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Additive noise is known to tune the stability of nonlinear systems. Using a network of two
randomly connected interacting excitatory and inhibitory neural populations driven by
additive noise, we derive a closed mean-field representation that captures the global
network dynamics. Building on the spectral properties of Erdös-Rényi networks, mean-
field dynamics are obtained via a projection of the network dynamics onto the random
network’s principal eigenmode. We consider Gaussian zero-mean and Poisson-like noise
stimuli to excitatory neurons and show that these noise types induce coherence
resonance. Specifically, the stochastic stimulation induces coherent stochastic
oscillations in the γ-frequency range at intermediate noise intensity. We further show
that this is valid for both global stimulation and partial stimulation, i.e. whenever a subset of
excitatory neurons is stimulated only. The mean-field dynamics exposes the coherence
resonance dynamics in the γ-range by a transition from a stable non-oscillatory equilibrium
to an oscillatory equilibrium via a saddle-node bifurcation. We evaluate the transition
between non-coherent and coherent state by various power spectra, Spike Field
Coherence and information-theoretic measures.

Keywords: coherence resonance, phase transition, stochastic process, excitable system, mean-field, random
networks

1 INTRODUCTION

Synchronization is a well characterized phenomenon in natural systems [1]. A confluence of
experimental studies indicate that synchronization may be a hallmark pattern of self-
organization [2–4]. While various mechanisms are possible, synchronization may emerge
notably through an enhancement of internal interactions or via changes in external stimuli
statistics. A specific type of synchronization can occur due to random external perturbations,
leading to a noise-induced coherent activity. Such a phenomenon is called coherence resonance (CR)
and has been found experimentally in solid states [5], nanotubes [6] and in neural systems [7, 8].
Theoretical descriptions of CR have been developed for single excitable elements [9, 9, 10], for
excitable populations [11] and for clustered networks [12].

In general, stimulus-induced synchronization is well-known in neural systems [2].
Synchronization has been observed intracranially in the presence of noise between single
neurons in specific brain areas [13, 14] and between brain areas [15–17]. The source of these
random perturbations is still under debate. In this context, it is interesting to mention that [18] have
found that the ascending reticular arousal system (ARAS) affects synchronization in the visual
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cortex. The ARAS provides dynamic inputs to many brain areas
[19–21]. It has thus been hypothesized that synchronization in
the visual system represents a CR effect triggered by ARAS-
mediated drive. This hypothesis has been supported recently by
[22] showing in numerical simulations that an intermediate
intensity of noise maximizes the interaction in a neural
network of Hodgkin-Huxley neurons. Furthermore, recent
theoretical work [21] has provided key insights on how
human occipital electrocorticographic γ-activity (40–120 Hz)
commonly observed with open eyes [21] is closely linked to
CR. Coherence resonance has further been associated with states
of elevated information processing and transfer [22], which are
difficult to assess in the absence of mean-field descriptions. For
illustration, Figure 1 (upper panel) shows average network
activity for increasing noise intensities D1 and one observes a
jump from non-oscillatory to oscillatory activity. Moreover, the
figure presents very low coherence in the network under study for
weak and strong noise intensities D1, whereas high coherence
emerges for intermediate noise intensities (bottom panel). In the
present work, we will explain this noise-induced coherence by a
mean-field description.

To better understand the mechanisms underlying CR and its
impact on information processing, we consider a simple two-
population Erdös-Rényi network of interconnected McCullogh-
Pitts neurons. Our goal is to use this model to provide some
insight into the emergence of stimulus-induced synchronization
in neural systems and its influence on the neural network’s
information content. The neural network under study has
random connections, a simplification inspired from the lack

structure neural circuits possess at microscopic scales. Previous
studies [23] have shown that such systems are capable of noise-
induced CR. Building on these results, we here provide a rigorous
derivation of a mean-field equation based on an appropriate
eigenmode decomposition to highlight the role of the network’s
connectivity–Erdös-Rényi more specifically eigenspectrum in
supporting accurate mean-field representations. We extend
previous results by further considering both global (all
neurons are stimulated) and partial (some neurons are
stimulated) stochastic stimulation and its impact on CR
similar to some previous studies [24–26]. This partial
stimulation is both more general and realistic than global
stimulation as considered in most previous studies [11, 23,
27]. We apply our results to both zero-mean Gaussian and
Poisson-like stochastic stimuli, and derive the resulting mean-
field description. It is demonstrated rigorously that partial
stochastic stimulation shifts the system’s dynamic topology
and promotes CR, compared to global stimulation. We
confirm and explore the presence of CR using various
statistical measures.

2 MATERIALS AND METHODS

We first introduce the network model under study, motivate the
mean-field description, mentions the nonlinear analysis
employed and provides details on the statistical evaluation.

2.1 The Network Model
Generically, biological neuronal networks are composed of
randomly connected excitatory and inhibitory neurons, which
interact through synapses with opposite influence on post-
synaptic cells. We assume neural populations of excitatory E
and inhibitory I neurons with N neurons in each population.
Excitatory neurons in E excite each other through the connectivity
matrix F, and excite inhibitory neurons in I through the
connectivity matrix M. Similarly, neurons in I inhibit each
other by F and inhibit excitatory neurons through the
connectivity matrix M. Hence, F and M represent the intra-
population and inter-population synaptic connections,
respectively. Mathematically, such neural population interactions
are described by a 2N dimensional non-linear dynamical system
governing the evolution of the state variable vectors V,W ∈ RN ,

τe
dV
dt

� −V + FS1[V] −MS2[W] + eIe + ξe(t)

τi
dW
dt

� −W +MS1[V] − FS2[W] + eIi + ξi(t).
(1)

This formulation is reminiscent of many rate-based models
discussed previously [28], where it is assumed that neuronal
activity is asynchronous and synaptic response functions are of
first order. The state variables V and W represent excitatory and
inhibitory dendritic currents, respectively. The terms ξe,i

represent respective stochastic inputs from various sources,
such as ion channel fluctuations, stochastic input from other
brain areas or external stimuli not directly accounted for in the

FIGURE 1 | Synchronization dependent on noise intensity as a marker of
coherence resonance. The top panel shows the network average of V in Eq. 1
and the bottom panel provides the Spike Field Coherence (SFC) in the Θ−
(red), α− (green), β− (orange) and c− (blue) frequency range. For low
noise intensityD1/τe there is no SFC, intermediate noise intensity yields strong
SFC while large noise intensities diminish SFC again. To gain the SFC values,
we have integrated in time the model system with 104 time steps while
increasing the noise variance according to (Eq. 7). For illustration reasons, the
SFC-values have been averaged by a sliding window of length
Δ(D1/τe) � 0.004. Definitions are given in section 2 and parameters are the
same as in Figure 4 with q � 1.
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model [29]. More specifically, we assume noise ξe,i ∈ RN , constant
input Ie,i with e � (1, . . . , 1)t . The connectivity matrices are
defined by F,M ∈ RN×N while the nonlinear transfer function is
given by S1,2[u] ∈ RN with (S1[u])n � H0S(un),
(S2[u])n � S(un), H0 > 0 and the scalar transfer function
S(u)> 0 ∀u ∈ R. Specifically, we will consider the transfer
function S(u) � Θ(u) with the Heaviside function
Θ(u) � 0 ∀u< 0,Θ(u) � 1 ∀u≥ 0. In addition, the synaptic time
scales are τe,i.

The present work considers directed Erdös-Rényi networks
(ERN) with connection probability density c � 0.95, i.e. both
neuron populations exhibit intra-population and inter-
population non-sparse random connections. Let us assume
F � AF0, M � AM0 and A is the non-symmetric adjacency
matrix of the ERN for which (A)nm � 0 with probability 1 −
c and (A)nm � 1/cN with probability c. At first, let A � S + U

with the symmetric matrix S � (A + At)/2, the antisymmetric
matrix U � (A − At)/2 and the eigenvalues λA and λS of the
matrix A and S, respectively. Then Re(λA) � λS, i.e. the real
part of the eigenvalue spectrum in the directed (i.e. non-
symmetric) and non-directed (i.e. symmetric) random
matrix A and S is identical. Moreover, for non-directed
ERNs with symmetric adjacency matrix and N→∞ its edge
spectrum contains the maximum eigenvalue λ1 � 1 with
eigenvector v1 � (1, 1, . . . , 1)t [30–33] and the bulk spectrum
has the maximum eigenvalue

λ2 � 2σ
��
N

√
cN

� 2
����
1 − c

√���
cN

√ ,

(2)

FIGURE 2 | Eigenvalue spectrum of an Erdös-Rényi adjency matrix A under study and its eigenbasis. (A) The plot shows the eigenvalues in the complex plane
demonstrating a clear spectral gap between the first eigenvalue λ1 and the other eigenvalues λn>1. (B) The panels show the real (top) and imaginary (bottom) part of all
unit-normalized eigenvectors for illustration. They appear to be random reflecting the random network topology. (C) The normalized eigenvectorΦ1 ≈ (1, . . . , 1)/ ��

N
√

with
maximum eigenvalue λ1 ≈ 1 plotted in complex plane together with the eigenvector Φ2 of the second largest eigenvalue λ2 � 0.015 + i0.0006. Each dot
corresponds to a complex-numbered vector entry in the complex plane. This result confirms the choice Φ1 ≈ (1, . . . , 1) in Eq. 9.
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with the corresponding Bernoulli distribution variance
σ2 � c(1 − c). It is obvious that λ2 ≪ λ1 and λ2 ≈ 0 for large
mean degree cN . Since Re(λA) � λS, the finite-size non-
symmetric connectivity matrix F (M) has a maximum
eigenvalue λ1 ≈ F0 and λn>1 ≈ 0 (λ1 ≈ M0, λn>1 ≈ 0). If c
decreases, then λ2 increases, i.e. the spectral gap decreases, and
this approximation does not hold anymore. The Supplementary
Appendix illustrates the limits of this approximation in
numerical simulations. Figure 2A shows the single maximum
eigenvalue λ1 of A representing the edge spectrum and the other
very small eigenvalues of the bulk spectrum. Hence, the matrix F
has maximum eigenvalue F0 and the other eigenvalues vanish.
The same holds for matrixM � M0Awith a maximum eigenvalue
M0. Figure 2B shows the real and imaginary part of the
eigenvectors. The eigenvectors of the bulk spectrum (i> 1)
have uniformly distributed elements in good accordance with
theory of symmetric ER networks [34]. The eigenvector of the
edge spectrum is Φ1 � (1, . . . , 1)t , see Figure 2C.

Moreover, we assume that each noise process at
inhibitory neurons (ηi)n � ηin at network node n is Gaussian
distributed with zero mean, noise intensity D2 and uncorrelated
in time

〈ξin(t)ξim(τ)〉 � 2D2δnmδ(t − τ),
Conversely each noise process at excitatory neurons ξen belongs to
a certain class Gm,m � 1, . . . ,M of M classes [23]. Noise
processes in a specific class Gm, i.e. n ∈ Gm, share their mean
ξ
e
m and variances Dm

1 , i.e.

〈ξek(t)ξil(τ)〉 � 2Dm
1 δklδ(t − τ), k, l ∈ Gm,

In the following, we assume two classes M � 2 with ξ
e
1 ≠ 0,D

1
1 �

D1 and ξ
e
2 � 0,D2

1 � 0, i.e. only a subset of nodes n ∈ G1 are
stimulated. Hence we consider a partial stimulation at number of
nodes N1 � |G1|.

In biological neural systems, the input to a
neural population is well-described by incoming spike
trains that induce dendritic currents at synaptic receptors.
According to renewal theory, neurons emit spike trains whose
interspike interval obeys a Poisson distribution [35].
Then incoming spike trains at mean spike rate r induce
random responses at excitatory synapses with time constant
τin. This random process Iin(t) has the ensemble mean E[Iin] �
winrτin and ensemble variance Var[Iin] � w2

inrτin/2 [36]
assuming the synaptic coupling weight win. Since a Poisson
distribution converges to a Gaussian distribution for large
enough mean, we implement this input current as a
Gaussian random process with mean E[Iin] and variance
Var[Iin] while ensuring the validity of this approximation
by a large enough input firing rate λin. It is important to
point out that for Poisson noise, in contrast to the zero-mean
Gaussian noise, both mean and variance are proportional to
the input firing rate.

2.2 Conventional Mean-Field Analysis
To compare mesoscopic neural population dynamics to
macroscopic experimental findings, it is commonplace to

describe the network activity by the mean population
response, i.e. the mean-field dynamics [37–39]. A naive mean-
field approach was performed in early neuroscience studies
[40–42], in which one blindly computes the mean network
activity to obtain

τe
dE[V]
dt

� −E[V] + fS1[V] −mS2[W] + eIe

τi
dE[W]

dt
� −E[W] +mS1[V] − fS2[W] + eIi,

(3)

with the network average E[x] � ∑kxk/N and (f )k �∑lF lk/N , (m)k � ∑lMlk/N assuming zero-mean external noise

with ∑k(ξe,i)k � 0. In addition, one may assume identical
network interactions with (f )k � f 0/N � const, (m)k � m0/N �
const and the simplifying but questionable linear assumption.

E[S1,2(x)] � S1,2(E[x]). (4)

Combined, these assumptions lead to mean-field equations.

τe
dE[V]
dt

� −E[V] + f0S1[E[V]] −m0S2[E[W]]
+ eIe

τi
dE[W]

dt
� −E[W] +m0S1[E[V]] − f0S2[E[W]].
+ eIi (5)

In this approximate description, additive noise does not affect
the system dynamics. The assumption (Eq. 4) is very strong and
typically not valid. In a more reasonable ansatz.

E[S1,2(x)] � E⎡⎣S1,2(x0) +∑∞
n�1

1
n!
S(n)1,2 (x − x0)n⎤⎦

� S1,2(x0) +∑∞
n�1

1
n!
S(n)1,2 E[(x − x0)n]

� F(E[x], E[x2], E[x3], . . . ), (6)

with S(n)1,2 � zSn1,2(x)/zxn computed at an arbitrary point x � x0
and a function F 1,2 ∈ R. Hence the dynamics of the mean-field
E[V] depends on the higher-order statistical orders E[Vn] via the
nonlinear function E[S1,2(V)]. This is called the closure problem
that is solvable in specific cases only [43].

Motivated by previous studies on stochastic bifurcations
[44–53], in which additive noise may tune the stability close to
the bifurcation point, the present work shows how additive noise
strongly impacts the nonlinear dynamics of the system for arbitrary
noise intensity and away from the bifurcation. Previous ad-hoc
studies have already usedmean-field approaches [23, 54, 55] which
circumvents the closure problem (Eq. 6) through a different mean-
field ansatz. These motivational studies left open a more rigorous
derivation. This derivation will be given in the present work:
presenting in more detail its power and its limits of validity.

2.3 Equilibria, Stability and Quasi-Cycles
The dynamic topology of a model differential equation system
may be described partially by the number and characteristics of its
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equilibria. In general, for the non-autonomous differential
equation system

_z � Az + N(z) + I(t),
with state variable z ∈ RN , the driving force I ∈ RN , the nonlinear
vector N ∈ RN and the matrix A ∈ RN×N , it is insightful to
consider the equilibria of the corresponding autonomous
system z0 with _z � 0 yielding the implicit condition

Az0 � −N(z0),
The stability of an equilibrium z0 is given by the eigenvalue
spectrum of the corresponding Jacobian

J � A + ∇N0,

where (∇N0)ij � zNi(z)/zzj computed at z0. The eigenvalues {λk}
of J can be written as λk � ak + i2π]k with the damping ak and the
eigenfrequency ]k. Asymptotically stable equilibria have
R(λk)< 0, e.g. stable foci have ak < 0, ]k ∈ R. Linear response
theory tells that noise-driven linear systems, whose deterministic
dynamics exhibit a stable focus, exhibit quasi-cycles with a
spectral power peak close to the eigenfrequency, see e.g. [51,
56, 57]. The smaller the noise intensity, the closer is the spectral
peak frequency to the eigenfrequency. Hence, the eigenfrequency
]k provides a reasonable estimate of the quasi-cycle spectral peak.

2.4 Numerical Simulations
The Langevin Eq. 1 have been integrated over time utilizing the
Euler-Maruyama scheme [58]. Table 1 presents the parameters
used. In certain cases, the noise variance has been changed over
time t according to

D1(t) � Dmin + Dmax − Dmin

T
t, (7)

with the maximum integration time T and the maximum and
minimum noise variance values Dmax and Dmin, respectively.

2.5 Numerical Spectral Data Analysis
Since prominent oscillations of the networkmean activity indicates
synchronized activity in the population, we have computed the
power spectrum of the network mean activity
V(t) � ΣN

n�1(Vn(t)/N) employing the Bartlett-Welch method

with overlap rate 0.8. To gain a power spectrum with frequency
resolution Δf , the Bartlett-Welch segments were chosen to the
length 1/Δf and the time series had a duration of 5 s for the
zero-mean Gaussian noise and 8 s for the Poisson noise stimulation.

In addition to the power spectrum, the synchronization
between single neuron spike activity and the dendritic current
reflects the degree of coherence in the system. To this end, we
have computed the Spike Field Coherence (SFC) [59]. To estimate
the SFC, we have chosen a time window of 5s for zero-mean
Gaussian stimulation and 8s for Poisson stimulation and
computed the spike-triggered average and power spectra in
these time windows to compute the SFC for each frequency.
Then we have averaged the SFC in the Θ− (4–8 Hz), α−
(8–12 Hz), β− (12–20 Hz) and c− (25–60 Hz) frequency band
to gain an average SFC in the corresponding band. This standard
measure estimates the coherence between spikes, that occur if
H[Vn](t) � 1, and their corresponding dendritic currents Vn(t)
at the same cell averaged over all cells in the excitatory population.
Significant differences of SFC at different noise intensities are
evaluated by an unpaired Welch t-test with α � 0.05.

2.6 Information Measures
Coherence quantifies the degree of mutual behavior of different
elements. Interestingly, recent studies of biological neural systems
have shown that synchronization and information content are
related [60, 61]. For instance, under general anesthesia
asynchronous cortical activity in conscious patients is
accompanied by less stored information and much available
information whereas synchronous cortical activity in
unconscious patients exhibits more stored information and
less available information [19, 20, 62–64]. We are curious how
much information is stored and available in coherence resonance
described in the present work. The result may indicate a strong
link between coherence and information content. To this end, we
compute the amount of stored information in the excitatory
population as the predictable information and the amount of
available information as the population’s entropy, cf [64].

The predictable information in the excitatory population is
computed as the Active Information Storage AIS [65, 66] utilizing
the Gaussian Copula Mutual Information (GCMI) estimation
[67]. Assuming a single time series Vi(t)

AISi � MI(Vi(t);V(k)
iΔ ),

V(k)
iΔ � (Vi(t − Δ),Vi(t − 2Δ), . . .Vi(t − kΔ)),

(8)

where MI is the mutual information [64, 68], k is the embedding
dimension and Δ is the embedding delay. The value AISi
describes how much the dendritic current Vi(t) in excitatory
neuron i is influenced by its past. To gain an estimate of stored
information in the excitatory population, we evaluate the average
stored information in the population and its variance

AIS � 1
N

∑N
i�1

AISi

σ2
AIS �

1
N − 1

∑N
i�1

(AISi − AIS)2,

TABLE 1 | Parameter set of model (1).

Parameter Description Value

τe Exc. synaptic time constant 5 ms
τ i Inhib. synaptic time constant 20 ms
F0 Intra-population conn. weight 2.17
M0 Inter-population conn. weight 3.87
c Connection probability 0.95
N Number of network nodes 200
Ie Constant exc. Input 1.1
Ii Constant inhib. Input 0.4
D2 Inhib. noise variance 0.2
win Poisson input weight 2.1
τ in synaptic time scale of input 5 ms
Δt Numerical integration step 0.5 ms
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withN � 200. Significant AIS differences at different noise intensities
are evaluated by an unpaired Welch t-test with α � 0.05.

Moreover, we compute the available information in
the excitatory cortex of the dendritic current Vi(t)
at excitatory neuron i as its entropy Hi utilizing
the GCMI estimation. Its population average and variance
reads

H � 1
N

∑N
i�1

Hi

σ2H � 1
N
∑
i�1

N

(Hi −H)2,

and entropy differences at different noise intensities are
evaluated statistically by an unpaired Welch t-test with α �
0.05.

In subsequent sections, we have computed AIS and H for
embedding dimension k ∈ [1; 60] and Δ ∈ {Δt, 2Δt, 5Δt} with
kΔ � 60 and find consistent significance test results.
Specifically, we have chosen Δ � Δt and k � 1 in the shown
results.

3 RESULTS

The subsequent section shows the derivation of the mean-field
equations, before they are applied to describe network dynamics
for two types of partial stimulation.

3.1 Mean-Field Description
To derive the final equations, we first introduce the idea of a mode
projection before deriving the mean-field equations as a
projection on the principal mode. The extension to partial
stimuli extends the description.

Mode Decomposition
In the model (1), the system activity V ∈ U in space U
may be expanded into a
mode basis {Φe

n}, n � 1, . . . ,N ,Φe
n ∈ CN ,

V � ∑N
n�1

anΦ
e
n,

with complex mode amplitude an ∈ C and a biorthogonal basis
{Ψe

n},Ψe
n ∈ CN and

Ψe†
k Φ

e
n � δkn , k, n � 1, . . . ,N ,

Here, † denotes the transpose complex conjugate. The same holds
for W with the basis {Φi

n}, n � 1, . . . ,N ,Φi
n ∈ CN ,

W � ∑N
n�1

bnΦ
i
n,

with the complex mode amplitude bn ∈ C and the biorthogonal
basis {Ψi

n},Ψi
n ∈ CN and

Ψi†
k Φ

i
n � δkn , k, n � 1, . . . ,N ,

Projecting V,W onto the respective basis {Ψe
k} and {Ψi

k}, we
obtain amplitude equations

τe
dak
dt

� −ak +Ψe†
k FS1[V] −Ψe†

k MS2[W]
+ Ie +Ψe†

k ξ
e(t)

τi
dbk
dt

� −bk +Ψi†
k MS1[V] −Ψi†

k FS2[W]
+ Ii +Ψi†

k ξ
i(t),

Now let us assume that Ψe
k,Φ

e
k are eigenvectors of F with

eigenvalue λek ∈ C

FΦe
k � λekΦ

e
k

Ψe†
k F � λekΨ

e†
k ,

and Ψi
k,Φ

i
k are eigenvectors of M with eigenvalue λikC

MΦi
k � λikΦ

i
k

Ψi†
k M � λikΨ

i†
k ,

Then

λe1 � F0 ,Φe
1 � e,Ψe

1 �
e
N

λen ≈ 0, n � 2, . . . ,N ,
(9)

cf. section 2.1, where we have utilized the bi-orthogonality of the
basis. Equivalently,

λi1 � M0 ,Φ
i
1 � e,Ψi

1 �
e
N

λin ≈ 0, n � 2, . . . ,N ,

We observe that Ψi†
1 � Ψe†

1 and Φe
1 � Φi

1. The vector space U
can be decomposed into complement subspaces Z,Z⊥ with
U � Z ⊕Z⊥ and Ψe

1,Ψ
i
1 ∈ Z. Then Ψe

k>1,Ψ
i
k>1 ∈ Z⊥. Each

vector Ψi
k>1 can be described in the basis Ψe

k>1 in Z⊥ and
one gains

Ψi†
k>1F � ∑N

n�2
cnΨ

e†
n F

� ∑N
n�2

cnλ
e
nΨ

e†
n

� 0,

due to (Eq. 9) and equivalently

Ψe†
k>1M � ∑N

n�2
cnΨ

i†
nM

� ∑N
n�2

cnλ
i
nΨ

i†
n

� 0,

with some coefficients cn ∈ C. This yields

τe
da1
dt

� −a1 + λe1
N
etS1[V] − λi1

N
etS2[W]

+ Ie +me(t) (10)
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τi
db1
dt

� −b1 + λi1
N
etS1[V] − λe1

N
etS2[W]

+ Ii +mi(t) (11)

τe
dak
dt

� −ak +Ψe†
k ξ

e(t) , k � 2, . . . ,N (12)

τi
dbk
dt

� −bk +Ψi†
k ξ

i(t) , k � 2, . . . ,N , (13)

with me,i(t) � etξe,i(t)/N .

The Mean-Field Equations
Equations 12, 13 describe an Ornstein-Uhlenbeck process with
solution

ak(t) � ∫t
−∞

e−(t−τ)/τeΨe†
k ξ

e(τ)dτ

bk(t) � ∫t
−∞

e−(t−τ)/τiΨi†
k ξ

i(τ)dτ,
(14)

for t→∞. In Eqs 10, 11 the terms V ,W can be written as

V � ∑N
n�1

an(t)Φe
n � a1Φ

e
1 + ∑N

n�2
an(t)Φe

n

W � ∑N
n�1

bn(t)Φi
n � b1Φ

i
1 + ∑N

n�2
bn(t)Φi

n .
(15)

Inserting expressions in Eq. 14 into these expressions
leads to

∑N
n�2

an(t)Φe
n� ∫t

−∞
e−(t−τ)/τe ∑N

n�2
Φe

nΨ
e†
n ξ(τ)dτ.

∑N
n�2

bn(t)Φi
n� ∫t

−∞
e−(t−τ)/τi ∑N

n�2
Φi

nΨ
i†
n ξ(τ)dτ.

(16)

By virtue of the completeness of the basis, it is

∑N
n�2

Φe
nΨ

e†
n � I −Φe

1Ψ
e†
1

∑N
n�2

Φi
nΨ

i†
n � I −Φi

1Ψ
i†
1 ,

with the unity matrix I ∈ RN×N . Then inserting these identities
into (Eq. 16)

∑N
n�2

an(t)Φe
n � ∫t

−∞
e−(t−τ)/τeξe(τ)dτ − ∫t

−∞
e−(t−τ)/τeΦe

1me(τ)dτ

∑N
n�2

bn(t)Φi
n � ∫t

−∞
e−(t−τ)/τiξi(τ)dτ − ∫t

−∞
e−(t−τ)/τiΦi

1mi(τ)dτ,

(17)

We define ηe,i(t) � ξe,i(t) − ξe,i0 , etηe,i(t) � Nρe,i(t) with
ρe,i ∼ N (0,D1,2/N) and temporally constants ξe,i0 , i.e. ρ

e,i are
finite size fluctuations with variance D1,2/N and ρe,i → 0 for
N→∞. With the definitions

we,i(t) � ∫
−∞

t

e−(t−τ)/τe,iηe,i(τ)dτ (18)

se,i(t) � τe(ξe,i0 − eξ0
e,i) − e ∫t

−∞
e−(t−τ)/τe,iρe,i(τ)dτ, (19)

with ξ
e,i
0 � ∑N

n�1
(ξe,i0,n/N) and inserting Eq. 17 into Eq. 15

V(t)� a1(t)e + se(t) + we(t)
W(t)� b1(t)e + si(t) + wi(t) . (20)

and the mean-field equations can the be written as

τe
da1
dt

� −a1 + F0
N
etS1[a1(t)e + se(t) + we(t)]

−M0

N
etS2[b1(t)e + si(t) + wi(t)]

+ Ie + ξ
e

0 + ρe(t)

τi
db1
dt

� −b1 +M0

N
etS1[a1(t)e + se(t) + we(t)]

−F0
N
etS2[b1(t)e + si(t) + wi(t)]

+ Ii + ξ
i

0 + ρi(t),

(21)

By virtue of the finite-size fluctuations over time ρe,i(t) the
system’s mean-field obeys stochastic dynamics.

Equation 14 describe an Ornstein-Uhlenbeck process of mode
k and thus we,i(t) describes a multivariate Ornstein-Uhlenbeck
process over time. In addition, we,i(t) is stationary over time and,
since all modes k share identical properties, it is stationary over the
network. Consequently, the process is ergodic and the stationary
probability density function p(we,i) of ωe,i can be computed over
the network yielding

1
N
etS1[xe + w] � 1

N
∑N
n�1

S[x + wn]

≈ ∫∞
−∞

S(x + w)pe(w)dw

� G1(x),

(22)

where the approximation is good for large N. Specifically, for
Gaussian zero-mean uncorrelated noise ξe with variance D [69]

pe(w) � 1���
2π

√
σ
e−ω

2/2σ2 , σ2 � D
τe
.

Similarly,

1
N
etS2[xe + w] ≈ ∫∞

−∞
S(x + w)pi(ω)dw

� G2(x),
(23)

Moreover, if the mean input is ξe,i0 � αe,ie and N→∞, then se,i �
0 and ρe,i � 0 and consequently the mean-field equation
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τe
da1
dt

� −a1 + F0G1(a1) −M0G2(b1) + Ie + αe

τi
db1
dt

� −b1 +M0G1(a1) − F0G2(b1) + Ii + αi

, (24)

obeys deterministic dynamics. However, the above formulation
depends implicitly on the additive noise through the convolution
of the transfer function.

Partial Stimuli
Each noise baseline stimulus at inhibitory neurons (ξi)n � ξin
at network node n is Gaussian distributed with zero mean and
variance D2 (cf. section 2.1). Then ξ

i
0 � 0, si(t) �

ρi(t) ∼ N (0,D2/τiN) and, considering Eq. 18, the
corresponding probability density function in Eq. 23 is
pi(w) � N (0,D2/τi). Here N (0, σ2) denotes a normal
distribution with zero mean and variance σ2 .Additionally,
stochastic stimuli driving excitatory neurons in class G1 are
ergodic (cf. section 2.1). Then the mean and variance of class
G1 is

ξ
e

1 �
1
N1

∑
n∈G1

ξen

D1� 1
N1

∑
n∈G1

(ξen)2,
(25)

Using Eq. 18 and Eq. 19 and assuming N→∞, then

we(t) + se(t) � ∫
−∞

t

e−(t−τ)/τe(ηe(τ) + Δξ)dτ,
whose probability density function pe(w) is [23].

pe(w) � ∑2
m�1

qmN (ξem,Dm
1 /τe)

� qN (ξe1,D1/τe)[w] + (1 − q)δ(w), (26)

with q � N1/N , q1 � q, q2 � 1 − q. Here, Δξ � (1 − q, 1 −
q, . . . ,−q,−q)ξe1 with terms 1 − q of number N1 and
assuming that the nodes n � 1, . . . ,N1 receive stochastic
input. In addition the constant input in the mean-field
equation is ξ

e
0 � qξe1.

Then, utilizing Eqs 22, 23 and specifying S to a step function
(cf. section 2.1), the mean-field transfer functions in Eq. 24
read

G1(a1) � H0q
2

[1 − erf( − a1������
2D1/τe√ )] + (1 − q)Θ(a1)

G2(b1) � 1
2
[1 − erf( − b1������

2D2/τi√ )],
(27)

Here, Θ(·) denotes the Heaviside step function. Figure 3 shows
examples for pe and G1.

Essentially, the mean-field obeys

τe
da1
dt

� −a1 + F0G1(a1) −M0G2(b1) + Ie + ρe(t)

τi
db1
dt

� −b1 +M0G1(a1) − F0G2(b1) + Ii + ρi(t)
(28)

utilizing (Eq. 27).

3.2 Zero-Mean Gaussian Partial Stimulation
At first, we consider the case of a partial noise stimulation with
zero network mean, i.e. etξ

e � 0 and se(t) ∼ N (0,D1/τeN1) and
ξe1 � ξ

e
0 � 0. Then D1 parametrizes the noise intensity only.

Figure 4 shows the network evolution of V(t) for increasing
noise intensities, cf. Equation 7. Starting from a high activity
state, increasing the noise intensity yields a phase transition of the
system to a network state at lower activity. This occurs for global
(q � 1.0) and partial stimulation (q � 0.8, q � 0.6 and q � 0.5).
Please re-call that, for instance, q � 0.5 reflects a stimulation
where 50% of the network nodes are stimulated. These stimulated
network nodes have been randomly chosen from a uniform
distribution.

Figure 5 shows the respective power spectra of the network
mean V(t), which provides insights about the system’s
synchronization at low and high noise intensity. High noise
intensity induces strong oscillations in the γ-frequency band,
whereas the low noise intensity states does not - in contrast, this
state shows a decaying low-pass power spectral density that is
expected from a non-oscillatory stochastic process.

Stronger power spectral density at a given frequency is the
signature of a coherent network, as seen in Figure 5. Since the
neurons in our network model emit spikes and exhibit synaptic
input currents, noise-induced coherence may be visible in the
coherence between spiking and synaptic activity as well. In
fact, in Figure 6A one observes a significant strongly enhanced
Spike Field Coherence at high noise intensities for both global
and partial stimulation. Hence, in sum the system exhibits
coherence resonance in the sense that strong noise induces
coherent oscillations that are not present at low noise
intensities.

Coherence resonance is supposed to be linked to information
processing in neural systems. Thus we investigate the relationship
between stimulus noise intensity and information in the system
across frequency bands. Figure 6B shows how much information
is stored in the networks (AIS) and how much information is
available (H). We observe that significantly more information is
stored (AIS) and available (H) at high noise intensities for global
stimulation q � 1.0, whereas high noise partial stimulation with
q � 0.8 diminishes the stored active information and available
information significantly. For more sparse stimulation with q �
0.6 the finding in information measures is heterogeneous and no
interpretation consistent with the results for larger q is possible.

To understand this noise-induced coherence, we take a closer
look at the dynamic topology of the mean-field Eq. 28. Their
equilibria (cf. section 2.3) for negligible finite-size fluctuations
ρe,i(t)≪ 1 are shown in Figure 7 together with simulated mean-
field activity V(t) for illustrative purposes. Low noise intensity
induces a bistable regime with a stable node as upper equilibrium
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and a focus as lower equilibrium. For global stimulation (q � 1.0),
this lower focus is unstable at very low noise intensity and stable
at larger noise intensities. Moreover, the lower equilibrium is a
stable focus at all noise intensities for partial (q< 1.0) stimulation.
The center branch is always a saddle node. For larger noise
intensity, the upper equilibrium branch merges with the center
branch via a saddle-node bifurcation and the lower stable focus is
preserved as noise is further increased. This finding remains valid
for both global (q � 1.0) and partial (q< 1.0) stimulation as
shown in Figure 7 for q ranging within the interval
0.5≤ q≤ 1.0. One can see that for smaller q (i.e. less excitatory
neurons are stimulated) the bifurcation point moves to larger
noise intensities. Hence thinning out the stimulation of excitatory
neurons increases the noise intensity interval at which bistability
occurs. Moreover, we point out that the bifurcation points

predicted by the mean-field description and shown in
Figure 7 show very good accordance to the values of D1/τe in
Figure 4, where the system transitions from the upper to the
lower state.

The mean-field solution involves finite-size fluctuations that
affect the solutions principal oscillation frequency and
magnitude. By construction, these mean-field solutions
converge to the network average for increasing network size
N. Figure 8 compares the time series of mean-field solutions
and network averages for increasing network sizes and affirms the
convergence and thus the validity of the mean-field description. It
is interesting to note that, besides the mean-field dynamics, the
network’s dynamical properties change with increasing N as well.
Figure 8 provides the principal oscillation frequencies for both
solutions for the given network size: the network speeds up with

FIGURE 3 | The probability density function p (Eq. 26) and the resulting transfer function G (Eq. 27). For q � 1.0 D1/τe � 0.15 and for q � 0.5 D1/τe � 0.5.

FIGURE 4 | Enhanced zero-mean Gaussian noise induces phase transitions in spatiotemporal dynamics. The panels show the network activity V(t) according to
Eq. 1 with temporally increasing noise variances D1/τe for different stimulus ratios q.
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increasing size and its frequency converges to the mean-field
principal frequency that remains about the same value. However,
we point out that the mean-field solution remains still slightly
different even for very large N since it implies the approximation
of negligible connectivity matrix bulk spectra. Figure 9 affirms
this finding by comparing simulation trials of the transitions from
the non-oscillatory to the oscillatory coherent state. We observe
that the transition values of D1/τe of the network mean and the

mean-field are closer to each other for larger network size. The
mean-field description (Eq. 28) with (Eq. 27) assumes vanishing
finite-size fluctuations and these are reduced for larger network
size N, i.e. the effective noise level (the finite-size fluctuations) is
reduced and thus deterministic mean-field and stochastic
network activity transition are closer to each other.

The frequency range of oscillations observed for steady
states located within the lower branch (see Figure 7) is a

FIGURE 5 | Enhanced noise yields strong power of the global mode V(t) in the γ-frequency range. The panels show the power spectra of V for the stimulus ratios
q � 0.5 (D1/τe � 0.35 (black) and D1/τe � 0.55 (red)), q � 0.6 (D1/τe � 0.25 (black) and D1/τe � 0.33 (red)), q � 0.8 (D1/τe � 0.20 (black) and D1/τe � 0.25 (red)) and
q � 1.0 (D1/τe � 0.15 (black) and D1/τe � 0.20 (red)). Power spectra at lower noise intensities are computed on the respective upper branch of the bistable system.

FIGURE 6 | High zero-mean Gaussian noise enhances the Spike Field Coherence in all frequency bands and affects heterogeneously Active Information Storage
(AIS) and differential entropy (H). (A) The differences between high noise intensity (grey-colored) and low noise intensity (black-colored) is significant (p<0.001) for both
global and partial stimulation. (B) For global stimulation (q � 1.0), high noise intensity induces states of significantly enhanced stored active information (AIS) and
available information (H), whereas partial stimulation with q � 0.8 diminishes both AIS and H significantly. Results for q � 0.6 are not consistent and difficult to
interpret. In all panels, vertical bars denote the standard deviation, p <0.001 and parameters are identical to the parameters used in Figure 5.
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consequence of both network connectivity and neuronal
properties and is further tuned by additive noise. Figure 10
shows the maximum eigenvalue real part for the upper (A) and
the lower branch (B, top opanel) and the eigenfrequency (cf.
section 2.3) of the equilibrium at the lower branch (B, lowel
panel). We observe that increasing noise intensity decreases
slightly the eigenfrequency in the c− frequency range and
decreases the negative maximum eigenvalue real part. This
means that additive noise increases the damping of the
response of the system to perturbations - including noise.
This increased noise-induced damping leads to magnitude
changes in quasi-cycle solutions - which is manifested in the
power spectral density distribution. Indeed, the power spectral
density distribution widens as noise intensity increases, leading
to the spectra as seen in Figure 10C. This broad spectral power
distribution is the signature of suppressed coherence. As a

corollary, our analysis demonstrates that coherent band-
limited oscillations emerge for intermediate noise intensities
only. This is a known feature of coherence resonance. For
additional illustration, Figure 1 shows the typical bell-shape of
coherence (here Spike Field Coherence) in different frequency
bands. We observe that the coherence effect is strongest in the
c− frequency range.

3.3 Poisson Partial Stimulation
Synaptic receptors respond to afferent Poisson-distributed input
spike trains, whose properties differ substantially from the
Gaussian noise processes we considered so far. To generalize
our results to more physiological stimuli statistics, we considered
a partial Poisson noise stimulation with dependent mean and
variance. Specifically, afferent spike trains at spike rate rin induce
random responses at excitatory synapses with time constant τin
and synaptic weight win. Then

se(t) � τeΔξ + ρe(t)
ξe1 � winrinτ in
D1 � winξ0/2
ξ
e

0 � qξe1,

and finite-size fluctuations ρe(t) ∼ N (0,D1/N1). Figure 11A
illustrates the temporal network activity for a low and high
stimuli firing rates rin. Increasing rin induces a transition from
a high-activity to a low activity state for both global and
partial stimulation - similarly as in the Gaussian noise case.
The high-activity state is non-oscillatory while the low-
activity state is oscillatory, with frequency found in the c−
frequency range (Figure 11B). In addition, the low-activity
state induced by high Poisson input rate exhibits a strong
Spike Field Coherence in contrast to the high-activity state
(Figure 11C). Moreover, high stimulation noise increases the
stored information and the available information for global
stimulation with q � 1.0, cf. Figure 11D. Information
measures for partial stimulation (q � 0.6) are
heterogeneous and an interpretation of results for AIS and
H is difficult.

FIGURE 7 | Equilibria and representative time series of the global mode
V(t) for the zero-mean partial stimulation. There is a bistability and saddle-
node bifurcation from a stable node to an stable focus at enhanced noise
intensity. The numbers denote the values of the stimulus ratio q. Solid
(dashed) lines mark stable (unstable) states. The time series V results from the
time-varying noise intensity according to Eq. 7.

FIGURE 8 | Comparison of network average and mean-field solution for different network sizes. The network average (black) and mean-field solutions (red)
resemblesmore andmore the larger the network of sizeN. This holds for themagnitude and frequency (provided in panels) of both solutions. The initial value of the mean-
field activity has been chosen to the initial value of the network average. Simulations consider zero-mean Gaussian simulations with q � 1 and D1/τe � 0.2.
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These results can be understood by taking a closer look at the
dynamic topology of the system. Figure 12 reveals that, for global
stimulation (q � 1.0), the system has two unstable equilibria and
one stable equilibrium at lower noise intensities. The top branch
is a stable node, the center branch a saddle node and the lower
branch an unstable focus. There is a very small noise intensity
interval at which the top and bottom branch are both stable.
Increasing the Poisson stimuli firing rate leads to a sudden
suppression of high-activity equilibria through a saddle-node
bifurcation. Consequently, the transition observed in
Figure 11A is a jump from the stable node on the top
bifurcation branch to the stable focus on the bottom branch
similar to the effect shown in Figure 4. For partial stimulation
(q � 0.6), the lower branch exhibits a stable focus for much lower
input firing rates. The saddle-node bifurcation is delayed, leading
to an increased noise intensity interval of bistability. Hence, the
system exhibits coherence resonance for Poisson noise as well.

4 DISCUSSION

This study presents a rigorous derivation of mean-field equations
for two nonlinearly coupled non-sparse Erdös-Rényi networks
(ERN) that are stimulated by additive noise. This mean field
representation is made possible through spectral separation: the
eigenspectrum of ERN networks exhibits a large spectral gap
between the eigenvalue with largest real part and the rest of the
spectrum. We show that the projection of the network dynamics
onto the leading eigenmode represents the mean-field. Its
dynamics are shaped by eigenmodes located in the
complement subspace spanned by non-leading eigenmodes. In
our model, the subspace dynamics are governed and influenced

by additive noise statistics and they obey an Ornstein-Uhlenbeck
process.

We extended the mean-field derivation to various types of
additive noise, such as global and partial noise stimuli (i.e.
when only a fraction of the excitatory neurons are
stimulated) and for both zero-mean Gaussian and
Poisson-like noise. Collectively, our analysis shows that
additive noise induces a phase transition from a non-
oscillatory state to an oscillatory coherent state. Such
noise-induced coherence is known as coherence resonance
(CR). This phase transition has been shown to occur not only
for Gaussian zero-mean noise but also for Poisson-like noise.

FIGURE 9 | Comparison of transitions in network and mean-field for
different network sizes. The network average (dashed line) and mean-field
solutions (solid line) resemble more for larger network size N. This is explained
by reduced finite-size fluctuations for larger networks. The initial value of
the mean-field activity has been chosen to the initial value of the network
average. Simulations consider zero-mean Gaussian simulations with q � 1.

FIGURE 10 | Eigenvalues at the top and bottom branch in Figure 7 and
corresponding power spectra. (A) maximum eigenvalue of equilibria on the
top branch in Figure 7. (B)maximum real part r of the eigenvalue r + i2π] (top
panel) and the corresponding eigenfrequency frequency ]. The numbers
denote the values of the stimulus ratio q in all panels. (C) Power spectra of V(t)
about the lower branch for q � 0.6 for different noise intensities D1/τe.
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To the best of our knowledge, CR has not been found yet for
such Poisson-like noise. The general underlying mechanism
is a noise-induced multiplicative impact of additive
stimulation via the nonlinear coupling of different modes.

This multiplicative effect modifies the net transfer function
of the network and thus enlarges its dynamical repertoire.
This resembles the impact of additive noise in stochastic
bifurcations [51, 52, 70, 71].

FIGURE 11 | Poisson noise induces transitions from a non-oscillatory to an oscillatory state for both global and partial stimulation. (A) Network activity Vn(t) for low
input firing rate (r � 0.04 for q � 1.0 and r � 0.09 for q � 0.6) and high input firing rate (r � 0.14 for q � 1.0 and r � 0.19 for q � 0.6). For the low (high) input rate the system
evolves about an upper (lower) state. (B) Power spectra of the network mean V(t) showing c− activity for the large input rate. (C) The high input firing rate (grey-colored)
induces a state of large Spike Field Coherence compared to the state for low input firing rate (black-colored) for both global and partial stimulation (p< 0.01). (D) For
global stimulation (q � 1.0), high input firing induces a state of significantly enhanced stored active information (AIS) and available information (H). This is not consistent to
results for partial stimulation (q � 0.6). Here is p< 0.01.
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Embedding into Literature
Our results build on previous studies from the authors [23, 54, 55]
to provide a rigorous derivation of the mean-field description,
whereas previous work have motivated heuristically the mean-
field reduction and, e.g., failed to show in detail whether the
mean-field equation is the only solution for any given additive
stimuli. Several other previous studies have presented mean-field
descriptions in stochastically driven systems. For instance,
Bressloff et al. [28] have derived rigorously mean-field
equations for stochastic neural fields considering, inter alia,
finite-element fluctuations by utilizing a Master equation and
van Kampen’s volume expansion approach. We note here that we
also took into account finite-size fluctuations resulting from a
non-negligible variance of statistical mean values. Moreover [28],
do not specify the network type and results in a rather opaque
description, whereas we assume an ERN and thus exploit its
unique eigenspectrum structure. This yields directly to a mean-
field description, whose dependence of stochastic forces is
obvious and avoids its implicit closure problem known from
mean-field theories [43]. This is possible since the ERN
considered share many properties with Izing models, that are
known to permit an analytically treatable solution of the closure
problem, see e.g. [72].

Moreover, several technical analysis steps in the present work
have been applied in previous studies in a similar context. In a
work on stochastic neural mean-field theory, Faugeras and others

[27] have assumed that the system activity fluctuations obey a
normal probability distribution and have derived an effective
nonlinear interaction in their Proposition 2.1 similar to our Eq.
22. Further, the authors have shown how the fluctuation
correlation function, i.e. the system activity’s second moment,
determine the mean-field dynamics. This is in line with our result
(Eq. 22) showing how themean and variance of the additive noise
tunes the system’s stability. However, the authors have not
considered in detail the random nature of the system
connectivity, whereas we have worked out the interaction of
external stimulation and the ERN. This interaction yields directly
the mean-field and its dependence of the external stimulus that is
not present in [27]. Moreover, the present work also shows how
the mean-field fluctuations affect the mean-field dynamics by
deriving the fluctuation’s probability density function that
describes all higher moments.

Noise-induced synchronization has been found recently in a
system of stochastically driven linearly coupled FitzHugh-Nagumo
neurons by Touboul and others [73]. The authors have found a
minimum ratio of activated neurons that are necessary to induce
global oscillatory synchronization, i.e. CR in the sense presented in
our work. This question has been considered in the present work
as well by asking how the mean-field dynamics, and thus how
noise-induced synchronization, changes when modifying the ratio
of stimulated excitatory neurons q while retaining the stimulation
of inhibitory neurons. We find that global stimulation, i.e.
stimulation of all excitatory neurons, yields a finite critical
noise intensity below which the system is bistable and exhibits
CR. Partial stimulation shifts this critical noise intensity to larger
values and enlarges the bistability parameter space and thus
promotes CR.

Several previous studies of mean-field dynamics in neural
systems have applied the master equation formalism [74–76].
This works nicely in completely irregular networks and the
asynchronous activity regime and has been applied
successfully to neural populations considering biological
neuron models [77–80]. However, the analysis of more regular
networks will be very difficult to develop with the Master
equation since the implicit integration over system states
would be more complex. Conversely, our presented approach
may consider regular structures by a corresponding matrix
eigenvalue decomposition.

At last, wemention the relation to theMaster stability function
[81, 82]. This function describes the stability of identical
synchronization of complex networks in a synchronization
manifold and this manifold corresponds to the mean-field in
our study. Although theMaster stability function has been proven
to be powerful, to the best of our knowledge it does not allow to
reveal coherence resonance as the current work.

Limits and Outlook
The present work proposes to describe mean-field dynamics in a
topological network by projection onto the networks eigenmodes.
This works well for non-sparse random ERN with large
connectivity probability. This network does not exhibit a
spatial structure. However, less connected ERN networks show
different dynamics, cf. the Supplementary Appendix. Moreover,

FIGURE 12 | Equilibria of the mean-field V(t) for the Poisson partial
stimulation. For global stimulation q � 1.0, the system is always monostable
with three equilibria at low input firing rates and a single equilibrium at large
input firing rates. Increasing the input firing rate from low to large firing
rates, the system jumps from the upper stationary state (stable node) to a
stable focus on the lower stationary state via a saddle-node bifurcation. For
partial stimulation q � 0.6, the system is monostable with three equilibria at
low input firing rates. For larger input rates, the system is bistable and passes a
saddle-node bifurcation inducing a transition from a stable node to an stable
focus at enhanced input firing rate r. Solid (dashed) linesmark stable (unstable)
states, black- and blue-colored lines denote equilibria for global and partial
stimulation, respectively. The bifurcation diagram of the mean-field W(t) is
equivalent.
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biological networks are not purely random but may exhibit
distance-dependent synaptic weights [83] or spatial clusters
[84]. Our specific analysis applies for networks with a large
spectral gap in their eigenspectra and it might fail for
biological networks with smaller spectral gaps (as shown in
the Supplementary Appendix). Future work will attempt to
utilize the presented approach to derive mean-field dynamics
for heterogeneous networks that exhibit a smaller spectral gap,
such as scale-free networks [84].

Moreover, the single neuron model in the present work
assumes a simple static threshold firing dynamics
(McCullough-Pitts neuron) while neglecting somatic dynamics
as described by Hodgkin-Huxley type models or the widely used
FitzHugh-Nagumo model [11, 73]. Future work will aim at
reinforcing the biological relevance of neurons coupled
through ERN. This will be possible by extending the trivial
transfer function from a step function to sigmoidal shapes for
type I or type II neurons [76, 85, 86].

Our results show that noise-induced CR emerges in the c−
frequency range. This frequency band is thought to play an
important role in visual information processing [13–17].
Experimental studies have shown that the degree of this
γ-synchronization in primary cortical areas may be modulated
by attention [59, 87–89]. Since attention is known to affect the
ARAS activity [90] and specifically the brain stem as part of the
ARAS [91] and ARAS, in turn, provides input to the cortex [92].
We conclude that it is possible that attention modulates the

cortical input activity, i.e. the Poisson firing rate in our model. In
this picture, attention-modulated enhanced ARAS activity
induces c− coherence and may enhance stored information
[93], as shown in Figures 6, 11. Future more detailed brain
models including the cortico-thalamic feedback and cortical
interactions [21, 57] will provide further evidence whether
coherence resonance is present in visual processing.
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