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Zebrafish is a model organism that is receiving considerable attention in preclinical
research. Particularly important is the use of zebrafish in behavioral pharmacology,
where a number of high-throughput experimental paradigms have been proposed to
quantify the effect of psychoactive substances consequences on individual and social
behavior. In an effort to assist experimental research and improve animal welfare, we
propose amathematical model for the social behavior of groups of zebrafish swimming in a
shallow water tank in response to the administration of psychoactive compounds to select
individuals. We specialize the mathematical model to caffeine, a popular anxiogenic
compound. Each fish is assigned to a Markov chain that describes transitions between
freezing and swimming. When swimming, zebrafish locomotion is modeled as a pair of
coupled stochastic differential equations, describing the time evolution of the turn-rate and
speed in response to caffeine administration. Comparison with experimental results
demonstrates the accuracy of the model and its potential use in the design of in-silico
experiments.
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1 INTRODUCTION

Animal experiments are a standard practice for hypothesis testing in preclinical research [1,2].
However, experimental studies involving pharmacological treatment of sentient animals
continue to raise ethical concerns regarding the well-being of the animals [3].
Computational methods can enable in-silico experiments that might help in the fulfillment
of the 3Rs: Reducing the number of subjects, Refining experimental design and setup, and
Replacing the use of live subjects [4–6].

Zebrafish (Danio rerio) has emerged as a species of choice in experimental studies in
pharmacology where it is used in high throughput drug screening of several psychoactive
compounds [7,8]. Its genetic and physiologic similarities with humans have made the zebrafish
an attractive species for experimental investigations of human dysfunctional processes [9]. In
particular, zebrafish experiments could clarify some of the open questions on anxiety-related
behaviors in humans [10]. In these experiments, fish behavior is monitored in an experimental
setup to investigate how anxiety-related behavior is modulated by anxiolytic and anxiogenic
compounds, such as caffeine, cocaine, and ethanol [11–15]. Experiments on fish treated with
such compounds have revealed numerous anxiety-related behaviors, including erratic activity (jump
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turns and sudden change in direction), thigmotaxis (tendency to
stay near the wall), geotaxis (tendency to stay at the bottom of the
tank), and freezing [16–18].

Previous efforts have leveraged data-driven, mathematical
models to accurately describe the locomotion of isolated fish
swimming in shallow or deep water tanks [19–23]. Concerning
zebrafish, a number of studies have sought to incorporate their
unique burst-and-coast swimming style, composed of sudden tail
bursts that are followed by coasting phases [24,25]. The general
line of approach consists of formulating a stochastic differential
equation (SDE) for the turn-rate evolution, in which white noise
is superimposed to intermittent excitation in the form of a jump
process [26]. The original jump persistent turning walker (JPTW)
was later adapted to the study of the effect of psychoactive
manipulations in two separate studies [19,21]. Mwaffo and
Porfiri [21] investigated the effect of acute ethanol treatment
of zebrafish on model parameters of the JPTW, discovering a
strong effect of concentration on the parameters of the jump
process. Burbano-Lombana and Porfiri [19] expanded on the
JPTW to simulate zebrafish response to acute caffeine
administration. Not only did the model account for speed
modulation during locomotion through an additional SDE, but
also did it incorporate a detailed treatment of freezing episodes
using discrete-time Markov chain. Overall, these studies suggest
that the sensitivity of model parameters to the administration of
psychoactive compounds must be considered when performing
projective, in-silico experiments.

Other studies have extended individual fish models to groups,
thereby including fish social interactions in terms of schooling
and shoaling behaviors. In these models, social interaction is
introduced as a response function that modulates the speed and
turn-rate. Visual stimuli associated with the presence of
conspecifics have been often considered in these models
[23,27–29,29–32], where fish tend to align and swim closer to
neighboring subjects accommodating to alignment and attraction
forces. Related efforts have included hydrodynamic interactions
to incorporate lateral line sensing of the flow caused by
neighboring subjects [34–37]. Overall, the mathematical
underpinnings of these studies are common to the
investigation of the structure of collective behavior of several
species, from ants [38] to bats [39].

To the best of our knowledge, models looking at the effect of
psychoactive compounds on zebrafish social behavior have never
been explained in the literature. Here, we aimed to partially fill
this gap by proposing a model that not only captures the effect of
caffeine administration on fish locomotory activity but also takes
into consideration the influence of the social environment in
modulating the pharmacological response. To this end, we
modeled fish dynamics in terms of speed and turn-rate, along
two time-scales similar to Burbano-Lombana and Porfiri [19].
We defined a slow time-scale that captures the transitions
between swimming and freezing states using a discrete-time
Markov chain. During the swimming state, we modeled the
speed and turn-rate evolution along a fast time-scale as a
system of coupled SDEs. In the evolution of the turn-rate, we
accounted for social interactions for each subject based on visual
cues from neighboring individuals, therein, we utilized different

interaction parameters depending on the treatment of the specific
subject. To calibrate the model parameters, we relied on the
experimental data-set from Neri et al. [40], wherein a group of
untreated subjects swam with a caffeine-treated individual.

We investigated the value of the social group in modulating
the response of fish to caffeine administration. Specifically, we
compared calibrated model parameters for a treated fish
swimming with an untreated group with those of a treated fish
swimming in isolation from Burbano-Lombana and Porfiri [19].
We further highlighted an asymmetric interaction between the
treated individual and untreated subjects, associated with the
effect of caffeine on locomotory activity of fish and how it is
perceived by untreated subjects. Lastly, we verified the predictive
ability of the proposed model in capturing the social behavior of
the group by comparing a set of social interaction metrics
obtained from in-silico experiments to those from real
experiments.

2 MATERIALS AND EQUIPMENT

Our theoretical endeavor is grounded in experiments from Neri
et al. [40] (approved by the Animal Welfare Committee of New
York University: protocol number 13–1424) on the effect of acute
caffeine treatment on social behavior. Below, we summarize the
main components of the experimental framework and data
analysis from Neri et al. [40].

2.1 Experiment Setup and Procedure
The setup consisted of a circular tank of diameter d � 90 cm filled
with water at depth h � 10 cm. Cameras were used to record fish
behavior at 40 frames/s for 5 minutes (Texp � 300 s). Videos were
processed by an in-house multitarget tracking system developed
in MATLAB [41,42].

Experiments were performed on groups of five adult subjects,
including four untreated individuals and one treated individual,
at four different caffeine concentrations: 0 (vehicle), 25, 50, and
70 mg/L. For each trial, five fish were randomly chosen from the
holding tank. 50 fish were chosen at random to conduct ten
experimental trials for each caffeine concentration (200 fish in
total). One of the fish was kept in a 0.5 L beaker of a caffeine
solution for 1 hour. Four untreated fish were introduced to the
circular arena at the same time the beaker with the treated fish
was placed in the arena. After 10 minutes of habituation, the
treated fish was hand-netted from the beaker and released into
the arena. The average fish body length (BL) was
approximately 3 cm.

2.2 Data Post-processing
Fish trajectories were obtained by tracking the centroid of each
fish. Figure 1 illustrates representative trajectories from each
concentration. The trajectory of the i-th fish is denoted by (xi
(kΔ), yi (kΔ)), where Δ � 0.025 s is the sampling time, and
k ∈ 1, . . . , K � Texp

Δ{ }.
Position increments between consecutive readings were used

to obtain the velocity vi(kΔ) � [vi,x(kΔ), vi,y(kΔ)]T and the
speed vi(kΔ) � ����������������

v2i,x(kΔ) + v2i,y(kΔ)√
. To calculate the turn-
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rate, ωi (kΔ), we estimated the fish heading, θi (kΔ), by fitting
three consecutive positions, (xi ((k − 1)Δ), yi ((k − 1)Δ)), (xi (kΔ),
yi (kΔ)), and (xi ((k + 1)Δ), yi ((k + 1)Δ)), along a circle [20]. The
turn-rate was then inferred from the heading increment, δθi (kΔ),
between the two lines connecting the center of the circle with the
(k − 1)-th and (k + 1)-th centroid position on the circle as
ωi(kΔ) � δθi(kΔ)

2Δ . Without loss of generality, we take i � 1 as the
treated fish throughout this paper.

Fish trajectories were also used to score the time spent
freezing, an anxiety-related behavior in zebrafish [18].
According to Kopman et al. [43], a fish was considered to be
in a freezing episode if it stayed within 2 cm radius for at least TF
� 2 s. From experimental data, we defined a binary Boolean
variable Γi (nTF), with n ∈ 1, . . . , Texp

TF
{ } that recorded instances of

swimming (Γi (nTF) � 1) and freezing (Γi (nTF) � 0).
Four experimental trials were discarded due to recording

issues (two from 0 mg/L, and two from 50 mg/L). We omitted
four additional experimental trials due to insufficient data points
for experimental analysis and parameter calibration (two from
25 mg/L, and two from 70 mg/L), whereby the fish spent less than
10 s in the swimming state and more than two BL away from the
wall. For this reason, the experimental results presented in this
paper may differ from those presented in Neri et al. [40] that relies
on the same data-set.

3 METHODS

Here, we introduce the proposed data-driven framework to study
the effect of caffeine treatment on individual and social behavior.
Concerning our previous work [19], this study contributes a
detailed model of social behavior, including attraction and
alignment between subjects. Most importantly, these
parameters are functions of the caffeine concentration and
vary between treated and untreated subjects.

With respect to the state of the art on social behavior, the
proposed model brings forward the critical role of the freezing
response, by developing a two-time-scale modeling dichotomy
where freezing evolves a slow time-scale that dictates when the
animal is swimming or motionless. During locomotion, we used
two coupled stochastic differential equations (SDEs) to describe
the evolution of the turn-rate and the speed. The variables and
notation used in the manuscript are included in Supplementary
Table S1 in the supplemental material.

3.1 Zebrafish Kinematics
The fish were swimming in a shallow water tank, such that we could
consider a two-dimensional (2D) model to describe their motion.
Each fish was modeled as a rigid body, moving in a global reference
frame [X, Y] with origin O. The position of the centroid of fish i at
time t was denoted as [xi(t), yi(t)]T. We also measured the heading
θi(t) ∈ [ − π, π] as the angle between the swimming velocity and the
global reference frame. Hence, the pose of fish i, that is, its position
and orientation [44], was described as a three-dimensional vector
[xi(t), yi(t), θi(t)]T, as shown in Figure 2A. The evolution of
zebrafish pose was modeled as a first-order kinematic model

_xi(t)
_yi(t)
_θi(t)

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ � vi(t) cos θi(t)
vi(t) sin θi(t)

ωi(t)
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (1)

with initial conditions xi (0) � x0,i, y (0) � y0,i, and θi (0) � θ0,i.
Here, vi(t) and ωi(t) were the speed and turn-rate of the fish,
respectively. We developed a mathematical model for the time-
evolution of vi(t) and ωi(t) to predict the individual and social
response of zebrafish.

3.2 Zebrafish Dynamics
3.2.1 Freezing Model
We adopted a discrete-time Markov chain to capture the
transitions between freezing and swimming states. Building on
the work of Burbano-Lombana and Porfiri [19] on isolated
animals, for the i-th fish, we introduced a binary process Γi
(nTF) that takes values 0 (freezing, F) and 1 (swimming, S), where
n ∈ {1, . . . , Y}, Y � Tsim

TF
, and Tsim was the total simulation time.

The Markov chain was determined by probabilities of persistence
in swimming and freezing states, pS,i and pF,i, respectively, and
probabilities of state transition, given by pSF,i � 1 − pS,i and pFS,i �
1 − pF,i, respectively.

The speed and turn-rate of the i-th fish were

vi(t) � 0, if Γi(nTF) � 0
vS,i(t), if Γi(nTF) � 1

{ , (2a)

ωi(t) � 0, if Γi(nTF) � 0
ωS,i(t), if Γi(nTF) � 1

{ , (2b)

Such that during a freezing episode both the speed and turn-rate
are zero and during swimming they evolve based on the SDEs
described below.

FIGURE 1 | Representative trajectories of a group of five subjects, with four untreated individuals and one subject treated with caffeine, at a concentration of: 0 (A),
25 (B), 50 (C), and 70 mg/L (D).
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3.2.2 Locomotion and Interaction Models
Speed and turn-rate in the swimming state were modeled as a
system of two coupled SDEs. In the model, we included social
interaction terms that modulate fish locomotion based on the
visual cues from neighboring conspecifics. As illustrated in
Figure 2B, we described fish schooling between the focal fish,
i, and the neighboring fish, j, in terms of the relative orientation,
ϕij(t) � θi(t) − θj(t). Further, we examined fish shoaling in terms of
the relative position of the neighboring fish with respect to the
focal fish expressed in terms of the distance between the pair of
fish, sij(t), and relative angle, θij(t).

To model the evolution of the speed, we adopted the following
logistic model, similar to Burbano-Lombana and Porfiri [19] for a
single fish [45]:

dvS,i(t) � ηivS,i(t) − g(ωS,i(t))v2S,i(t)( )dt + σv,ivS,i(t)dWv,i(t),
(3)

where ηi [s−1] and σv,i [s−1
2] were the linear expansion rate and the

strength of the added noise, respectively; Wv,i(t) was a standard
Wiener process; and g(ωS,i(t)) [m−1] encapsulated the effect of the
turn-rate. Specifically, the speed response function was

g(ωS,i(t)) � 1
stdω,iBL

|ωS,i(t)|, (4)

where stdω,i was the standard deviation of the absolute
instantaneous value of the turn-rate [19]. This function
captured the need of fish to slow down when turning, while
attaining larger speeds during straight swimming.

This model offers a first approximation of speed modulation
during social behavior. For each fish, the model required the
calibration of two parameters, assuming that the body length is
common to the entire group: ηi, and σv,i. In this basic incarnation,
the model does not incorporate speed-based social interaction,
which has been proposed by several authors to play some role in
the social response of social fish [46–50]. The choice of neglecting
social interactions mediated by the speed was due to the need of

reducing the number of model parameters, magnified by the
presence of individual differences in the treatment of the group.

The turn-rate dynamics were captured by the JPTW [26,33],

dωS,i(t) � −αi(ωS,i(t) − ω*S,i(t) + fw(ϕw,i(t), dw,i(t)))dt
+ σω,idWω,i(t) + dJi(t), (5)

where ω*S,i(t) [rad s−1] was the turn-rate interaction response
function; fw (ϕw,i(t), dw,i(t)) was the wall interaction function
where ϕw,i(t) was the projected angle to collision and dw,i(t) was
the distance from the wall; αi [s−1] was a positive parameter
quantifying the relaxation rate; σω,i [rad s−3

2] was the strength of
the added noise;Wω,i(t) was a standardWiener process; and Ji(t) was
the jump noise term encapsulating sudden changes in the turn-rate.

Due to the presence of the caffeine treatment, the social
interaction gains should vary in the group. We expected
untreated fish to respond differently to a treated subject
compared to an untreated one. Further, we anticipated the
influence of treated on untreated to be different from the
influence of untreated on treated, such that their interaction
should be asymmetric. These claims are grounded in two
propositions from the literature. First, the anxiogenic value of
caffeine has been shown to influence the tendency of the caffeine-
treated fish to interact with untreated conspecifics [15,51].
Second, the psychostimulatory nature of caffeine is known to
influence the locomotory response of the animals [52], which
may underlie differences in the appraisal of treated fish by
untreated individuals. Accordingly, the turn-rate response
function was written as

ω*S,i(t) � ∑N
j�1

Γj(nTF)[kp,ijsij(t) sin θij(t) + kv,ijvS,i(t) sinϕij(t)],

(6)

where kp,ij [radm−1 s−1] and kv,ij [radm−1] were the attraction
and alignment gains of fish i toward fish j, respectively. For each
trial, the model required calibrating 2N − 1 pairs of gains.

FIGURE 2 | (A) Fish kinematics: at time t, the fish pose is denoted as [xi(t), yi(t), θi(t)]T, swimming at speed vi(t) and turn-rate ωi(t) (B) A close-up look at the
interaction between a pair of fish within a group of five fish. Alignment and attraction between the i- and j-th fish are functions of the relative orientation, ϕij(t), and relative
position, in terms of the distance between fish, sij(t), and relative angle, θij(t).
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We categorized these parameters based on the direction of
interaction as follows:

kp,ij �
kpTU, if i � 1, j≠ i
kpUT,i , if i≠ 1, j � 1
kpUU,i , if i≠ 1, j≠ 1

⎧⎪⎨⎪⎩ , (7a)

kv,ij �
kvTU, if i � 1, j≠ i
kvUT,i , if i≠ 1, j � 1
kvUU,i , if i≠ 1, j≠ 1

⎧⎪⎨⎪⎩ , (7b)

where TU, UT, and UU identified the response of the treated to
untreated fish, the untreated to the treated fish, and the
interaction between untreated subjects, respectively. The
presence of Γj (nTF) in Eq. 6 was used to selectively limit the
social response of fish to the group members that were actively
swimming. Fish that were freezing were excluded from the social
interaction model, based on calibration of the model on real data
as well as biological observations that suggested zebrafish are
more responsive to dynamic, rather than static stimuli [53].

The wall interaction function was written as follows [19,20]:

fw(ϕw,i(t), dw,i(t)) � awsgn(ϕw,i(t))e−dw,i(t)bw , (8)

where the intensity of wall interactions, aw [rad s−1], and the
sensitivity of the fish to visual stimulus to the wall, bw [cm−1],
were two positive parameters. We hypothesized that all fish
interact in the same way with the environment, such that the
two parameters aw and bw were the same for the entire group and
for every trial. The selection of the form in Eq. 8 encapsulated the
wall avoidance behavior of the fish and ensured that fish remain
within the boundary of the tank; this selection did not capture
wall-following behavior.

We finally modeled the jump noise for the i-th fish as a
compounded Poisson process,

Ji(t) � ∑mi(t)

k�1
Ak,i(t). (9)

Here, Ak,i(t)’s were independent and identically distributed
Gaussian random variables with zero mean and variance
c2i [rad2 s−2], and the total number of jumps at time t, mi(t),
was such that its increments are Poisson random variables with
parameter λi (t′′ − t′) for time t′, t′′ and t′′ > t′, with λi [s−1] being
frequency of jumps.

3.3 Model Calibration
For each fish in the group, i ∈ {1, . . . ,N}, we calibrated the set of
locomotion and social interaction model parameters. The
transition probabilities for the discrete-time Markov chain
model were obtained by simply counting instances of freezing
and transitions to swimming in the experimental time-series. On
the other hand, maximum likelihood estimation was applied to
calibrate the locomotion model parameters.

In summary, we calibrated the following parameters:
transition probabilities, pFS,i and pSF,i; linear expansion rate, ηi;
strength of added noise on speed, σv,i; relaxation rate, αi; strength
of added noise on turn-rate, σω,i; intensity of jump turns, ci;
frequency of jump turns, λi; alignment gains of treated to

untreated fish, kvTU, untreated to treated fish, kvUT,i, and
between untreated fish, kvUU,i; attraction gains of treated to
untreated fish, kpTU, untreated to treated fish, kpUT,i, and
between untreated fish, kpUU,i. Given that five fish comprised
each of the groups, a total of 58 parameters were calibrated
per trial.

3.3.1 Calibration of the Discrete-Time Markov Model
for Freezing
We obtained the binary sequences {Γi(nTF)}Yn�1} from the
experimental time-series for each fish in the group. Similar to
Burbano-Lombana and Porfiri [19], we estimated the transition
probabilities as follows:

pSF,i � NSF,i

NSS,i +NSF,i
, (10a)

pFS,i � NFS,i

NFF,i +NFS,i
, (10b)

where NSF,i and NFS,i were the number of transitions by the i-th
fish from swimming to freezing and from freezing to swimming,
respectively.NSS,i andNFF,iwere the number of instances in which
the fish maintained the swimming or freezing state, respectively.

Estimated transition probabilities for the treated fish in the
group are shown in Supplementary Table S2. For completeness,
in Supplementary Table S3, we also report a summary of the
transition probabilities for the discrete-time Markov chain of the
untreated fish in terms of mean and standard deviation calculated
across all trials.

3.3.2 Calibration of the Locomotion and Interaction
Models Through Maximum-likelihood Estimation
Using the experimental sampling time Δ as the time-step for
discretization, we approximated Eqs 3, 5 via the Euler-Maruyama
method as follows [54]:

vS,i((k + 1)Δ) � (1 + ηiΔ)vS,i(kΔ) −
Δ

stdω,iBL
|ωS,i(kΔ)|v2S,i(kΔ)

+ σv,i
��
Δ

√
vS,i(kΔ)ϵvi(k),

(11)

where ϵvi(k) was a standard Gaussian random variable, utilized to
approximate the added noise.

We followed the same discretization approach to approximate
the JPTW in Eq. 5, leading to.

ωS,i((k + 1)Δ) � (1 − e−αiΔ)ω*S,i(kΔ) + e−αiΔωS,i(kΔ) +
��
bi

√
ϵ1ωi

(k)
+ ciζ i(k)ϵ2ωi

(k),
(12a)

bi � σ2
ω,i(1 − e−2αiΔ)

2αi
, (12b)

where ϵ1ωi
(k) and ϵ2ωi

(k) were standard Gaussian random variables
and ζ i(k) was a Bernoulli process with a probability Δλi. Wall
interaction was not included in the approximation of the JPTW in
Eq. 12 since we performed calibration only when the fish were
more than 2 BL away from the wall.
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For each individual, we consolidated unknown parameters in
two vectors, φv,i and φω,i, one for the speed and the other for the
turn-rate dynamics, in Eqs 11, 12, respectively. These vectors
were determined by solving two independent optimization
problems for the speed and turn-rate. The parameters were
estimated for each fish in the group independently for every trial.

For the approximated logistic equation in Eq. 11, the vector

of unknown parameters for each fish was φv,i � [ηi, σv,iκ ]T,
where we used a scaling factor, κ, to avoid singularities at
near zero swimming speed [19]. The search was conducted
within a set of admissible values χv selected from previous
work [22]. The optimization problem was solved by using as
input the K*

i samples of the speed obtained by excluding
instances of freezing or swimming in proximity of the wall.

The maximum-likelihood estimation problem was
formulated as

φ̂v,i � arg min
φv,i∈χv

− ∑K*
i

k�1
log lv,i(φv,i, vS,i(kΔ),ωS,i(kΔ))⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (13)

The likelihood function, lv,i (φv,i, vS,i (kΔ), ωS,i (kΔ)), was derived
from the model approximation in Eq. 11 as

lv,i(φv,i, vS,i(kΔ),ωS,i(kΔ)) � H qi(kΔ),
����
σ2
v,iΔ

√( ), (14)

where H (x, σ) was the Gaussian distribution at x with zero mean
and variance σ2. Further, qi (kΔ) was given by

qi(kΔ) � −1 + ηi
κ

+ ωS,i(kΔ)vS,i(kΔ)Δ
κ BL stdω,i

+ vS,i((k + 1)Δ)
κ vS,i(kΔ) . (15)

Heuristically, we found that κ � 5 guarantees convergence of the
optimization problem.

A similar approach was adopted to calibrate the discrete JPTW
in Eq. 12. For each fish, we solved the optimization problem for
the vector of unknown parameters for each fish,
φω,i � [αi, σω,i, ci, λi, kpij, kvij]T, with j ∈ {1, . . . , N}, j ≠ i, where
the interaction gains were categorized in accordance with Eq. 7.
We used an input of K*

i samples of the turn-rate obtained by
excluding instances of freezing or swimming close to the wall. In
addition, the search was conducted within a set of admissible
values χω selected from Butail et al. [27] and Mwaffo et al. [22].
The maximum-likelihood estimation problem was formulated as

φ̂ω,i � arg min
φω,i∈χω

− ∑K*
i

k�1
log lω,i(φω,i, vS,i(kΔ),ωS,i(kΔ))⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (16)

where χωwas inR
6 for the treated fish (i � 1) and χωwas inR

8 for
the untreated fish (i ≠ 1). The likelihood function lω,i (φω,i, vS,i
(kΔ), ωS,i (kΔ)) was defined as

lω,i(φω,i, vS,i(kΔ),ωS,i(kΔ)) � (1 − λiΔ)H zi(kΔ),
��
bi

√( )
+ λiΔH zi(kΔ),

�������
(bi + c2i )

√( ),
(17)

and zi (kΔ) was

zi(kΔ) � ωS,i((k + 1)Δ) − [ωS,i(kΔ)e−αiΔ + ω*
S,i(kΔ)(1 − e−αiΔ)].

(18)

The locomotion parameters of each treated fish for all trials are
displayed in Supplementary Table S4. A summary of the
parameters of the untreated fish is shown in Supplementary
Table S5, in terms of mean and standard deviation calculated
across all trials. Supplementary Table S6 displays the attraction
gains of the treated fish kpTU, and the attraction gains of the untreated
subject towards treated neighbors k̂pUT and untreated neighbors k̂pUU

where a hat denotes the average of untreated individuals in each trial.
Similarly, Supplementary Table S7 contains the alignment gains of
the treated fish kvTU, and the alignment gains of untreated subjects
towards treated neighbors k̂vUT and untreated neighbors k̂vUU. We
discarded two additional trials from 25mg/L and one additional trial
from 50mg/L due to divergence of the estimator, where interaction
gains converged to their upper bounds.

3.3.3 Calibration of the Wall Function
We relied on the work of Burbano-Lombana and Porfiri [19] to
obtain the wall function parameters in Eq. 8. The wall interaction
function was calibrated for a fish swimming alone, from the data-
set of Neri et al. [40], using a wall-corrected turn-rate from the
real time-series of the turn-rate of fish swimming alone,

ωc(kΔ) � |ωa(kΔ)|, if sgn(ωa(kΔ)) � sgn(ϕw(kΔ))−|ωa(kΔ)|, otherwise
{ ,

(19)

where ωa (kΔ) was the turn-rate of the fish swimming alone and
ωc (kΔ) was the corrected turn-rate. Next, ωc (kΔ) was plotted
against the distance from the wall dw (kΔ) where only the positive
values of the corrected turn-rate were considered to capture wall
avoidance. A robust non-parametric locally weighted least
squares (RLOESS) function in MATLAB was used to fit the
signal to a parametric exponential function. As such, the wall
interaction parameters were obtained by calculating the average
across all trials as aw � 11.68 rad s−2 and bw � 0.19 cm−1.

4 RESULTS

We began our analysis of the model by examining the influence of
caffeine concentration on fish locomotion in terms of the variations
of relevant model parameters. With respect to parameters on
freezing response and locomotion, we compared with model
parameters obtained in Burbano-Lombana and Porfiri [19] to
assess the effect of the social environment on fish response to
caffeine administration. Finally, we conducted in-silico
experiments to demonstrate the predictive power of the model in
anticipating experimental results on schooling and shoaling.

4.1 Analysis of Model Parameters
First, we investigated the effect of caffeine concentration and
social environment on the locomotion parameters of the treated
fish, utilizing two-way ANOVA with caffeine concentration and
social environment (single or group) as independent variables.
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Second, we conducted ANOVA comparisons with caffeine
concentration as a single independent variable to compare the
interaction parameters across concentrations. Post-hoc
comparisons were conducted using Tukey’s HSD (honestly
significant difference). The significance level was set to 0.050
throughout.

We found that caffeine concentration did not influence the
Markov chain transition probabilities pFS (F3,50 � 0.424, p �
0.738) and pSF (F3,50 � 0.125, p � 0.944), neither in isolation nor in
group (shown in Figures 3A,B, respectively). No difference was
detected across social environment with respect to pFS (F1,50 �
0.630, p � 0.443). Although we registered a dependence on the
social environment with respect to pSF (F1,50 � 5.416, p � 0.027),
we did not detect any variation in post-hoc analysis. The
interaction between the two independent variables was found
to be not significant for both pFS (F3,50 � 1.733, p � 0.181) and pSF
(F3,50 � 0.812, p � 0.497).

Likewise, the linear expansion rate, η, was not influenced by
either caffeine concentration (F3,50 � 1.264, p � 0.297) or social
environment (F1,50 � 0.698, p � 0.407), shown in Figure 4A.
Further we did not detect differences in the interaction of the
independent variables on η (F3,50 � 0.048, p � 0.986). In terms of
the strength of added noise on the speed evolution, σv, we found a
dependence on caffeine concentration (F3,50 � 3.039, p � 0.038;
Figure 4B), which, however was not accompanied by variations
in post-hoc analysis. We found that the presence of the social
environment had an effect on σv (F1,50 � 33.21, p < 0.001), and

post-hoc analysis indicated a decrease in the strength of added
noise in the presence of untreated subjects for 0 mg/L. We did not
detect a significant interaction between the independent variables
on σv (F3,50 � 1.088, p � 0.363).

With respect to the turn-rate model parameters, we did not
detect an effect of caffeine concentration on the mean reversion
rate, α (F3,50 � 1.368, p � 0.263). Although we found α to be
affected by the social environment (F3,50 � 15.49, p < 0.001;
Figure 5A), post-hoc analysis did not reveal significant
differences between concentrations. Likewise, we did not
discover a significant interaction between caffeine
concentration and social environment on α (F3,50 � 0.519, p �
0.672). While caffeine concentration was found to have an
influence on the strength of added noise in the turn-rate
evolution, σω (F3,50 � 2.926, p � 0.043; Figure 5B), no
variations were identified in post-hoc analysis. We determined
a modulatory role of the social environment (F3,50 � 24.83, p <
0.001), where σω increased in the presence of a social group for
50 mg/L in post-hoc analysis. No significant interaction was
detected between the independent variables with respect to σω
(F3,50 � 0.866, p � 0.465). With respect to intensity of jumps, c, we
found caffeine concentration to play a modulatory role (F3,50 �
5.760, p � 0.002; Figure 5C), with post-hoc analysis revealing a
decrease in the intensity of jumps for treated fish swimming in
isolation from 50 to 70 mg/L. In addition, we found the social
environment to influence c (F1,50 � 15.90, p < 0.001), where we
detected an increase in the jump intensity in the presence of

FIGURE 3 |Comparisons of discrete-timeMarkov chain parameters of the treated fish across caffeine concentrations and social environment (single or group). The
bars represent the mean value of the probability of transition from freezing to swimming (A), and the mean value of the probability of transition from swimming to freezing
(B). The striped bars correspond to the calibrated parameters for the case of a single treated fish from Burbano-Lombana and Porfiri [19]. The solid bars correspond to
the calibrated parameters for the case of a treated fish swimming in a social group. The vertical red error bars represent standard errors of the means.

FIGURE 4 | Comparisons of the locomotion parameters corresponding to the speed evolution of the treated fish across caffeine concentrations and social
environment (single or group). The bars represent the mean value of the linear expansion rate (A), and strength of added noise in the speed evolution (B). The striped bars
correspond to the calibrated parameters for the case of a single treated fish from Burbano-Lombana and Porfiri [19]. The solid bars correspond to the calibrated
parameters for the case of a treated fish swimming in a social group. The symbol $ indicates a significant difference (p < 0.050) in Tukey’s HSD post-hoc analysis
comparing individuals swimming alone or on group (single versus group). The vertical red error bars represent standard errors of the means.
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untreated subjects for 0 mg/L in post-hoc analysis. We did not
identify a significant interaction between caffeine concentration
and social environment with respect to c (F3,50 � 0.747, p � 0.529).
Finally, the frequency of jumps, λ, was not affected by caffeine
concentration (F3,50 � 2.166, p � 0.104). In contrast, we detected
significant differences across social environment (F1,50 � 13.65,
p < 0.001; Figure 5D). Post-hoc analysis revealed that fish
swimming in isolation had higher values of λ than those
swimming in group for the 25 mg/L treatment. We registered
a significant interaction of the independent variables on λ (F3,50 �
2.924, p � 0.048).

Next, we investigated the effect of caffeine concentration on
the interaction gains in the turn-rate model, as shown in Figure 6.
We identified an effect of caffeine concentration on the attraction
gain of the treated fish towards untreated fish, kpTU (F3,22 � 3.323,
p � 0.038), but post-hoc analysis did not detect differences
between concentrations. The average attraction gain, k̂pUT, of
the untreated fish towards treated fish was not found to vary
with caffeine concentration (F3,22 � 0.588, p � 0.629). We
determined that the average attraction gain of the untreated
fish towards other untreated subjects, k̂pUU, varied with
caffeine concentration (F3,22 � 3.679, p � 0.028), and post-hoc
analysis brought to light a decrease from 0 to 25 mg/L. Finally, the
alignment gains were indistinguishable with respect to caffeine
concentration: kvTU (F3,22 � 1.252, p � 0.315), k̂vUT (F3,22 � 0.756,
p � 0.531), and k̂vUU (F3,22 � 0.596, p � 0.459).

In summary, among all the freezing and locomotion
parameters, we only found the intensity of jumps to depend on
caffeine concentration, yet, without differences with respect
to vehicle-treated individuals. Comparisons across social

environment revealed variations in the strength of added noise
on both speed and turn-rate and in the jump parameters.
Swimming in group reduced the strength of the added noise on
the speed evolution of vehicle-treated subjects, and it increased the
strength of the added noise on the turn-rate evolution at the
intermediate concentration. Further, while the presence of a
social group increased the intensity of jumps of vehicle-treated
subjects, it reduced the frequency of jumps of individuals treated at
a low concentration. Parameters pertaining to social response were
generally robust with respect to caffeine concentration, except for
the attraction of untreated fish towards other untreated subjects,
with low caffeine concentration causing a reduction in alignment.

4.2 In-silico Experiments
We conducted in-silico experiments to validate the developed
model and investigate its ability to predict the social behavior of
fish detected from experimental time-series [40], for a range of
interaction metrics that quantify schooling, and shoaling.

Schooling is a measure of fish tendency to align their bodies
during swimming [55,56]. The degree of alignment among the
four untreated fish was scored in terms of the instantaneous
polarization [57],

P(kΔ) � 1
N − 1

∑N
i�2

vi(kΔ)
vi(kΔ)

���������
���������, (20)

where N � 5 was the number of fish in the experiment.
Polarization varies between 0 and 1, where 1 identified the
case in which untreated fish are perfectly aligned in the same
direction.

FIGURE 5 | Comparisons of the locomotion parameters corresponding to the turn-rate evolution of the treated fish across caffeine concentrations, and social
environment (single or group). The bars represent the mean value of the mean reversion rate (A), strength of added noise in the turn-rate evolution (B), intensity of jumps
in the turn-rate evolution (C), and frequency of jumps in turn-rate evolution (D). The striped bars correspond to the calibrated parameters for the case of a single treated
fish from Burbano-Lombana and Porfiri [19]. The solid bars correspond to the calibrated parameters for the case of a treated fish swimming in a social group.
Different letters on top of the bars indicate a significant difference (p < 0.050) in Tukey’s HSD post-hoc analysis across caffeine concentrations, comparing individuals
swimming in isolation (standard font) or in group (italic font). The symbol $ indicates a significant difference (p < 0.050) in Tukey’s HSD post-hoc analysis comparing
individuals swimming alone or on group (single versus group). The vertical red error bars represent standard errors of the means.
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The alignment between the treated fish and the untreated
group of fish was scored in terms of the relative instantaneous
polarization, R (kΔ),

R(kΔ) � v1(kΔ)T
v1(kΔ)

1
N − 1

∑N
i�2

vi(kΔ)
vi(kΔ), (21)

Relative polarization ranges between −1 and 1, where 1
corresponded to the group of untreated fish pointing in the
same direction of the treated fish, and −1 indicated that the
treated fish is pointing in the opposite direction to the group of
untreated fish. These quantities were averaged in time to
compute the average polarization and the average relative
polarization.

To quantify fish shoaling, the tendency of fish to swim nearby,
we computed the inter-individual distance, dij (kΔ), between each
pair in the group. We scored the average distance between the

treated and untreated subjects, and the average distance among
untreated individuals.

We conducted in-silico experiments using the model
parameters for the case of in-group swimming, shown in solid
bars in Figures 3–6. Ten simulations were performed for each of
the four caffeine concentrations. For each fish in all 40 trials, the
interaction gains were sampled from a Gaussian distribution with
mean and standard deviation of the corresponding parameter at
that concentration. On the other hand, since we did not find any
effect of caffeine concentration on the transition probabilities and
locomotion parameters for in-group swimming, those parameters
were taken as the average of all fish across all experimental trials
based on treatment. The initial conditions xi (0), yi (0), θi (0), Γi
(0), vi (0), and ωi (0) were chosen uniformly at random in their
respective intervals. Time-series of four trajectories for each
caffeine concentration are shown in Figure 7; videos are
presented at the link provided in the data availability

FIGURE 6 | Calibrated interaction parameters in the turn-rate evolution across caffeine concentrations. The bars represent the mean value of the attraction gain of
treated fish towards untreated fish (A), alignment gain of treated fish towards untreated fish (B), average attraction gain of untreated fish towards treated fish (C), average
alignment gain of untreated fish towards treated fish (D), average attraction gain between untreated fish (E), and average alignment gain between untreated fish (F).
Different letters on top of the bars indicate a significant difference (p < 0.050) in Tukey’s HSD post-hoc analysis across caffeine concentrations. The vertical red error
bars represent standard errors of the means.
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statement. Note that the wall function adopted in this study does
not take into consideration the wall following behavior of
zebrafish, thus explaining the differences in wall interactions
between in-silico trajectories in Figure 7 and experimental
ones in Figure 1.

We performed statistical analysis to compare the social
interaction metrics across caffeine concentrations, and validate
the in-silico results against those obtained from real experiments.
For this purpose, we conducted two-way ANOVA with caffeine
concentration and data-type (experiments or in-silico) as
independent variables. Post-hoc comparisons were conducted
using Tukey’s HSD. The significance level was set to 0.050
throughout.

We detected influence of caffeine concentration on the average
polarization, �P (F3,61 � 7.781, p < 0.001), shown in Figure 8A.
Post-hoc analysis revealed differences in experimental results,
where the average polarization was found to increase from 0 to
50 mg/L. Comparisons across data-types did not indicate
differences between real and in-silico experiments (F3,61 �
1.354, p � 0.249). Likewise, no interaction between the
independent variables was identified on �P (F3,61 � 0.675, p �
0.571). With respect to the average relative polarization, �R
(Figure 8B), we did not find an effect on either caffeine
concentration (F3,61 � 1.354, p � 0.071) or data-type (F1,61 �
0.229, p � 0.634), although we identified significant interaction
(F3,61 � 3.855, p � 0.014).

Next, we determined that the shoaling tendency between the
treated fish and untreated subjects, in terms of the average
distance �dT−U, was consistent across caffeine concentrations
(F1,61 � 1.849, p � 0.179) and data-types (F1,61 � 1.461, p �

0.234), as shown in Figure 9A. No interaction was detected
between the independent variables on �dT−U (F3,61 � 0.262, p �
0.853). In contrast, we detected an effect of caffeine concentration
on the average distance between the untreated fish, �dU−U (F3,61 �
12.16, p < 0.001; Figure 9B). Post-hoc analysis revealed a decrease
in �dU−U from 25 to 50 mg/L in the experimental data-set. Similar
differences were found in the in-silico data-set where �dU−U was
larger for 25 mg/L than 0 and 50 mg/L. While comparisons
between data-types revealed a significant difference (F1,61 �
11.29, p � 0.0.001), the results were indistinguishable between
real and in-silico experiments in post-hoc analysis. Finally, we did
not identify a significant interaction between the independent
variables on �dU−U (F3,61 � 2.354, p � 0.081).

5 DISCUSSION

In this work, we developed a modeling framework to study the
effect of acute caffeine treatment on the social behavior of
zebrafish. We contributed two key advances to previous work
on modeling collective behavior of zebrafish. First, similar to the
analysis with respect to zebrafish swimming alone in Burbano-
Lombana and Porfiri [19], we included the freezing response of
each individual within the group, which is necessary to capture
anxiety-related behavior in response to caffeine [58]. For this
purpose, we developed a two-time-scale modeling dichotomy.
Along a slow time-scale, we used a discrete-time Markov chain to
describe the transition between swimming and freezing states. At
a fast time-scale, we modeled the evolution of the speed and turn-
rate during swimming as a system of coupled SDEs: a logistic

FIGURE 7 | Representative in-silico trajectories of a group of five subjects, with four untreated individuals and one subject treated with caffeine, at a concentration
of: 0 (A), 25 (B), 50 (C), and 70 mg/L (D).

FIGURE 8 |Comparisons of the schooling tendency of the fish, measured in terms of average polarization (A), and average relative polarization (B), across caffeine
concentrations and data-types (experiment or in-silico). Different letters on top of the bars indicate a significant difference (p < 0.050) in Tukey’s HSD post-hoc analysis
across caffeine concentrations, comparing interaction metrics in experiment (standard font) or in-silico (italic font) data-type. The vertical red error bars represent
standard errors of the means.
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equation to represent the speed and a JPTW to describe the turn-
rate. Second, we granularly tracked the directional interaction
between each pair of fish based on the treatment of each fish
within the pair. This approach takes into consideration previous
experimental work highlighting the effect of caffeine on the
behavioral response of treated fish and its appraisal by
untreated conspecifics [51,52].

We calibrated the model on real experimental data from
previous work [40], where we studied groups of caffeine-
treated subject and untreated individuals swimming in a
shallow water tank. For each group of five individuals, we
estimated 20 parameters, entering the Markov chain and the
SDEs. Calibration employed a combination of maximum
likelihood estimation and classical plug-in estimation. We
displayed our results on two fronts. First, we compared the
model parameters obtained for a treated fish swimming with
untreated subjects with those obtained by Burbano-Lombana and
Porfiri [19] for the case of an isolated fish. Second, we compared
the social interaction metrics, in terms of average polarization,
average relative polarization, and average inter-individual
distance, between the experimental and in-silico data-sets.

In contrast with our expectations, we did not observe a
modulatory role of caffeine on freezing and locomotion
parameters. Our expectation was based on a number of
previous studies documenting a robust dependence of
zebrafish behavioral response to acute caffeine administration
[18,59]. This was particularly evident for individuals swimming
with untreated subjects, for which we failed to detect any effect of
caffeine treatment. Likely, the explanation for the abolishment of
a dose-dependent response should be sought in the presence of
the social environment, which, indeed was responsible for a few,
salient variations in locomotion parameters associated with the
speed and turn-rate evolution. It is tenable that the presence of
social cues had a leveling role on the anxiogenic effect of caffeine,
which is indirectly evidenced by the tendency to enhance white
noise with respect to the jump noise in the turn-rate evolution.
Jumps have been associated with erratic activity of the animal, in
the form of C- and U-turns, so that their reduction in favor of
steady swimming offers an indication of an axiolytic value of the
social environment, also discussed by Neri et al. [40]. With
respect to the effect on untreated subjects, we recorded a

decrease in their tendency to shoal with each other, which
highlights an interesting, albeit indirect, effect of caffeine
treatment. Caffeine treatment of one selected individuals
might bear an anxiolytic effect on the rest of the group that
reduce their tendency to stay close [15,51]; understanding this
counter-intuitive finding should be the object of future research.

The calibrated model is in good agreement with experimental
observations on social metrics, related to shoaling and schooling.
While this agreement should be desired in any calibrated model,
it is not obvious to attain. In fact, in-silico experiments do not
contain the fine-grain variations that are unique to the
experimental subjects, whereby we excluded from the
simulations any statistical variation in the locomotion and
freezing parameters. Accounting for variations in the social
gains due to caffeine administration through a simple normal
distribution seems sufficient to capture the emergent response of
the groups, as well as the role of the treated individual.

The proposed model is not free of limitations. First, we assumed
that the interaction between fish is solely based on visual stimuli.
Incorporating other mechanisms of social interactions, such as
hydro interactions [35,37], may help refine the mathematical
model, especially in terms of short-range interactions related to
the perturbations they create in the fluid environment [37]. Second,
the current model does not incorporate wall following behavior
observed in real experiments, whereby interaction with the wall is
limited to a simple repulsion [20]. Third, the model is purely two-
dimensional, thereby failing to capture salient anxiety-related
responses that have been documented in zebrafish, such geotaxis
[18, 60]. Fourth, the entire modeling framework is based on a single
psychoactive compound, which bears limitations in the
generalizations of the predictions to other substances that
impinge on anxiety [11,14]. Along this line, the most
fundamental limitations of the model is the lack of a direct link
between the molecular composition of the substance or the brain
mechanisms it affects and the parameters of themodel. In its present
incarnation, the model requires knowledge of all its parameters to
perform in-silico experiments, without allowing for exploring
different substances or even untested concentrations on caffeine.

Despite these limitations, the proposedmodel offers a first step
in the design of in-silico experiments that can aid the 3R’s with
respect to zebrafish experimentation. The proposed model can be

FIGURE 9 | Comparisons of the shoaling tendency of the fish, measured in terms of the average distance between treated fish and untreated fish (A), and average
distance between untreated fish (B), across caffeine concentrations and data-types (experiment or in-silico). Different letters on top of the bars indicate a significant
difference (p < 0.050) in Tukey’s HSD post-hoc analysis across caffeine concentrations, comparing interaction metrics in experiment (standard font) or in-silico (italic font)
data-type. The vertical red error bars represent standard errors of the means.
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used to reduce the number of experiments, by affording statistical
insight into the sample size. Likewise, the model can be used to
refine existing data-sets, by informingmodel-based analysis of the
data and, potentially, assist in verification and tracking. Finally,
pilot studies could be conducted on a computer, thereby reducing
the number of subjects utilized in experimental research.
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