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Accurate spatial alignment is essential for any population neuroimaging study, and affine
(12 parameter linear/translation) or rigid (6 parameter rotation/translation) alignments play a
major role. Here we consider intensity based alignment of neuroimages using gradient
based optimization, which is a problem that continues to be important in many other areas
of medical imaging and computer vision in general. A key challenge is robustness.
Optimization often fails when transformations have components with different
characteristic scales, such as linear versus translation parameters. Hand tuning or
other scaling approaches have been used, but efficient automatic methods are
essential for generalizing to new imaging modalities, to specimens of different sizes,
and to big datasets where manual approaches are not feasible. To address this we
develop a left invariant metric on these two matrix groups, based on the norm squared of
optical flow induced on a template image. This metric is used in a natural gradient descent
algorithm, where gradients (covectors) are converted to perturbations (vectors) by applying
the inverse of themetric to define a search direction in which to update parameters. Using a
publicly available magnetic resonance neuroimage database, we show that this approach
outperforms several other gradient descent optimization strategies. Due to left invariance,
our metric needs to only be computed once during optimization, and can therefore be
implemented with negligible computation time.
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1 INTRODUCTION

Modern neuroimaging techniques are providing a detailed examination of the nervous system at
unprecedented scale. Human studies such as the Alzheimer’s Disease Neuroimaging Initiative [1] or
Open Access Series of Imaging Studies [2] are providing hundreds of publicly accessible three
dimensional brain images at themillimeter scale to the neuroscience, medical imaging, and computer
vision communities. Consortiums such as the BRAIN Initiative Cell Census Network are making
petabytes of neuroimaging data available from animal models at the micron and submicron scale [3].
Extracting insight from these massive databases remains a challenge, and establishing common
coordinate systems for reporting results is an important step to enable synchronization between
different laboratories, between imaging modalities, and across populations [4–6].

This standardization is enabled by image registration techniques, where optimal spatial
transformations are calculated to maximize similarity between new observations and images in
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standard coordinates. There are many approaches to
implementing these techniques. One framework involves
building alignments based on point sets including landmarks
[7–9], curves [10], and surfaces [11, 12]. Another framework
involves voxel based imaging data [13–17]. Additionally hybrid
approaches are often used that can combine the strengths of point
based and voxel based techniques [18–20]. There are many more
thorough reviews of these techniques, including comparisons
in [21].

In this work we focus on voxel intensity based image registration
with gradient based optimization. In these approaches robustness to
parameter selection is essential. When optimizing over parameters,
differences in scales must be accounted for during gradient descent
before updating parameters in the negative gradient direction. For
example, simple elastix [22] defines an estimate scales routine. Simple
elastix is based on the simple ITK wrapper [23] of the powerful ITK
library [24, 25]. Simple ITK hard-codes relative scales in manner that
tends to give good results for human neuroimages at the millimeter
scale. However, efficient automatic methods are essential for
generalizing to new imaging modalities, to specimens of different
sizes, and to big datasets where manual approaches are not feasible.

Here we address this gap by designing a metric for natural
gradient descent [26]. In differential geometry, vectors can
represent perturbations of parameters, while covectors
represent linear maps taking vectors to the real numbers. In
gradient based optimization, gradients are covectors, and
interpreting them as a perturbation to update parameters is
not well formulated. For example, when optimizing over
position with parameters with units of “meter”, gradients have
units of “per meter”, and should not be added to a quantity with
units of “meter”. Using a Riemannian metric (inner product
between vectors in a given tangent space), vectors can be
converted to covectors and vice versa. Applying this
conversion to gradients in optimization before updating is
known as natural gradient descent.

In this work we consider affine and rigid transformations,
which contain a linear map and a translation. These two
components have different units: the linear part is unitless,
and the translation part has units of length. This makes
choosing stepsizes in gradient based optimization critical.
Often orders of magnitude difference in scales means
registration algorithms will not converge without laborious
and non-reproducible parameter tuning. We introduce a
metric for natural gradient descent based on the L2 norm of
optical flow, and we show that it is left invariant, invariant to
image padding, and related to Gauss-Newton optimization. We
demonstrate the advantages of this approach over more standard
methods on a brain image registration dataset, and discuss our
results in the context of related methods.

2 METHODS

In this section we define our coordinate systems and optical flow
metric for the 12 parameter affine and 6 parameter rigid case,
enumerate several properties, and summarize our validation
experiments. We use lowercase letters to denote scalars,

boldface lowercase letters to denote vectors, and boldface
uppercase letters to denote matrices. Exceptions are I, J which
by convention will denote images, and g which by convention will
denote a metric tensor.

2.1 The Optical Flow Metric for Affine
Transformations
We consider registration from an atlas image I: X ⊂ R3 →Rm, to
a target image J: X→Rn. Often inmedical imagingm � n � 1 (for
grayscale images), but it is often 3 (for red, green, blue images), or
can be other values.

We work with vectors and affine transforms in homogeneous
coordinates, so a point in R3 is written as x � (x0, x1, x2, 1)

T , and
an affine transform is written as

A �
a00 a01 a02 b0
a10 a11 a12 b1
a20 a21 a22 b2
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

Images are transformed via the group actionA · I(x) � I(A−1x), which
is implemented computationally through trilinear interpolation.

We use a coordinate chart based on lexicographic ordering of
the above components, φ: affinematrix→R12 with
A1(a00, a01, a01, b0, a10, . . . , b2)

T . We use the chart induced
basis for the tangent space, whereby the standard basis vectors
ei are pushed forward, Ei � Dφ−1

A ei. In this parameterization the
push forward is independent of A. For example, the first two basis
vectors are given by

Dφ−1
A e0 � Dφ−1

A

1
0
0
«
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � E0

Dφ−1
A e1 � Dφ−1

A

0
1
0
«
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � E1.

(2)

Tangent vectors can be thought of as small perturbations to
the coordinates δa, and we write δA � Dφ−1

A δa. A perturbation
A1A + ϵδA induces optical flow on our template image via

d
dϵ I((A + ϵδA)−1x)|ϵ�0 � −DI(A−1x)A−1δAA−1x.

We define our inner product gA between two tangent vectors δA,
δB at the pointA to be given by the L2 inner product of the optical
flow, scaled by the determinant of A, denoted |A|:

gA(δA, δB) � 1
|A|∫AX

xTA−TδATA−TDIT(A−1x)DI(A−1x)A−1δBA−1xdx.

(3)

This metric is left invariant, as can be seen by making a change
of variables in the integral, y � A−1x, x � Ay, dx � |A|dy:
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gA(δA, δB) � ∫
X
yT(A−1δA)TDIT(y)DI(y)(A−1δB)ydy

� gid(A−1δA,A−1δB). (4)

SinceA−1δA is the push forward of the vector δA tangent to the point
A by the map A−1, this implies that this choice of metric is left
invariant. An important benefit of this property is that during an
optimization procedure we can compute it at identity once, and apply
a simple linear transformation to compute it at other locations A.

We compute gid in coordinates as a 12 × 12 matrix via
[gid]ij � gid(Ei,Ej).

2.2 The Optical Flow Metric for Rigid
Transformations
We use zyx Euler angles for parameterizing the rotation
group, i.e.,

A �
1 0 0 bx
0 1 0 by
0 0 1 bz
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
1 0 0 0
0 cos(θx) −sin(θx) 0
0 sin(θx) cos(θx) 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠/

/

cos(θy) 0 sin(θy) 0
0 1 0 0

−sin(θy) 0 cos(θy) 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠·

cos(θz) −sin(θz) 0 0
sin(θz) cos(θz) 0 0

0 0 1 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ^Tx,bxTy,byTz,bzRx,θxRy,θyRz,θz

where · denotes matrix multiplication. We let φ be the associated
coordinate chart with φ(A) � (θx, θy, θz , b0, b1, b2)

T .
At identity (all parameters equal 0), the chart induced basis for

the tangent space is:

Eid
0 � Dφ−1

id e0 �
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Eid
1 � Dφ−1

id e1 �
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Eid
2 � Dφ−1

id e2 �
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Eid
3 � Dφ−1

id e3 �
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Eid
4 � Dφ−1

id e4 �
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Eid
5 � Dφ−1

id e5 �
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

A standard result shows that the chart induced basis at a pointA is

EA
0 � Tx,bxTy,byTz,bzRx,θxE

id
0 Ry,θRz,θz

EA
1 � Tx,bxTy,byTz,bzRx,θxRy,θE

id
1 Rz,θz

EA
2 � Tx,bxTy,byTz,bzRx,θxRy,θRz,θzE

id
2

EA
3 � Eid

3 Ex,bxEy,byEz,bzRx,θxRy,θRz,θz

EA
4 � Tx,bxE

id
4 Ty,byTz,bzRx,θxRy,θRz,θz

EA
5 � Tx,bxTy,byE

id
5 Tz,bzRx,θxRy,θRz,θz .

We can compute gid in coordinates as a 6 × 6 matrix via
[gid]ij � gid(Ei,Ej) using (3).

2.3 Converting Covectors to Vectors
For natural gradient descent we convert derivatives of the loss
function with respect to the coordinates (which are covectors), to
perturbations in the coordinates (which are vectors), by applying
the Ymap, which we define here. If dA is a covector at the point A
with coordinates da, and δB is a vector at the point A with
coordinates δa, then we can write the action of dA on δB in
coordinates as

dA(δB) � ∑
i

daiδbi.

The lift from a covector to vector using the Y map is defined
implicitly through the relationship

dA(δB) � gA(dAY, δB).
In a given coordinate system this amounts to solving a linear

system of equations (i.e. inverting the matrix gA): daYi �∑j[gA]
−1
ij daj.

2.4 Computing the Metric at A
We compute gid by integrating over the image once at the start of
optimization, and then use left invariance to define a simple
transformation for computing gA. To do this we need to express
the push forward of a vector with A−1 as a matrix multiplication
operation. This is computed via

MA � Dφid︸�︷︷�︸
N×16

A−1︸�︷︷�︸
16×16

Dφ−1
A︸��︷︷��︸

16×N

where N is 12 for general affine transforms and 6 for rigid
transforms. The components of these matrices can be easily
computed from their action on basis vectors. We can then
write, using multiplication of N × N, matrices:

gA � MT
AgidMA.

2.5 Useful Properties of the Metric
2.5.1 Invariance to Padding
In a typical situation I is an image of a head in air, and air has
a signal 0. In this case we can add any amount of zero
padding to our image without changing the metric because
DI is zero in the padded regions. This may seem trivial, but it
is not respected by choices made in other software, such as
the “automatic scales estimation” routine in Section
2.6 below.

2.5.2 Relationship to Gauss Newton
If the loss function being considered is sum of square error, then
this approach is roughly equivalent to Gauss Newton
optimization. The minor differences are constant scale factors,
numerics of interpolation, and potentially regions over which
error is summed. This suggests that choosing a step of order 1 is
reasonable for this cost function.
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2.5.3 Independence to Coordinate Origin
Traditionally the positioning of a coordinate origin has been critical to
the success of affine registration. If the origin is far from the imaging
data (e.g., the corner of the image), then the transformation is very
sensitive to changes in the linear parameters.

Because shifting the coordinate origin is equivalent to applying
an affine transformation, and our metric is left invariant, our
approach is invariant to the coordinate origin. This is illustrated
in our experimental results.

2.6 Mapping Experiments
We implement a gradient based affine image registration
algorithm by minimizing sum of square error, and mutual
information loss functions. We use 100 randomly sampled
pairs of images from the LPBA40 dataset [5] in native space.
This dataset consists brain images from 40 healthy volunteers,
with 20 male and 20 female, between 19.3 and 39.5 years old.
Images were 3D Spoiled Gradient Echo MRI volumes from a GE
1.5T system, with 1.5 mm coronal slice spacing, and 0.86 mm in
plane resolution (38 subjects) or 0.78 mm (2 subjects). This
dataset has been used for multiple image registration
validation studies, most notably [21] which compared 14
different nonrigid registration methods. An example image
pair is shown in Figures 1A,B, which corresponds to our first
randomly selected pair.

We compare the natural gradient descent approach described
here to three different gradient descent approaches. In the

“vanilla” method we update the linear and translation jointly
with no scaling, and in the “alternating”method we update them
every other iteration (i.e., we update the linear part on iteration 0,
the translation part on iteration one, the linear part on iteration
2, etc.).

We also compare to one other approach, “automatic scales
estimation” used in simple elastix [22]. In this approach, the
derivative of the transformation’s output with respect to each
parameter is taken, yielding a 3 × 12 matrix of partial derivatives
at each pixel. Next the sum of squares is computed down each
row, yielding a 1 × 12 vector at each pixel. Last the quantity is
averaged over all pixels. This gives a set of scale factors which are
used to normalize the components of the gradient before
updating parameters. These scale factors are generally only
computed once. We note that this is related to our approach
with three modifications: 1) we set I(x) � x in Eq. 3, 2) we
consider the diagonal elements of g only, and 3) we define the
components of gA to be equal to those of gid.

In all cases, gradient update steps are performed using a golden
section linesearch with a maximum of 10 steps. The minimum in
a given search direction is bracketed by a step size of 0, and a step
size that would increase the loss. The latter is found by increasing
the stepsize found from the previous iteration by a the golden
ratio (roughly 1.6) until the loss function increases. Occasionally
the step size is found from the golden section search to be 0 within
machine precision, in which case we set it to 1 × 10–10 to initialize
the procedure at the next gradient descent iteration. Note that in

FIGURE 1 | (A, B): One example pair of neuroimages used for registration, shown using 5 slices in each of the sagittal (top row) coronal (middle row) and axial
(bottom row) planes. Difference between atlas and target images is shown before registration in (C), after affine registration in (D), and after rigid registration in (E).
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this case optimization will stop, except in the alternating method
where it may continue.

For each gradient descent method we consider 12 parameter
affine registration (for sum of square error and mutual
information loss), and 6 parameter rigid registration (sum of
square error only). We also consider placements of the coordinate
origin in the image center, half way to the corner, and at the
corner. For one case we consider a finer grained sampling of the
image origin as discussed in the results section.

In each case we compute the loss function at each step of
optimization for 50 steps, and report normalized results that have
been shifted and scaled to lie in the range 0–1. The minimum for
the best method is assigned the value 0, and the initial value of the
loss function (equal for all methods) is assigned the value 1. We
show these curves directly, and also show the average tied rank at
each iteration. The tied rank for method X is defined as 1 plus the
number of other methods X does better than, plus half of the
number of other methods it performs equal to. This gives a
number between 1 (worst) and 4 (best).

Algorithms are implemented in pytorch and gradients with
respect to parameters are computed automatically.We use double
precision arithmetic to deal with a large dynamic range of step
sizes. For metric computation derivatives DI are computed on a
voxel grid via centered differences, and integrals are computed by

summing over voxels and multiplying by the voxel volume.
Algorithms are run on a NVIDIA GeForce RTX 2080 Ti Rev.
A GPU device with 11GB of memory.

3 RESULTS

3.1 Methods Summary
In the methods section we derived a metric based on the L2 norm
of optical flow of a template image, for the 12 parameter affine
and 6 parameter rigid case, and proposed a corresponding natural
gradient optimization algorithm. These correspond to 12 × 12 or
6 × 6 (respectively) positive definite matrices that depend on an
atlas image.

We test our approach using 100 randomly selected pairs of
neuroimages from the LPBA 40 dataset [5]. We consider four
methods (natural gradient descent, “vanilla” gradient descent,
alternating minimization, and automatic scales estimation), 3
placements of coordinate origins (center, half way, and corner), 2
transformation groups (affine and rigid), and 2 loss functions
(sum of square error, and mutual information used in the 12
parameter case only).

Our first randomly selected pair of images is shown in Figures
1A,B. We also show the initial error (difference between images)

FIGURE 2 | Metric tensors shown here for 12 parameter affine transformations. Left: origin at the center, middle: origin half way, right: origin at the corner.

FIGURE 3 | Metric tensors shown here for 6 parameter rigid transformations. Left: origin at the center, middle: origin half way, right: origin at the corner.
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in Figure 1C, and the error after alignment for the affine
Figure 1D and rigid Figure 1E case.

3.2 Metric Tensors
For the example images in Figure 1, the metric tensor at identity
for the 12 parameter affine registration is shown in Figure 2. The
three plots show results when the origin is at the center, half way
to the corner, and at the corner. Even with the origin in the center,
the tensor has significant off diagonal elements, including
negative values, suggesting that simply scaling gradient
components is suboptimal. With the origin at the corner,
there are stronger off diagonal elements, and a much larger
difference between the linear and translation parts.

For the example images in Figure 1, the metric tensor at
identity for the 6 parameter rigid registration is shown in
Figure 3. Similar trends are observed, with even stronger
negative elements.

3.3 12 Parameter Affine Results With Sum of
Square Error
Normalized sum of square error is reported as a function of
optimization step in Figure 4 for the 12 parameter affine
registrations. The median for each method is shown as a solid
line, the 25th and 75th percentile are shown as a filled area, and all
100 curves are shown in pale colors. One observes that the natural
gradient descent approach converges significantly faster than the
other methods. Considering different coordinate origins has a
large effect for the alternative methods and no effect for the
natural gradient method. The alternative methods often fail to
converge within 50 iterations, with the “vanilla” method failing
even with a centered coordinate origin. This illustrates the
important lack of robustness in this field.

The bottom right plot shows that the natural gradient
method quickly achieves an average rank close to 4 (best),
while the vanilla method quickly achieves a rank of 1 (worst).

FIGURE 4 | Results of minimizing sum of square error over 12 parameter affine registrations are shown with the coordinate origin in the center (A), half way to the
corner (B), and in the corner (C). In these plots the normalized value of the objective function is shown at each iteration of gradient based optimization. In (D) the rank of
each method is shown under each of these conditions.
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The alternating minimization approach performs better in
the long term, while the automatic scales estimation
approach performs better in the short term. Relative to the
other methods our approach performs worse with a
coordinate origin in the center and slightly better for a
coordinate origin in the corner, though the effect is minor.

3.4 12 Parameter Affine Results With Mutual
Information
Mutual information is reported as a function of optimization step
in Figure 5 for the 12 parameter affine registrations. The median
for each method is shown as a solid line, the 25th and 75th
percentile are shown as a filled area, and all 100 curves are shown
in pale colors. Trends are very similar to that seen for sum of
square error, with the natural gradient descent method

converging to the best even more quickly than for sum of
square error.

3.5 6 Parameter Rigid Results With Sum of
Square Error
Normalized sum of square error is reported as a function of
optimization step in Figure 6 for the 6 parameter rigid
registrations. The median for each method is shown as a solid
line, the 25th and 75th percentile are shown as a filled area, and all
100 curves are shown in pale colors. One observes that the natural
gradient descent approach converges significantly faster than the
other methods for every origin placement except the center.
Again, considering different coordinate origins has a large
effect for the alternative methods and no effect for the natural
gradient method.

FIGURE 5 |Results of minimizing negativemutual information 12 parameter affine registrations are shownwith the coordinate origin in the center (A), half way to the
corner (B), and in the corner (C). In these plots the normalized value of the objective function is shown at each iteration of gradient based optimization. In (D) the rank of
each method is shown under each of these conditions.
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The bottom right plot shows that the natural gradient
method quickly achieves an average rank close to 4 (best)
for every case except a centered origin, where it tends to
perform roughly equivalent to the alternating minimization
scheme. The vanilla method quickly achieves a rank of 1
(worst). The alternating minimization approach performs
better in the long term, while the automatic scales
estimation approach performs better in the short term,
although the order changes much sooner than in the 12
parameter case. Relative to the other methods, our approach
performs worse with a coordinate origin in the center, and
slightly better for a coordinate origin in the corner.

Because of the similarity between the alternating and natural
gradient methods when the origin is centered, we consider
comparing these methods as a function of origin position. We
consider fraction between center and corner of 0, 0.1, 0.2, 0.3, 0.4,

0.5, and 1. For each iteration, and for each distance from the
center, we use a sign test statistic by averaging across patients.
Because this amounts to 350 statistical tests, we control
familywise error rate using permutation testing [27]. We
randomly flip the sign of each patient 100,000 times, and
calculate corrected p values using maximum statistics. These
results are shown in Figure 7. We see that the natural
gradient method performs statistically significantly better than
the alternating optimization method across all iterations when
the origin is shifted by 0.2 or more, and for the first few iterations
when the origin is shifted by 0.1 or less. This indicates that even
small uncertainties in positioning of the origin, 3.6 cm in this
case, can degrade the performance of traditional approaches.
Shifts of this size are reasonable considering that the location of
the brain’s center is typically unknown until after this type of
registration is performed.

FIGURE 6 | Results of minimizing sum of square error over 6 parameter rigid registrations are shown with the coordinate origin in the center (A), half way to the
corner (B), and in the corner (C). In these plots the normalized value of the objective function is shown at each iteration of gradient based optimization. In (D) the rank of
each method is shown under each of these conditions.
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4 DISCUSSION

Our results show that the natural gradient method proposed here
outperforms other gradient based minimization schemes in
almost every case examined, with virtually no computational
overhead. This result holds for both 12 parameter affine
transformations and 6 parameter rigid transformations, for
sum of square error and for mutual information objective
functions. The method does not depend on the placement of
the coordinate origin, and can be easily implemented within any
registration framework to improve convergence speed and reduce
the number of hyperparameters that need to be tuned or
estimated.

Another interesting finding is that the automatic scales
estimation approach, while sophisticated, tends to perform
worse than the simpler alternating minimization approach.
This is particularly true when the origin is centered, which is
the setting recommended by simple elastix [22].

There are few studies of natural gradient descent applied to
image registration in the literature. A search on google scholar for
“natural gradient” image registration returns only two relevant
results. The work [28] uses a Fisher information metric for
deformable registration and adopts various sampling strategies
to define a random process from which it can be computed. The
work [29] uses a similar strategy for deformable registration, but
considers pairwise registration in a population and therefore
computes a Fisher Information metric by taking an
expectation across the population. Both rely on some form of
stochasticity, and neither of these consider or exploit invariance
with respect to a transformation group. In [15], which considers
nonlinear registration (Large Deformation Diffeomorphic Image
Mapping, LDDMM), a distinction between covectors and vectors
in the space of smooth vector fields is made, and gradient descent
is performed in the latter by applying a smoothing operation
which is equivalent to the inverse of a metric. Other deformable

registration approaches with regularization may do this
implicitly. This right invariant metric used in LDDMM does
not depend on the images being registered, and is based on spatial
smoothness which is not relevant in the affine registration case. In
related work [30, 31] developed strategies to learn a metric for
deformable image registration, but considered these choices from
an accuracy point of view rather than an optimization point of
view. In this deformable registration setting, Gauss Newton
optimization was used in [32], which is similar to our
approach as described in Section 2.5.2.

The trend in computer vision and deep learning is to use stochastic
gradient descentmethods for optimization, and ITK and its derivatives
includes several of these approaches for image registration. For
example, the work of [33–35] is used for adaptive stepsize
estimation. Other adaptive step size approaches have been
developed and applied to deformable image registration as well
[36]. These approaches do not consider different scale factors for
different parameters. The well known ADAMoptimization procedure
[37] does update step sizes on a per parameter basis, but does not allow
for mixing of parameters. The importance of this mixing is evident
from the significant off diagonal elements seen in Figures 2, 3.

Amodern trend in image registration is to use deep learning based
approaches that replace optimization procedures considered here with
prediction using a single forward pass of a deep network. These tools
include Voxelmorph [38], Quicksilver [39], and others. While our
contribution here does not apply directly to these methods, it could
potentially be used to accelerate the training stage. An investigation
into this potential will be the subject of future work.

Finally, the simple registration tasks considered here are often
only one step in a long pipeline or joint optimization procedure.
For example, in our work studying serial section images, 3D affine
registration is performed jointly with nonlinear alignment and
2D rigid registration on each slice [40, 41]. The approach
developed here leads to a reduction by half in the number of
parameters that need to be selected manually, allowing our

FIGURE 7 | Comparison between the alternating minimization and natural gradient method are shown at each iteration of optimization for coordinate origin placed
at various fractions of the distance between the center and the corner. (A) shows the fraction of the time the natural gradient method performs the best, with statistically
significant (familywise error rate corrected p values less than 0.05) samples shown as solid lines. (B) shows the familywise error rate p values under the same conditions.
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pipeline to generalize to new datasets more effectively. This
work demonstrates that straightforward applications of
principles from differential geometry can accelerate research
in neuroimaging.
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