

where d is the Liu parameter, the bias vector of the LBR
estimator is:

Bias
(

β̂LBR

)

=
(

XTŴX + I
)−1

(

d − 1
)

β (14)

The MMSE for the LBR estimator can be derived as:

MMSE
(

β̂LBR

)

= Cov
(

β̂LBR

)

+ Bias
(

β̂LBR

)

Bias
(

β̂LBR

)T

= 1

φ

(

Q3−1
1 3d3

−13d3
−1
1 QT

)

+
(

d − 1
)2
Q3−1

1 ααT3−1
1 QT , (15)

where 31 = diag
(

λ1 + 1, . . . , λp + 1
)

and 3d =
diag

(

λ1 + d, . . . , λp + d
)

. The TMSE of the LBR estimator is:

TMSE(β̂LBR) = tr
(

MMSE
(

β̂LBR

))

= 1

φ

p
∑

j=1







(

λj + d
)2

λj
(

λj + 1
)2 +

(

d − 1
)2
α2j φ

(

λj + 1
)2







(16)

Recently, Algamal and Abonazel [19] developed the Liu-type beta
regression (LTBR) estimator:

β̂LTBR = (XTŴX + kI)
−1

(XTŴX − dI)β̂BML;
k > 0,−∞ < d <∞ (17)
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The bias vector of the LTBR estimator is:

Bias
(

β̂LTBR

)

= −
(

d + k
)

(

XTŴX + kI
)−1

β (18)

The MMSE of the LTBR estimator is:

MMSE
(

β̂LTBR

)

= Cov
(

β̂LTBR

)

+ Bias
(

β̂LTBR

)

Bias
(

β̂LTBR

)T

= 1

φ

(

Q3−1
k
3−d3

−13−d3
−1
k

QT
)

+
(

d + k
)2
Q3−1

k
ααT3−1

k
QT (19)

where3−d = diag
(

λ1 − d, . . . , λp − d
)

. Then, theMSE of the
LTBR estimator is

MSE
(

β̂LTBR

)

= tr
(

MMSE
(

β̂LTBR

))

(20)

= 1

φ

∑p

j=1







(

λj − d
)2

λj
(

λj + k
)2 +

(

d + k
)2
α2j φ

(

λj + k
)2







The Proposed Estimator
In this section, we extend the two-parameter estimator
introduced by Özkale and Kaçiranlar [15] to the beta regression
model to combat multicollinearity and obtain more stable and
accurate results. The two-parameter beta regression (TPBR)
estimator can be written as follows:

β̂TPBR = (XTŴX + kI)
−1

(XTŴX + kdI)β̂BML;
k > 0; 0 < d < 1 (21)

It is worth noting that the TPBR estimator is a general class
that has some estimators as special cases. These estimators are
the LBR, RBR, and beta maximum likelihood (BML) estimators,
which can be given, respectively, as follows:

lim
k→1

β̂TPBR = β̂LBR =
(

XTŴX + I
)−1 (

XTŴX + dI
)

β̂BML,

lim
d→0

β̂TPBR = β̂RBR =
(

XTŴX + kI
)−1 (

XTŴX
)

β̂BML,

lim
k→0

β̂TPBR = β̂BML =
(

XTŴX
)−1

(XTŴẑ).

The bias vector of the TPBR estimator is

Bias
(

β̂TPBR

)

= k
(

d − 1
)

(

XTŴX + kI
)−1

β (22)

The MMSE for TPBR estimator can be derived as:

MMSE
(

β̂TPBR

)

= Cov
(

β̂TPBR

)

+ Bias
(

β̂TPBR

)

Bias
(

β̂TPBR

)T

= 1

φ

(

Q3−1
k
3kd3

−13kd3
−1
k

QT
)

+k2
(

d − 1
)2
Q3−1

k
ααT3−1

k
QT , (23)

where 3kd = diag
(

λ1 + kd, λ2 + kd, . . . , λp + kd
)

, the TMSE
of the TPBR estimator is:

TMSE
(

β̂TPBR

)

= tr
(

MMSE
(

β̂TPBR

))

(24)

= 1

φ

∑p

j=1







(

λj + kd
)2

λj
(

λj + k
)2 +

α2j φk
2
(

d − 1
)2

(

λj + k
)2







The Superiority of the New Estimator
The following lemmas prove the superiority of the two-parameter
beta estimator over the other estimators.

Lemma 1. Farebrother [36]: Let M be a positive definite matrix,
δ be a vector of non-zero constants, and c be a positive constant.
Then, cM − δδT > 0 if and only if (iff) δMδT < c.

Two-Parameter Beta Estimator vs. ML Estimator

The following lemma gives the condition that the TPBR estimator
is superior to the ML estimator:

Lemma 2. under the beta regression model, let k > 0, 0 <

d < 1, and bTPBR = Bias
(

β̂TPBR

)

. Then, MMSE
(

β̂BML

)

−

MMSE
(

β̂TPBR

)

> 0 iff k
(

1− d
) (

2λj + k
(

1+ d
))

> 0.

Proof: the difference between the MMSE functions of the ML
estimator and the TPBR estimator is obtained by:

MMSE
(

β̂BML

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

φ3−1 −3−1
k
3kd3

−13kd3
−1
k

)

QT − bTPBRb
T
TPBR,

The matrix
(

φ3−1 −3−1
k
3kd3

−13kd3
−1
k

)

is positive definite,

if φ
(

λj + k
)2 −

(

λj + kd
)2

> 0, which is equivalent to
[(

λj + k
)

+
(

λj + kd
)] [(

λj + k
)

−
(

λj + kd
)]

> 0. Simplifying
the last inequality, one gets k

(

1− d
) (

2λj + k
(

1+ d
))

> 0. The
proof is finished by Lemma 1.

Two-Parameter Estimator vs. Ridge Estimator

The following lemma gives that the TPBR estimator is superior to
the RBR estimator:

Lemma 3. under the beta regression model, consider k > 0, 0 <

d < 1, and bRBR = Bias
(

β̂RBR

)

. Then, MMSE
(

β̂RBR

)

−

MMSE
(

β̂TPBR

)

> 0 iff kd
(

2λj + kd
)

> 0.

Proof: the difference between the MMSE functions of the RBR
estimator and the TPBR estimator is obtained by:

MMSE
(

β̂RBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

3−1
k
33−1

k
−3−1

k
3kd3

−13kd3
−1
k

)

QT + bRBRb
T
RBR − bTPBRb

T
TPBR,
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This can be rewritten as:

MMSE
(

β̂RBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q diag

{

λj
(

λj + k
)2 −

(

λj + kd
)2

λj
(

λj + k
)2

}p

j=1

QT + bRBRb
T
RBR − bTPBRb

T
TPBR,

The matrix 3−1
k
33−1

k
− 3−1

k
3kd3

−13kd3
−1
k

is positive

definite if λ2j −
(

λj + kd
)2

> 0 which is equivalent to
[

λj −
(

λj + kd
)] [

λj +
(

λj + kd
)]

> 0. Simplifying the last
inequality, one gets kd

(

2λj + kd
)

> 0. Then, using Lemma 1,
the proof is finished.

Two-Parameter Estimator vs. Liu Estimator

The following lemma gives the condition that the TPBR estimator
is superior to the LBR estimator:

Lemma 4. under the beta regression model, consider k >

0, 0 < d < 1, and bLBR = Bias
(

β̂LBR

)

. Then,

MMSE
(

β̂LBR

)

−MMSE
(

β̂TPBR

)

> 0 iff
(

λj + d
)2(
λj + k

)2 −
(

λj + kd
)2(
λj + I

)2
> 0.

Proof: the difference between the MMSE functions of β̂LBR and
β̂TPBR is obtained by:

MMSE
(

β̂LBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

3−1
1 3d3

−13d3
−1
1 −3−1

k
3kd3

−13kd3
−1
k

)

QT + bLBRb
T
LBR − bTPBRb

T
TPBR,

This can be rewritten as:

MMSE
(

β̂LBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q diag

{

(

λj + d
)2

λj
(

λj + I
)2 −

(

λj + kd
)2

λj
(

λj + k
)2

}p

j=1

QT + bLBRb
T
LBR − bTPBRb

T
TPBR,

The matrix 3−1
1 3d3

−13d3
−1
1 − 3−1

k
3kd3

−13kd3
−1
k

is positive definite if
(

λj + d
)2(
λj + k

)2 −
(

λj + kd
)2(
λj + I

)2
> 0, which is equivalent to

[

(

λj + d
)2(
λj + k

)2
>
(

λj + kd
)2(
λj + I

)2
]

. For k >

0, 0 < d < 1, it can be observed that
(

λj + d
)2(
λj + k

)2 −
(

λj + kd
)2(
λj + I

)2
> 0. The proof is finished by Lemma 1.

Two-Parameter Estimator vs. Liu-Type Estimator

The following lemma gives the condition that the TPBR estimator
is superior to the LTBR estimator:

Lemma 5. under the beta regression model, consider k > 0, −
∞ < d1 < ∞, 0 < d2 < 1, and bLTBR = Bias

(

β̂LTBR

)

,

where d1 and d2 are the d values of LTBR and TPBR estimators,

respectively. Then, MMSE
(

β̂LTBR

)

− MMSE
(

β̂TPBR

)

> 0 iff

d1
(

d1 − 2λj
)

− kd2
(

kd2 + 2λj
)

> 0.

Proof: the difference between the MMSE functions of β̂LTBR and
β̂TPBR is obtained by:

MMSE
(

β̂LTBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q
(

3−1
k
3−d3

−13−d3
−1
k

−3−1
k
3kd3

−13kd3
−1
k

)

QT + bLTBRb
T
LTBR − bTPBRb

T
TPBR.

This can be rewritten as:

MMSE
(

β̂LTBR

)

−MMSE
(

β̂TPBR

)

= 1

φ
Q diag

{

(

λj − d1
)2

λj
(

λj + k
)2 −

(

λj + kd2
)2

λj
(

λj + k
)2

}p

j=1

QT + bLTBRb
T
LTBR − bTPBRb

T
TPBR,

The matrix 3−1
k
3−d3

−13−d3
−1
k

− 3−1
k
3kd3

−13kd3
−1
k

is

positive definite if
(

λj − d1
)2 −

(

λj + kd2
)2

> 0, which is

equivalent to
[

(

λj − d1
)2
>
(

λj + kd2
)2
]

. For k > 0,−∞ <

d1 < ∞, 0 < d2 < 1, it can be observed that d1
(

d1 − 2λj
)

−
kd2

(

kd2 + 2λj
)

> 0. The proof is finished by Lemma 1.

CHOOSING THE SHRINKAGE
PARAMETERS

There is no definite rule for estimating the shrinkage parameters
(k and d). However, we propose somemethods based on the work
of Hoerl et al. [37] and Kibria [38]. For the RBR estimator, we can
use the k parameter of Hoerl and Kennard [1] after modifying
their formula based on the optimal k of the beta regression
model [5]:

k = 1

φ
∑p

j=1 α̂
2
j

, (25)

where α̂j is the jth element of the vector α̂ = QT β̂BML.
For the LBR estimator, we can use the optimal d parameter

proposed by Karlsson et al. [10]:

d =
∑p

j=1

[(

α̂2j − 1
φ

)

/
(

λj + 1
)2
]

∑p
j=1

[(

1
φλj

+ α̂2j
)

/
(

λj + 1
)2
] (26)

For the LTBR estimator, we can use the optimal d parameter
of the LTBR estimator that was proposed by Algamal and
Abonazel [19]:

dLTBR =
∑p

j=1

[(

1
φ

− kα̂2j

)

/
(

λj + k
)2
]

∑p
j=1

[(

1
φ
+ λjα̂2j

)

/λj
(

λj + k
)2
] (27)
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Since dLTBR depends on k, we suggest using the k parameter in
Eq. (25).

For the proposed estimator (TPBR), we start by taking
the derivative of MSE function given in Eq. (24) with
respect to k and equating the resulting function to zero
and by solving for the parameter k, we obtain the following
individual parameters:

kj =
λj

φ

(

λjα̂
2
j

(

1− d
)

− (d/φ)
) ; j = 1, . . . , p. (28)

Since each individual parameter kj should be positive, we obtain
the following upper bound for the kj parameter d’s so that kj > 0:

d < min

(

λjα̂
2
j

1
φ
+ λjα̂2j

)p

j=1

, (29)

where min(·) is the minimum function such that 0 <

d < 1 and α̂j is the jth element of the vector α̂.
Therefore, we propose the following shrinkage parameters for the

TABLE 1 | Mean squared error (MSE) values for different estimators when n = 50.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.259 1.906 1.828 1.8026 1.419

0.95 3.356 2.391 2.117 2.0916 2.033

0.99 4.399 2.908 2.175 2.1496 2.134

8 0.90 2.376 1.736 1.487 1.4616 1.312

0.95 4.421 2.567 2.011 1.9856 1.862

0.99 5.353 3.292 2.518 2.4926 1.669

12 0.90 3.613 1.364 1.189 1.1636 1.013

0.95 6.836 2.715 1.987 1.9616 1.107

0.99 9.375 3.042 1.814 1.7886 1.078

1 4 0.90 1.951 1.598 1.520 1.4946 1.111

0.95 3.048 2.083 1.809 1.7836 1.725

0.99 4.091 2.601 1.867 1.8416 1.826

8 0.90 2.068 1.428 1.179 1.1536 1.004

0.95 4.112 2.259 1.703 1.6776 1.554

0.99 5.045 2.984 2.210 2.1846 1.361

12 0.90 3.305 1.056 0.881 0.8556 0.705

0.95 6.528 2.407 1.679 1.6536 0.799

0.99 9.067 2.734 1.506 1.4806 0.771

1.5 4 0.90 1.829 1.476 1.398 1.3726 0.989

0.95 2.926 1.961 1.687 1.6616 1.603

0.99 3.969 2.478 1.745 1.7196 1.704

8 0.90 1.946 1.306 1.057 1.0316 0.882

0.95 3.990 2.137 1.581 1.5556 1.432

0.99 4.923 2.862 2.088 2.0626 1.239

12 0.90 3.183 0.934 0.759 0.7336 0.583

0.95 6.406 2.285 1.557 1.5316 0.677

0.99 8.945 2.612 1.384 1.3586 0.648

TPBR estimator:

dTPBR = 1

2
min

(

λjα̂
2
j

1
φ
+ λjα̂2j

)p

j=1

; (30)

kTPBR = 1

p

∑p

j=1





λj

φ

(

λjα̂
2
j

(

1− dTPBR
)

− dTPBR/φ

)



 (31)

Note that dTPBR in Eq. (30) is always <1 and bigger than zero,
and kTPBR in Eq. (31) is always positive [15].

SIMULATION STUDY

AMonte Carlo simulation study has been conducted to compare
the performances of BML, RBR, LBR, and LTBR estimators with
the proposed estimator (TPBR estimator). Our simulation study
is computed based on R-software, using the “betareg” package.

Simulation Design
The response variable yi is generated as yi ∼ Beta(µi,φ), with
φ ∈ {0.5,1,1.5} and µi = exp(xTi β)/(1 + exp(xTi β)) for i =

TABLE 2 | Mean squared error values for different estimators when n = 100.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.212 1.859 1.782 1.7566 1.372

0.95 3.309 2.343 2.071 2.0456 1.985

0.99 4.352 2.861 2.128 2.1026 2.087

8 0.90 2.328 1.689 1.439 1.4136 1.265

0.95 4.372 2.519 1.964 1.9386 1.814

0.99 5.306 3.244 2.471 2.4456 1.621

12 0.90 3.565 1.317 1.142 1.1166 0.965

0.95 6.788 2.668 1.941 1.9156 1.063

0.99 9.327 2.994 1.766 1.7406 1.031

1 4 0.90 1.904 1.551 1.472 1.4466 1.064

0.95 3.001 2.035 1.762 1.7366 1.677

0.99 4.044 2.553 1.822 1.7966 1.779

8 0.90 2.022 1.381 1.131 1.1056 0.957

0.95 4.064 2.211 1.656 1.6306 1.506

0.99 4.998 2.936 2.162 2.1366 1.313

12 0.90 3.257 1.009 0.834 0.8086 0.657

0.95 6.483 2.364 1.632 1.6066 0.752

0.99 9.019 2.686 1.458 1.4326 0.723

1.5 4 0.90 1.782 1.429 1.355 1.3296 0.942

0.95 2.879 1.913 1.647 1.6216 1.555

0.99 3.922 2.431 1.698 1.6726 1.657

8 0.90 1.898 1.259 1.009 0.9836 0.835

0.95 3.942 2.089 1.534 1.5086 1.384

0.99 4.876 2.814 2.041 2.0156 1.191

12 0.90 3.135 0.887 0.712 0.6866 0.535

0.95 6.358 2.238 1.513 1.4876 0.631

0.99 8.897 2.564 1.336 1.3106 0.601
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1, 2, . . . , n, and β =
(

β1, . . . ,βp
)T

with
∑ p

j=1 β
2
j = 1 and

β1 = . . . = βp [19, 26, 39–41].

The explanatory variables xi =
(

xi1, . . . , xip
)T

are generated
from the following:

xij = (1− ρ2)0.5wij + ρwip, i = 1, 2, . . . , n,

j = 1, 2, . . . , p, (32)

where ρ is the coefficient of the correlation between the
explanatory variables and wij are independent standard normal
pseudo-random numbers.

It is well-known that the sample size (n), the number
of explanatory variables (p), and the pairwise correlation (ρ)
between the explanatory variables have a direct impact on the
prediction accuracy. Therefore, four values of n are considered:
50, 100, 250, and 400. In addition, three values of p are
considered: 4, 8, and 12. Further, three values of ρ are considered:
0.90, 0.95, and 0.99. For a combination of these different values
of n,φ, p, and ρ, the generated data are repeated L = 1, 000 times
and the average MSE is calculated as:

MSE
(

β̂

)

= 1

L

∑L

l=1

(

β̂l − β
)T (

β̂l − β
)

, (33)

TABLE 3 | Mean squared error values for different estimators when n = 250.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.151 1.798 1.719 1.6936 1.311

0.95 3.248 2.282 2.009 1.9836 1.924

0.99 4.291 2.801 2.067 2.0416 2.026

8 0.90 2.267 1.628 1.378 1.3526 1.204

0.95 4.311 2.458 1.903 1.8776 1.753

0.99 5.245 3.183 2.409 2.3836 1.561

12 0.90 3.504 1.256 1.081 1.0556 0.904

0.95 6.727 2.607 1.879 1.8536 0.999

0.99 9.266 2.933 1.705 1.6796 0.972

1 4 0.90 1.843 1.491 1.411 1.3856 1.003

0.95 2.942 1.974 1.701 1.6756 1.616

0.99 3.983 2.492 1.759 1.7336 1.718

8 0.90 1.959 1.325 1.073 1.0476 0.896

0.95 4.003 2.154 1.595 1.5696 1.445

0.99 4.937 2.875 2.101 2.0756 1.252

12 0.90 3.196 0.948 0.773 0.7476 0.596

0.95 6.419 2.299 1.571 1.5456 0.691

0.99 8.958 2.625 1.397 1.3716 0.662

1.5 4 0.90 1.721 1.368 1.289 1.2636 0.881

0.95 2.818 1.852 1.579 1.5536 1.494

0.99 3.861 2.372 1.637 1.6116 1.596

8 0.90 1.837 1.198 0.948 0.9226 0.774

0.95 3.881 2.028 1.473 1.4476 1.323

0.99 4.815 2.753 1.979 1.9536 1.131

12 0.90 3.074 0.826 0.651 0.6256 0.474

0.95 6.297 2.177 1.449 1.4236 0.569

0.99 8.836 2.503 1.275 1.2496 0.547

where β̂l is the estimated vector of β .

Simulation Results
The averaged MSE for all the combinations of n,φ, p,, and ρ are
summarized in Tables 1–4. According to the simulation results,
we conclude the following:

1. The TPBR estimator has the best performance in all the
situations considered. Moreover, the performance of the TPBR
estimator is better for larger values of ρ.

2. It is noted fromTables 1–4 that the TPBR estimator ranks first
with respect to MSE. In the second rank is the LTBR estimator,
as it performs better than BML, RBR, and LBR estimators.
Additionally, the BML estimator has the worst performance
among RBR, LBR, and TPBR estimators which is significantly
impacted by the multicollinearity.

3. Regarding the number of explanatory variables, it is easily
seen that there is a negative impact on MSE, where there
are increases in their values when the p increase from four
variables to eight and twelve variables. In addition, in terms
of the sample size, the MSE values decrease when n increases,
regardless of the value of ρ, φ, and p.

4. Clearly, the MSE values are decreasing when φ is increasing.

TABLE 4 | Mean squared error values for different estimators when n = 400.

φ p ρ BML RBR LBR LTBR TPBR

0.5 4 0.90 2.117 1.764 1.685 1.2596 1.277

0.95 3.214 2.248 1.975 1.7496 1.891

0.99 4.257 2.767 2.033 2.0076 1.992

8 0.90 2.233 1.594 1.344 1.3186 1.172

0.95 4.277 2.424 1.869 1.3436 1.719

0.99 5.211 3.149 2.375 2.3496 1.527

12 0.90 3.47 1.222 1.047 1.0216 0.871

0.95 6.693 2.573 1.845 1.8196 0.965

0.99 9.232 2.899 1.671 1.6456 0.938

1 4 0.90 1.809 1.457 1.377 1.3516 0.969

0.95 2.908 1.94 1.667 1.6416 1.582

0.99 3.949 2.458 1.725 1.6996 1.684

8 0.90 1.925 1.291 1.039 1.0136 0.862

0.95 3.969 2.12 1.561 1.5356 1.411

0.99 4.903 2.841 2.067 2.0416 1.218

12 0.90 3.162 0.914 0.739 0.7136 0.562

0.95 6.385 2.265 1.537 1.5116 0.657

0.99 8.924 2.591 1.363 1.3376 0.628

1.5 4 0.90 1.687 1.334 1.255 1.2296 0.847

0.95 2.784 1.818 1.545 1.5196 1.462

0.99 3.827 2.338 1.603 1.5776 1.562

8 0.90 1.803 1.164 0.914 0.8886 0.742

0.95 3.847 1.994 1.439 1.4136 1.289

0.99 4.781 2.719 1.945 1.9196 1.097

12 0.90 3.04 0.792 0.617 0.5916 0.448

0.95 6.263 2.143 1.415 1.3896 0.535

0.99 8.802 2.469 1.241 1.2156 0.513
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FIGURE 1 | Relative efficiency (RE) of different estimators categorized by levels of n, p, ρ, and φ.

TABLE 5 | The estimated coefficients and MSE values for the used estimators

(football data).

BML RBR LBR LTBR TPBR

x1 −0.01749 −0.01761 −0.026786 −0.002165 −0.003165

x2 0.026057 0.026399 0.052970 0.000354 0.000254

x3 0.030190 0.030276 0.036945 0.000701 −0.000807

x4 −0.032857 −0.031889 0.043208 −0.000355 0.000323

x5 −0.129230 −0.128710 −0.088372 −0.002704 −0.002633

x6 1.643973 1.629061 0.472132 0.021849 0.028245

MSE 0.04345 0.018314 0.006583 0.005208 0.005085

Relative Efficiency
Another comparative performance called relative efficiency (RE)
can be utilized, it is calculated based on the MSE in Eq. (33) as
follows [4, 39]:

RE
(

β̂S

)

=
MSE

(

β̂BML

)

MSE
(

β̂S

) , (34)

where β̂S denotes the estimators of RBR, LBR, LTBR, or TPBR.
The RE results are shown in Figure 1.

Figure 1 shows that the RE of the four biased (RBR, LBR,
LTBR, and TPBR) estimators were increased if the sample
size (n), the number of explanatory variables (p), the degree

TABLE 6 | The estimated coefficients and MSE values for the used estimators

(gasoline yield data).

BML RBR LBR LTBR TPBR

Gravity −0.01749 −0.01761 −0.026786 −0.00571 −0.003165

Pressure 0.026057 0.026399 0.052970 0.04212 0.000254

Temp10 0.030190 0.030276 0.036945 0.04284 −0.000807

Temp −0.032857 −0.031889 0.043208 0.00235 0.000323

MSE 0.04345 0.018314 0.006583 0.00537 0.005085

of correlation between explanatory variables (ρ), and/or the
precision parameter value (φ) are increased. Moreover, we can
observe that the TPBR estimator has higher RE values than the
other estimators.

REAL DATA APPLICATIONS

In this section, we used two real data applications to
investigate the advantage of our proposed (TPBR) estimator in
different fields.

Football Spanish Data
We apply the proposed estimator to the football Spanish La Liga,
season 2016–2017 [19]. The data contain 20 teams. The response
variable is the proportion of won matches. The six considerable
explanatory variables are: x1 is the number of yellow cards, x2 is
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the number of red cards, x3 is the total number of substitutions,
x4 is the number of matches with 2.5 goals on average, x5 is the
number of matches that ended with goals, and x6 is the ratio of
the goal scores to the number of matches.

First, to check whether there is a multicollinearity problem
or not, the correlation matrix and condition number (CN) are
used. Based on the correlation matrix among the six explanatory
variables that are presented, displayed by Algamal and Abonazel
[19]. It is obviously seen that there are correlations >0.82
between x1 and x6, x1 and x4, x2 and x4, and x4 and x6. Second,
the condition number, CN = √

λmax/λmin of the data is 806.63
indicating the existence of multicollinearity. The estimated beta
regression coefficients and MSE values for the BML, RBR, LBR,
LTBR, and TPBR estimators are recorded in Table 5. From
Table 5, it can note that the estimated coefficients of all estimators
have the same signs; this means that the type of relationship
between each explanatory variable and the response variable is
not changed from what it was in the BML estimator. But MSE
values of RBR, LBR, LTBR, and TPBR estimators are lower
than the BML estimator. Whereas, the MSE value of the TPBR
estimator is the lowest.

Gasoline Yield Data
To further investigate the advantage of our proposed estimator
(TPBR), we apply the TPBR estimator to the chemical dataset
(gasoline yield data) which was originally obtained by Prater
[42], and later used by the following authors: Ospina et al.
[43] and Karlsson et al. [10]. The dataset contains 32
observations on the response and four explanatory variables. The
variables in the study are described as follows: the dependent
variable y is the proportion of crude oil after distillation and
fractionation while the explanatory variables are crude oil gravity
(Gravity), vapor pressure of crude oil (Pressure), temperature
at which 10% of the crude oil has vaporized (Temp10), and
temperature at which all petrol in the amount of crude oil
vaporizes (Temp). Atkinson [44] analyzed this dataset using
the linear regression model and observed some anomalies in
the distribution of the error. Recently, Karlsson et al. [10]
showed that the beta regression model is more suitable to model
the data.

The CN for the dataset under study is 11,281.4, which
signals severe multicollinearity. The estimated beta regression
coefficients and MSE values for the used estimators are recorded
in Table 6. From Table 6, it can be noted that the estimated
coefficients of all estimators have the same signs. In addition,
MSE values of RBR, LBR, LTBR, and TPBR estimators are lower

than the BML estimator. Whereas, the MSE value of the TPBR
estimator is the lowest.

CONCLUSION

This article provided a two-parameter (TPBR) estimator for
the beta regression model as a remedy for a multicollinearity
problem. We proved, theoretically, that our proposed estimator
is efficient than other biased estimators (ridge, Liu, and Liu-type
estimators) suggested in the literature. Furthermore, a Monte
Carlo simulation study was conducted to study the performance
of the proposed estimator and ML, ridge, Liu, and Liu-type
estimators. The results indicated that the proposed estimator
outperforms these estimators, especially when there is a high-to-
strong correlation between the explanatory variables. Finally, the
benefit is shown by two empirical applications where the TPBR
estimator performed well by decreasing the MSE compared with
the ML, ridge, Liu, and Liu-type estimators.

For future work, for example, one can study the high-
dimensional case in beta regression as an extension to Arashi
et al. [45] or provide a robust biased estimation of beta
regression as an extension to Awwad et al. [41] and Dawoud and
Abonazel [40].
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