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Methods based on partial least squares (PLS) regression, which has recently gained much
attention in the analysis of high-dimensional genomic datasets, have been developed since
the early 2000s for performing variable selection. Most of these techniques rely on tuning
parameters that are often determined by cross-validation (CV) based methods, which
raises essential stability issues. To overcome this, we have developed a new dynamic
bootstrap-based method for significant predictor selection, suitable for both PLS
regression and its incorporation into generalized linear models (GPLS). It relies on
establishing bootstrap confidence intervals, which allows testing of the significance of
predictors at preset type I risk α, and avoids CV.We have also developed adapted versions
of sparse PLS (SPLS) and sparse GPLS regression (SGPLS), using a recently introduced
non-parametric bootstrap-based technique to determine the numbers of components.
We compare their variable selection reliability and stability concerning tuning parameters
determination and their predictive ability, using simulated data for PLS and real microarray
gene expression data for PLS-logistic classification. We observe that our new dynamic
bootstrap-based method has the property of best separating random noise in y from the
relevant information with respect to other methods, leading to better accuracy and
predictive abilities, especially for non-negligible noise levels.

Keywords: variable selection, partial least squares, sparse partial least squares, generalized partial least squares,
bootstrap, stability

1. INTRODUCTION

Partial least squares (PLS) regression, introduced by [1], is a well-known dimension-reduction
method, notably in chemometrics and spectrometric modeling [2]. In this paper, we focus on the PLS
univariate response framework, better known as PLS1. Let n be the number of observations and p the
number of covariates. Then, y � (y1, . . . , yn)T ∈ Rn represents the response vector, with (.)T
denoting the transpose. The original underlying algorithm, developed to deal with continuous
responses, consists of building latent variables tk, 1# k#K , also called components, as linear
combinations of the original predictors X � (x1, . . . , xp) ∈ Mn,p(R), whereMn,p(R) represents the
set of matrices of n rows and p columns. Thus,

tk � Xk−1wk, 1# k#K , (1)

where X0 � X, and Xk−1, kP2 represents the residual covariate matrix obtained through the
ordinary least squares regression (OLSR) of Xk−2 on tk−1. Here, wk � (w1k, . . . ,wpk)T ∈ Rp is
obtained as the solution of the following maximization problem [3]:
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wk � argmax
w∈Rp

{Cov2(yk−1, tk)} (2)

� argmax
w∈Rp

{wTXT
k−1yk−1y

T
k−1Xk−1w}, (3)

with the constraint ‖wk‖22 � 1, and where y0 � y, and yk−1, kP2
represents the residual vector obtained from the OLSR of yk−2 on
tk−1.

The final regression model is thus:

y � ∑
K

k�1
cktk + ϵ (4)

� ∑
p

j�1
βPLSj xj + ϵ, (5)

with ϵ � (ϵ1, . . . , ϵn)T the n × 1 error vector and (c1, . . . , cK ) the
regression coefficients related to the OLSR of yk−1 on tk,
∀k ∈ E1,KF, also known as y-loadings. More details are
available, notably in Höskuldsson [4] and Tenenhaus [5].

This particular regression technique, based on reductions in
the original dimension, avoids matrix inversion and
diagonalization, using only deflation. It allows us to deal with
high-dimensional datasets efficiently, and notably solves the
collinearity problem [6].

With great technological advances in recent decades, PLS
regression has been gaining attention, and has been
successfully applied to many domains, notably genomics.
Indeed, the development of both microarray and allelotyping
techniques result in high-dimensional datasets from which
information has to be efficiently extracted. To this end, PLS
regression has become a benchmark as an efficient statistical
method for prediction, regression and dimension reduction [3].
Practically speaking, the observed response related to such studies
does commonly not follow a continuous distribution. Frequent
goals with gene expression datasets involve classification
problems, such as cancer stage prediction, disease relapse, and
tumor classification. For such reasons, PLS regression has had to
be adapted to take into account discrete responses. This has been
an intensive research subject in recent years, leading globally to
two types of adapted PLS regression for classification. The first,
studied and developed notably by Nguyen and Rocke [7], Nguyen
and Rocke [8] and Boulesteix [9], is a two-step method. The first
step consists of building standard PLS components by treating the
response as continuous. In the second step, classification methods
are run, e.g., logistic discrimination (LD) or quadratic
discriminant analysis (QDA). The second type of adapted PLS
regression consists of building PLS components using either an
adapted version of or the original iteratively reweighted least
squares (IRLS) algorithm, followed by generalized linear
regression on these components. This type of method was first
introduced by Marx [10]. Different modifications and
improvements, using notably ridge regression [11] or Firth’s
procedure [12] to avoid non-convergence and infinite
parameter-value estimations, have been developed, notably by
Nguyen and Rocke [13], Ding and Gentleman [14], Fort and
Lambert-Lacroix [15] and Bastien et al. [16]. In this work, we

focus on the second type of adapted PLS regression, referred to
from now on as GPLS.

As previously mentioned, a feature of datasets of interest is
their high-dimensional setting, i.e., n≪ p. Chun and Keleş [17]
have shown that the asymptotic consistency of PLS estimators
does not hold in this situation, so filtering or predictor selection
become necessary in order to obtain consistent parameter
estimation. However, all methods described above proceed to
classification using the entire set of predictors. For datasets that
frequently contain thousands of predictors, such as microarray or
RNAseq ones, a variable filtering pre-processing thus needs to be
applied. A commonly used pre-processing method when
performing classification uses the BSS/WSS-statistic:

BSSj/WSSj � ∑
Q

q�1
∑

i:yi∈Gq

(μ̂jq − μ̂j)
2

∑
Q

q�1
∑

i:yi∈Gq

(xij − μ̂jq)
2
,

(6)

with μ̂j the sample mean of xj, and μ̂jq the sample mean of xj in
class Gq for q ∈ {1, . . . ,Q}. Then, predictors associated with the
highest values of this are retained, but no specific rule exists to
choose the number of predictors to retain. A Bayesian-based
technique, available in the R-package limma, has become a
common way to deal with this, computing a Bayesian-based
p-value for each predictor, therefore allowing users to choose
the number of relevant predictors based on a threshold
p-value [18].

This method cannot be considered parsimonious, but rather
as a pre-processing stage for exclusion of uninformative
covariates. Reliably selecting relevant predictors in PLS
regression is of interest for several reasons. Practically
speaking, it would allow users to identify the original
covariates which are significantly linked to the response, as
is done in OLS regression with Student-type tests. Statistically
speaking, it would avoid the establishment of over-complex
models and ensure consistency of PLS estimators. Several
methods for variable selection have already been developed
[19]. Lazraq et al. [20] group these techniques into two main
categories. The first, model-wise selection, consists of first
establishing the PLS model before performing a variable
selection. The second, dimension-wise selection, consists of
selecting variables on one PLS component at a time.

A dimension-wise method, introduced by Chun and Keleş
[17] and called Sparse PLS (SPLS), has become the benchmark for
selecting relevant predictors using PLS methodology. The
technique is for continuous responses and consists of
simultaneous dimension reduction and variable selection,
computing sparse linear combinations of covariates as PLS
components. This is achieved by introducing an L1 constraint
on the weight vectors wk, leading to the following formulation of
the objective function:

wk � argmax
w∈Rp

{wTXT
k−1yk−1y

T
k−1Xk−1w},

s.c. ‖w‖22 � 1, ‖w‖1 < λ, (7)
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where λ determines the amount of sparsity. More details are
available in Chun and Keleş [17]. Two tuning parameters are thus
involved: η ∈ [0, 1] as a rescaled parameter equivalent to λ, and
the number of PLS components K, which are determined through
CV-based mean squared error (CV MSE). We refer to this
technique as SPLS CV in the following.

Chung and Keles [21] have developed an extension of this
technique by integrating it into the generalized linear model
(GLM) framework, leading it to be able to solve classification
problems. They also integrate Firth’s procedure, in order to deal
with non-convergence issues. Both tuning parameters are selected
using CV MSE. We refer to this method as SGPLS CV in the
following.

A well-known model-wise selection method is the one
introduced by Lazraq et al. [20]. It consists of
bootstrapping pairs (yi, xi•), 1# i# n, where xi•
represents the ith row of X, before applying PLS regression
with a preset number of components K on each bootstrap
sample. By performing this method, approximations of
distributions related to predictors’ coefficients can be
achieved. This leads to bootstrap-based confidence
intervals (CI) for each predictor, and so opens up the
possibility of directly testing their significance with a fixed
type I risk α. The advantages of this method are twofold. First,
by focusing on PLS regression coefficients, it is relevant for
both the PLS and GPLS frameworks. Second, it only depends
on one tuning parameter K, which must be determined
earlier.

Two important related issue should be mentioned. Firstly, the
presence of variables unrelated to the phenomenon under study
strongly increases the level of inherent noise in the response and
in the predictors. This phenomenon occurs frequently in various
contexts and has been studied by several authors both in the
context of PLS regression and its extensions [22, 23] and in the
more general context of machine learning where the use of
techniques related to least squares have proven to be relevant
and effective [24–28].

Secondly, while performing this technique,
approximations of distributions are achieved conditionally
on the fixed dimension of the extracted subspace. In other
words, it approximates the uncertainty of these coefficients,
conditionally on the fact that estimations are performed in a
K-dimensional subspace for each bootstrap sample. The
determination of an optimal number of components is
crucial for achieving reliable estimations of the regression
coefficients [29]. Thus, since this determination is specific to
the dataset in question, it must be performed for each
bootstrap sample, in order to obtain reliable bootstrap-
based CI. We have established some theoretical results
which confirm this (Supplementary Section 1.3).

Determining tuning parameters by using q-fold cross-
validation (q-CV) based criteria may induce important
issues concerning the stability of extracted results (Hastie
et al. [30], p.249; Boulesteix [31]; Magnanensi et al. [32]).
Thus, using such criteria for successive choosing of the
number of components should be avoided. As mentioned,
amongst others, by Efron and Tibshirani [33], p.255 and

Kohavi [34], bootstrap-based criteria are known to be more
stable than CV-based ones. In this context, Magnanensi et al.
[32] developed a robust bootstrap-based criterion for the
determination of the number of PLS components,
characterized by a high level of stability and suitable for
both the PLS and GPLS regression frameworks. Thus, this
criterion opens up the possibility of reliable successive
choosing for each bootstrap sample.

In this article, we introduce a new dynamic bootstrap-based
technique for covariate selection suitable for both the PLS and
GPLS frameworks. It consists of bootstrapping pairs (yi, xi•), and
successive extraction of the optimal number of components for each
bootstrap sample, using the previously mentioned bootstrap-based
criterion. Here, our goal is to better approximate the uncertainty
related to regression coefficients by removing the condition of
extracting a fixed K-dimensional subspace for each bootstrap
sample, leading to more reliable CI. This new method both avoids
the use of CV, and features the same advantages as those previously
mentioned related to the technique introduced by Lazraq et al. [20].
This method also has the advantage of behaving consistently with the
variation of the noise level in the dataset.We refer to this newdynamic
method as BootYTdyn in the following.

We also succeed in adapting the bootstrap-based criterion
introduced by Magnanensi et al. [32] to the determination of a
unique optimal number of components related to each preset value
of η in both the SPLS and SGPLS frameworks. Thus, these adapted
versions, by reducing the use of CV, improve the reliability of the
hyper-parameter tuning.Wewill refer to these adapted techniques as
SPLS BootYT and SGPLS BootYT, respectively.

There is some constructive attributes of our proposed
approach as follows:

1. theoretical results are developed and presented to give
indications on the number of components related to a
bootstrap sample and showed the necessity for a dynamic
algorithm for Sparse PLS;

2. adapt our stable stopping criterion in the construction of PLS
components to the Sparse PLS;

3. for each value of the parsimony parameter, a determination of
the optimal number of components is performed using our
new algorithm;

4. the number of models to be compared is considerably reduced;
5. possible thanks to the adaptation of our stable stopping

criterion for PLS components and by its properties,
especially its stability.

The article is organized as follows. In Section 2, we introduce
our new dynamic bootstrap-based technique, followed by the
description of our adaptation of the BootYT stopping criterion to
the SPLS and SGPLS frameworks. In Section 3, we present
simulations related to the PLS framework, and summarize the
results, depending notably on different noise levels in y. In
Section 4, we treat a real microarray gene expression dataset
with a binary response, here the original localization of colon
tumors, by benchmarking our new dynamic bootstrap-based
approach for GPLS regression. Lastly, we discuss results and
conclusions in Section 5 as well as possible future work.
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2 BOOTSTRAP-BASED APPROACHES FOR
PREDICTOR SELECTION

2.1 A New Dynamic Bootstrap-Based
Technique
As mentioned in Section 1, the selected number of extracted
components is crucial for reliable estimation of βPLSj , 1# j# p
[29]. We have shown (Supplementary Section 1.3) that selecting
an optimal number of components on the original dataset and using it
to perform PLS regression on the constructed bootstrap samples, as
done by Lazraq et al. [20], is not correct for the obtention of reliable CI.

In order to take into account these theoretical results, we have
developed a new dynamic bootstrap-based approach for variable
selection relevant for both the PLS and GPLS frameworks. The
approach consists of estimating the optimal number of
components for each bootstrap sample created during the
algorithm. To obtain consistent results, a robust and resample-
stable stopping criterion in component construction has to be
used. Let us use βj to mean βPLSj in the following, in order to
lighten notation. The algorithm for this new method is as follows:

1. Let Dori be the original dataset and R the total number of
bootstrap samples Db

r , r ∈ E1,RF.
2. ∀r ∈ E1,RF:

• Extract the number of PLS components that is needed for
Db

r using a preset stopping criterion.
• Compute the estimations β̂

r
j , ∀j ∈ E1, pF, by fitting the

relevant PLS or GPLS model.
3. ∀j ∈ E1, pF, construct a (100 × (1 − α)) % bilateral BCa CI for

βj, noted:

CIj � [CIj,1,CIj,2].

4. ∀j ∈ E1, pF, If 0 ∉ CIj then retain xj else delete xj.
5. Obtain the reduced model Msel by only integrating the

significant predictors, and extracting the number of
components Ksel determined by the preset stopping criterion.

Note that here, we set α � 0.05.

2.2 An Adapted Bootstrap-Based Sparse
PLS Implementation
As mentioned by Boulesteix [31], using q-CV based methods
for tuning parameters potentially induces problems, notably
concerning variability of results due to dependency on the way
folds are randomly chosen. However, as detailed in Section New
developments in Sparse PLS regression, the selection of both
tuning parameters involved in the SPLS regression developed by
Chun and Keleş [17] is performed using q-CVMSE. Therefore, to
improve the reliability of this selection, we adapt the bootstrap-
based stopping criterion to this method, which gives the following
algorithm:

1. Let {η1, . . . , ηs} be a set of pre-chosen values for the sparsity
parameter and {k1, . . . , ks} � {1, . . . , 1} the set of initial
numbers of components for each ηi. Let i � 1.

2. Let cηij , j ∈ E1, kiF, be the regression coefficients of y on
Tki � (t1, . . . , tki) ∈ Mn,ki(R). Obtain ki BCa CI for
cηij , j ∈ E1, kiF, using the bootstrap-based stopping criterion,
noted:

CIkij � [CIkij,1,CI
ki
j,2].

3. If ∃j ∈ E1, kiF such that 0 ∈ CIkij then Kηi
opt � ki − 1 else {ki �

ki + 1 and return to step 2}.
4. While i≠ s then {i � i + 1 and return to step 2}.
5. Return the set of the extracted numbers of components

{Kη1
opt , . . . ,K

ηs
opt} related to {η1, . . . , ηs}.

6. Return the pair (ηopt ,K
ηopt
opt ) having the lowest CV-based MSE.

Retesting all components obtained after each increase in ki is
essential since the original predictors involved in the components
construction change when ki increases [17]. This fact, combined
with the aim of retaining orthogonality between components,
leads the components themselves to change, so that the
significance of each component has to be retested at each step.

While the original implementation compares Kmax × smodels
through CVMSE, with Kmax the maximal number of components
(set by the user), this new bootstrap-based version only focuses on
smodels, since only one number of components is determined for
each preset value of η. An illustration of the stability
improvement obtained by using this new implementation,
based on the simulated dataset introduced in Section 3.3.1
with sd(ϵ) � 5, is shown in Figure 1.

3 SIMULATIONS STUDIES

3.1 Simulations for Accuracy Comparisons
These simulations are based on a simulation scheme proposed by
Chun and Keleş [17, p.14] and modified in order to study high-
dimensional settings. We consider the case where there are less
observations than predictors, i.e., n< p, and set n � 100, and p �
200 or 1,000. Let q be the number of spurious predictors. While
Chun and Keleş [17, p.14] only consider a ratio q/p equal to 0.25
and 0.5, both the 0.05 and 0.95 ratio values have been added here.
Four independent and identically distributed hidden variables
h1, . . . , h4, following a N (0, 25In) distribution, were computed.
Then, columns of the covariate matrix X were generated by xj �
hl + ϵj for pl−1 + 1# j# pl , where l � 1, . . . , 4,
(p0, . . . , p4) � (0, (p − q)/2, p − q, p − r, p), r � 5 when p � 200
and r � 10 when p � 1000, and ϵ1, . . . , ϵp are drawn
independently from a N (0, 0.1In). Also, y is generated by
3h1 − 4h2 + f , where f is normally distributed with mean 0 and
variance such that the signal-to-noise ratio (SNR) equals 10.

Using this simulation scheme, accuracy of the SPLS technique
using 10 fold-CV for selecting tuning parameters (SPLS CV), and
our new dynamic bootstrap method combined with the
bootstrap-based stopping criterion (BootYTdyn), is compared.
In order to do so, for each parameter setting, 50 selections of the
sparse support related to both methods were established. Lastly,
mean accuracy values over the 50 trials were calculated. Results
are summarized in Table 1.
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Based on these results, SPLS CV gives better accuracy than
BootYTdyn for ratio values q/p that are not close to 0 or 1. While
both give good performance when the ratio is close to 0, i.e., when
a major part of predictors are significant, BootYTdyn
outperforms SPLS CV when only a small proportion of
predictors are significant.

Nevertheless, in this simulation set-up, covariates are collected
into four groups. While within-group correlations between
covariates are close to one, between-group ones are close to
zero. This unrealistic situation makes irrelevant the
determination of an optimal support, and seems more
appropriate to selecting the number of components. As an
illustration, 50 additional samples in the p � 1000 and q/p �
0.5 case were simulated. We then calculated the predictive MSE
(PMSE) based on four different supports S1, S2, S3 and S4, where
S1 � {xj, 1# j# p}, S2 � {xj, 1# j#(p − q)}, S3 � {x1, x251} and
S4 � {x1, x251}∪ {xj, (p − q) + 1# j# p}. Results are summarized
in Table 2.

In the light of these observations, the aim of this simulation
scheme is instead the extraction if an optimal number of
components rather than an optimal support. We thus decided
to use a real dataset as covariate matrix for a more general and
relevant comparison.

3.2 Simulations for Global Comparison
3.3.1 Dataset Simulations
In this study, we used a real microarray gene expression dataset,
which was created using fresh-frozen primary tumors samples,
from a multi-center cohort, with stage I to IV colon cancer. 566
samples fulfilled RNA quality requirement, and constituted our
database. These samples were split into a 443 sample discovery set
and a 123 sample test set, well balanced for the main anatomo-
clinical characteristics. This database has already been studied by
Marisa et al. [35] and more details on it are available in their
article.

In order to reduce computational time, a preliminary
selection of 100 predictors was performed. Based on the
original localization of the tumors as response vector, and
the full 566 samples, the 100 most differentially expressed
probe sets were extracted. As mentioned in Section New
developments in Sparse PLS regression, this pre-processing
is based on a Bayesian technique and gives us our benchmark
predictors matrix.

Then, based on correlation values, four positively-correlated
predictors were selected to form the set of significant covariates
(Supplementary Section 1.1). To this end, let Xsel �
(x1, x12, x15, x59) ∈ Mn,4(R) be the matrix composed of these
predictors, so that y is simulated as follows:

y � Xselβ + ϵ, (8)

with β � (3.559, 2.071, 1.440, 1.770)T , E(ϵ) � 0 and Var (ϵ) �
σ2In.

FIGURE 1 | Repartition of 100 selections of (ηopt ,Kopt) using the original SPLS approach (A) and the new bootstrap-based implementation (B).

TABLE 1 | Mean accuracy values (SNR).

p 200 1,000

q/p 0.05 0.25 0.5 0.95 0.05 0.25 0.5 0.95

SPLS CV 0.986 0.961 0.849 0.591 0.998 0.997 0.989 0.963
BootYTdyn 1.000 0.867 0.805 0.982 0.967 0.827 0.893 0.985

TABLE 2 | PMSE values for different supports.

S1 S2 S3 S4

K � 1 65.383 62.702 63.988 856.779
K � 2 63.957 64.443 65.695 209.873
K � 3 65.745 76.197 NA 61.801
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We performed simulations for six distinct levels of random
noise standard deviation in order to investigate the performance
of the different methods. Both these standard deviations and their
related SNR are shown in Table 3.

3.3.2 Benchmarked Methods
Using these simulated datasets, eight methods were analyzed and
compared.

1. Q2. The original bootstrap-based method, introduced by
Lazraq et al. [20], combined with the 10-fold CV-based Q2

criterion [5, p.83] for pre-selecting the number of components.
2. BIC. The bootstrap-based method, introduced by Lazraq et al.

[20], combined with the corrected BIC using estimated degrees
of freedom (DoF) [36] for pre-selecting the number of
components.

3. BootYT. The bootstrap-based method, introduced by Lazraq
et al. [20], combined with the bootstrap-based criterion [32]
for previously selecting the number of components.

4. BICdyn. Our new dynamic bootstrap-basedmethod combined
with the corrected BIC criterion for successive selections of
number of components.

5. BootYTdyn. Our new dynamic bootstrap-based method
combined with the bootstrap-based criterion for successive
selections of number of components.

6. SPLS CV. The original SPLS method using 10-fold CV for
tuning parameter determination [17].

7. SPLS BootYT. The new adapted SPLS version using the
bootstrap-based criterion for component selection.

8. Lasso. Lasso regression, included as a benchmark [37].

3.3.3 Simulation Scheme and Notation
In order to perform reliable comparisons between the eight
methods, each type of trial was performed one hundred times.
Numbers of components, sparse supports and sparse tuning
parameters are the main examples of these. Results linked to
the highest occurrence rates are then chosen for method
comparison. All bootstrap-based techniques were performed
with R � 1000 bootstrap samples, and each related CI was
constructed with type I risk α � 0.05.

The global comparison has two main parts. First, in order to
compare accuracy and stability related to each technique, we
focus both on different supports, and models extracted by the
different variable selection methods. Indeed, in the PLS
framework, a specific model results from both a set of
predictors and a specific number of components. Due to the
sparsity parameter in SPLS approaches, the same support can be
extracted, but with a different number of components leading to
different models. Lasso regression can also extract the same
support for several different sparsity parameters, leading to
different estimations of model coefficients. Therefore, for

clarity, the following notation, related to each specific variable
selection technique, is introduced.

• {S1, . . . ,SΓ1}, the set of extracted supports.
• {M1, . . . ,MΓ2}, the set of fitted models.
• Ssel , the selected support, i.e., the one that appears the
most often.

• Msel , the selected model, i.e., the one that appears the
most often.

• %Ssel , rate of occurrence of the selected support.
• %Msel , rate of occurrence of the selected model.
• Ksel , the number of components related to the
selected model.

Second, in order to compare the predictive ability of models,
10-fold CV MSE, related to each selected sparse model through
PLS regression, were computed one hundred times. The test set
was also used in order to confirm results obtained by CV.

Note that, concerning the dynamic BIC-based method for
sd(ϵ) � 0.5, only 97 trials performed well. Lastly, due to equality
of occurrence rates between the two most-represented pairs of
tuning parameters, results for SPLS CV and sd(ϵ) � 5 come
instead from 150 trials.

3.3.4 Stability and Accuracy Results
Both the mean accuracy values over trials in each case, and stability
results based on extracted supports, are given in Table 4. The
numbers of components used for the original bootstrap-based
approach [20] are summarized in Supplementary Section 1.2.

Concerning the number of different models, results related to
lasso regression are the same as those concerning the number of
different supports. Only the result for sd(ϵ) � 0.5 differs, since
one trial finished with a fifth value of the sparsity parameter and
the same support as the model that was selected. Therefore, only
results concerning models established using SPLS methods are
summarized in Table 5. In the case of bootstrap-based
techniques, supports and models are similar, since no sparsity
parameter is needed.

Concerning the three bootstrap-based techniques and in the
light of accuracy results (Table 4), BootYT outperforms both the
others, except in the case where sd(ϵ) � 0.5, for which BIC should
be used. This exception is confirmed through the comparison of
the dynamic bootstrap-based methods, where the sd(ϵ) � 0.5 case
is the only one where using the BIC criterion also represents the
most relevant choice. This phenomenon matches with conclusions
obtained byMagnanensi et al. [32], in that the BIC criterion is well-
designed for small values of noise variance, while BootYT
outperforms it for non-negligible levels of random noise. The
use of the Q2 criterion for selecting the number of components
would appear never be a reliable option, so combining this criterion
with our new dynamical approach was not done. The accuracy

TABLE 3 | Noise standard deviation (SNR).

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

0.5 (810.603) 1 (202.651) 3 (22.517) 4 (12.666) 5 (8.106) 6.366 (5.000)
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values highlight the fact that our new method is always an
improvement over the original one. Concerning the two
versions of SPLS regression, both gave similar accuracy. These
stand to perform better than others for the smallest levels of
random noise variance, while BootYTdyn outperforms all others
for the highest values of noise variability.

Based on results introduced in Tables 4,5, the Q2-based
approach for predictor selection has non-negligable stability
issues, providing between 18 and 96 different models in the
100 simulations. Depending on both the noise variability and
the criterion combined with our dynamic approach, the latter
improves over the original one by stabilizing the choice of sparse
support. Cases where this is observed match with previous
conclusions established when analyzing accuracy results,
namely both the BIC-based dynamic approach for small values
of noise variability, and BootYTdyn used for datasets with non-
negligible noise variances. This strengthens the conclusion that
BIC is well-designed for small values of noise variance, while

BootYT performs best for non-negligible noise. As for SPLS
methods, our new bootstrap-based version gains in stability in
that it retains fewer different optimal pairs (ηopt ,Kopt), and also
sparse models, than the original does. Moreover, since Γ1 � Γ2 for
all studied datasets, this directly implies that it retains a unique
optimal number of components for each sparse support. It thus
permits a choice of optimal model in a more reliable way than
using the CV-based technique. Lastly, lasso regression has good
stability performances, leading it, BootYTdyn and SPLS BootYT
to be recommended when stability is important.

The last descriptive statistic concerns the number of significant
predictors retained (Table 4). The Q2-based approach is the least
sparse, selecting the highest number of covariates. Both BICdyn
BootYTdyn improve respectively BIC and BootYT, showing better
accuracy related to their selected support. Indeed, the four expected
covariates are always included in these selected supports. Oncemore,
BootYT can be recommended for datasets with non-negligible
random noise variability compared with corrected BIC, which
has to be applied for small values of random variance. Indeed,
both the BIC and BICdyn approaches, by retaining globally
increasing numbers of predictors while the random noise
standard deviation increases, lead us to suppose that they use
some predictors to model this random noise, leading to over-
fitting. On the contrary, while BootYT selects a stable number of
significant predictors, BootYTdyn selects a decreasing number of
significant predictors as the random noise standard deviation
increases, which is expected. As a confirmation of over-fitting
issues with BIC, we present the 10-fold CV-based MSE in Figure 2.

These results tend to confirm our suspicion of over-fitting
since, except for results related to BootYTdyn, the others have

TABLE 4 | Mean accuracy values over trials in each case and stability results based on extracted supports and number of predictors.

Q2 BIC BICdyn BootYT BootYTdyn SPLS CV SPLS
BootYT

Lasso

Mean accuracy values

sd(ϵ) � 0.5 0.9331 0.9710 0.9882 0.9587 0.9718 0.9914 0.9960 0.9572
sd(ϵ) � 1 0.9370 0.9503 0.9575 0.9557 0.9781 0.9915 1.0000 0.9689
sd(ϵ) � 3 0.8730 0.9353 0.9576 0.9614 0.9837 0.9821 0.9799 0.9741
sd(ϵ) � 4 0.8004 0.9289 0.9397 0.9692 0.9928 0.9771 0.9799 0.9686
sd(ϵ) � 5 0.8327 0.9176 0.9444 0.9557 0.9876 0.9790 0.9841 0.9676
sd(ϵ) � 6.366 0.8970 0.8755 0.9347 0.9625 0.9820 0.9745 0.9714 0.9731

Number Γ1 of different extracted supports (%Ssel)

sd(ϵ) � 0.5 20 (17) 23 (10) 6 (73.2) 11 (30) 16 (35) 5 (56) 2 (90) 4 (48)
sd(ϵ) � 1 18 (30) 8 (57) 7 (38) 11 (26) 17 (23) 6 (53) 1 (100) 5 (49)
sd(ϵ) � 3 41 (19) 16 (47) 14 (39) 26 (16) 6 (44) 5 (34) 4 (90) 4 (58)
sd(ϵ) � 4 96 (2) 6 (58) 11 (26) 18 (30) 6 (48) 12 (48) 4 (67) 4 (69)
sd(ϵ) � 5 88 (3) 11 (48) 17 (33) 12 (22) 6 (54) 11 (25.33) 4 (45) 3 (64)
sd(ϵ) � 6.366 47 (10) 25 (24) 9 (57) 10 (39) 5 (38) 10 (18) 4 (46) 3 (64)

Number of predictors in Ssel (Ksel)

sd(ϵ) � 0.5 11 (5) 6 (4) 5 (5) 8 (5) 7 (6) 4 (4) 4 (4) 4 (4)
sd(ϵ) � 1 10 (4) 9 (5) 9 (5) 9 (5) 6 (4) 4 (4) 4 (4) 5 (3)
sd(ϵ) � 3 16 (4) 11 (6) 8 (6) 7 (4) 6 (4) 8 (4) 6 (4) 7 (4)
sd(ϵ) � 4 24 (3) 11 (5) 10 (5) 6 (4) 5 (3) 6 (4) 6 (4) 7 (4)
sd(ϵ) � 5 21 (3) 12 (5) 10 (5) 9 (4) 3 (3) 5 (3) 3 (3) 7 (4)
sd(ϵ) � 6.366 15 (3) 16 (4) 11 (4) 7 (4) 3 (3) 4 (3) 5 (3) 7 (4)

TABLE 5 | Results for SPLS model stability.

# (ηopt ,Kopt) (%(η,K)sel) Γ2(%Msel)
SPLS CV SPLS BootYT SPLS CV SPLS BootYT

sd(ϵ) � 0.5 9 (46) 3 (81) 8 (55) 2 (90)
sd(ϵ) � 1 13 (36) 2 (73) 9 (45) 1 (100)
sd(ϵ) � 3 13 (17) 5 (59) 5 (34) 4 (90)
sd(ϵ) � 4 15 (27) 6 (37) 12 (48) 4 (67)
sd(ϵ) � 5 20 (19.33) 6 (45) 12 (25.33) 4 (45)
sd(ϵ) � 6.366 16 (18) 4 (46) 11 (18) 4 (46)
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MSE that do not match with the theoretical random noise
variances, suggesting that a part of the noise is being modeled.
As for the two SPLS methods, there is no pertinent difference to
mention, both of them concluding on similar numbers of selected
predictors. Lastly, like in BIC-based approaches, the lasso extracts
an increasing number of significant predictors.

As a first conclusion, we can thus reasonably conclude that,
based on these first simulation results, BootYTdyn and SPLS
BootYT should be used in practice.

3.3.5 Complexity and Predictive Ability Results
To confirm and strengthen the conclusions of Section 3.3.2, we
will now focus on the predictive abilities of the models selected by
the various approaches. We calculate one hundred times the 10-
fold CV MSE based on the original simulated response values
(without noise) of the various selected models. These results thus
reflect the accuracy in predicting the original information by
leaving out random noise. We also compute the Predictive MSE
(PMSE) based on the test set, by using its simulated response ytest
without including noise. Lastly, we extract the DoF of each selected
sparse model (DoFsel) to compare the respective complexities.

Graphical results for these statistics, related to Q2, BIC and
BootYT, are shown in the first row of Figure 3.

The evolution of estimated DoF both highlights and confirms
BIC and Q2 over-fitting issues. Indeed, as the random noise
standard deviation increases, these methods globally build sparse
models with increasing complexity. Thus, they model increasing
parts of the inserted random noise, implying poor predictive
abilities of their selected models compared to those obtained by
applying BootYT. This is confirmed through higher values of
PMSE and CV MSE, especially for datasets with non-negligible
random noise variability. These results confirm the conclusions
from the previous section in that using the Q2 criterion for
selecting the number of PLS components should be avoided,
and that BootYT outperforms corrected BIC, except for responses
with negligible random noise levels. Therefore, only BIC and
BootYT are retained for further comparison.

The results shown in the second row of Figure 3 highlight that
BootYTdyn is the only method that models with decreasing DoF,
ensuring a complexity reduction suitable to the avoidance of
prediction issues. Indeed, BootYTdyn selects models with the
lowest PMSE and 10-CV MSE.

In light of these results, only BootYTyn is retained for further
comparison. Comparing the two SPLS implementations with
respect to their predictive abilities lead us to recommend SPLS
BootYT, since models selected by this bootstrap-adapted SPLS
technique feature comparable if not lower PMSE and 10-CVMSE
(third row of Figure 3). Let us clarify that, in order to ensure
relevant comparisons, we used ordinary PLS regressions with
both the support and the number of components selected by the
SPLS methods, and not SPLS methods with selected tuning
parameters, for computing the 10-CV MSE.

For datasets characterized by a low level of random noise
variability in y, SPLS BootYT builds models inducing the smallest
CV MSE and PMSE. By focusing on non-negligible random
variability, BootYTdyn gives the smallest predictive errors, thus
showing the high level of robustness of this approach against
random noise. This robustness is, as previously mentioned, due
to its decreasing number of significant predictors, and also
components, leading to decreasing DoF, i.e., a loss of complexity.

Lastly, we compare the two retained methods BootYTdyn and
SPLS BootYT, and the lasso is run. As for SPLS methods, in order
to perform relevant comparisons, the supports extracted by the
lasso are used as sets of covariates for a PLS regression. The
number of PLS components is then established by performing
one hundred times their selection using the bootstrap-based
stopping criterion; the number of components related to the
highest occurrence rate was selected. In this way, results shown in
the fourth row of Figure 3 concerning 10-CV MSE give the
predictive ability of the extracted supports for PLS regression. In
order to provide a clear picture of the impact of this choice, the
PMSE obtained through the lasso is also displayed on the fourth
row of Figure 3. These approaches are referred to as Lasso and
Lasso.supp.

FIGURE 2 | Boxplots of 10-CV MSE based on y with noise.
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Except for negligible values of random noise variability in y, the
support extracted by the lasso regression and applied as explanatory
variables for PLS regression are linked to both the highest 10-CV
MSE and highest PMSE. This is a direct consequence of the lasso’s
accuracy issues mentioned in Section 3.3.4, notably the increasing
number of extracted covariate while the random noise variability
rises. However, performing predictions using the model obtained by
the original lasso regression lead to the lowest PMSE values. This is
due to the L1 penalizationwhich is applied on the vector of estimated
parameters, thus permitting correction of the relative lack of
accuracy of this technique.

To conclude, we summarize our conclusions in the following
Table 6, and recommend certain approaches, depending on
whether the initial aim was to select significant predictors or
to obtain a sparse model with attractive predictive ability.

4 REAL DATASET APPLICATION

In this section, we deal with the predictors matrix introduced in
Section 3.3.1 and the original binary response vector. Five
approaches for variable selection, adapted for the GPLS
framework, are considered for comparison.

1. BootYT. The bootstrap-based method, introduced by Lazraq
et al. [20], combined with the bootstrap-based criterion [32]
for pre-selecting the number of components.

2. BootYTdyn. The new dynamic bootstrap-based method
combined with the bootstrap-based criterion for successive
determinations of the number of components.

FIGURE 3 | From left to right: DoF of the extracted sparse models, PMSE based on ytest without noise, and boxplots of 10-CV MSE based on y without noise.

TABLE 6 | Recommended approaches.

Accuracy Predictive ability

Low noise variability SPLS BootYT SPLS BootYT
High noise variability BootYTdyn Lasso/BootYTdyn
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3. SGPLS CV. The original SGPLS method using 10-fold CV for
tuning parameter selection [21].

4. SGPLS BootYT. The new adapted SGPLS version using the
bootstrap-based criterion for component selection.

5. RSGPLS. An approach developed by Durif et al. [38]. It
consists of adapting the SGPLS method by introducing a
ridge penalty to ensure convergence of parameter
estimations, and stability in hyper-parameter tuning. They
also propose an adjustment of the L1 constraint in order to
further penalize less significant predictors. Hyper-parameters
are tuned using CV MSE.

6. Lasso. The adapted lasso regression for logistic framework,
available in the R package glmnet, as a benchmark.

Concerning bootstrap-based approaches, the incorporation of
PLS methodology into GLM, developed by Bastien et al. [16], was
used. Due to non-convergence issues for parameter estimations,
some samples were excluded using a threshold for parameter
estimations. Indeed, a model built using a bootstrap sample with
at least one parameter estimate that is higher in absolute value
than 104 times the one (in absolute value as well) estimated on the
original dataset, leads to the exclusion of this bootstrap sample.
Thus, to ensure a sufficient number of relevant bootstrap samples,
the preset number of computed samples was increased to
R � 4000. As for the lasso, three different loss functions for
the establishment of the sparsity parameter using 10-fold CV
were used: the number of misclassified values, the MSE, and the
deviance. We refer to them as Lasso.Cl, Lasso.MSE and
Lasso.Dev, respectively. The set of values defined for the
sparsity parameter is preset by the “glmnet” package. For the
SGPLS and RSGPLS approaches, the number of components K
varies from 1 to 10, the sparsity parameter η varies from 0.04 to
0.99 (by steps of 0.05), and the ridge parameter involved in the
RSGPLS technique is selected from 31 points log10-linearly
spaced in the range [10−2, 103], as in Durif et al. [38].

Each method was performed one hundred times in order to
obtain relevant results. However, due to the high observed
stability of results extracted with the BootYTdyn approach,
and in order to save computational time, this was only
performed twenty times instead of a hundred.

Stability results for tuning parameter selection, except for the
bootstrap-based methods, are shown in Figure 4 and Table 7.

Based on results summarized in Table 7, the lasso
methodology, using CV-based MSE or deviance values for the
selection of its hyper-parameter, is the most stable. This can be
explained by the fact that only one hyper-parameter is involved,
while the other techniques are based on two or three tuning
parameters. Using the number of misclassified values for CV has
to be avoided for stable selection of the sparsity parameter. Our
SGPLS adaptation with the BootYT criterion improves reliability
in selecting the set of tuning parameters, as previously observed in
the PLS framework (Sections 2.2, 3.3.4). Note that, concerning
RSGPLS, three different sets of optimal parameters were extracted
with maximal occurrence rate of five, all of them selecting the
same set of predictors. Thus, the set of parameters which leads to
the smallest number of misclassified values on the training dataset
was retained. As already mentioned in Section 3.3.3, extracting
the same support does not necessarily lead to the same model
when sparsity or ridge parameters are involved. Therefore, the
numbers of sparse supports and models retained are summarized
in Table 8.

In light of these results, BootYTdyn and both the MSE- and
deviance-based lasso techniques are the most stable in extracting
supports and models. This could be due in part to the fact than all
of them depend on only one tuning parameter. Even if this hyper-
parameter for the BootYTdyn approach, i.e., the number of
components, has to be chosen R times, the high stability of
the bootstrap-based stopping criterion introduced by
Magnanensi et al. [32] endows this approach with good
stability in selecting the sparse support. As for the PLS

FIGURE 4 | Repartition of selected sets of tuning parameters over the 100 trials, for SGPLS CV (A) and SGPLS BootYT (B).
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framework, our new bootstrap-based SGPLS implementation
improves the stability here. The lack of stability of the lasso
based on misclassified values is directly induced by the discrete
form of this statistic. This issue was also observed and mentioned
in Magnanensi et al. [32].

The various selected supports are displayed in Figure 5. Note
that both the MSE- and deviance-based lasso regressions select
the same support and the same model, noted Lasso.MSE.Dev in
the following.

In the following, two additional independent public datasets,
stated by Marisa et al. [35] as being comparable with our original
dataset, were included for comparison of predictive abilities.
These datasets are named GSE18088 (n � 53) [39] and
GSE14333 (n � 247) [40]. Both the MSE and number of
misclassified (MC) value of the selected models were
computed on both the training and test parts of the original
dataset, as well as on the two additional datasets. These results are
summarized in Table 9. Since independent datasets were

available, we decided to follow the suggestion of Van
Wieringen et al. [41, p.1596]: “the true evaluation of a
predictor’s performance is to be done on independent data”.

In this real data study, BootYTdyn retains only one predictor,
which is also retained by all othermethods. Thus, as expected, this
most sparse support induced the highest values of both the MSE
and number of misclassified observations, based on the training
subset of the original dataset. It also provided the highest values
based on the test subset of the original dataset, which is to be
expected since, as explained in Section 3.3.1, these two parts are
well-balanced in terms of anatomo-clinical characteristics. Thus,
this causes a bias in evaluation of model’s predictive abilities, by
making comparable MSE and misclassified values based on both
the training and testing subsets. Results in Table 9 confirm this
property, and also highlight the usefulness of additional
independent datasets for reliably comparing predictive abilities.
While a well-designed model for predictive purposes will provide
similar PMSE values on comparable independent additional

TABLE 7 | Number of different selected sets of tuning parameters over the 100 trials (rate of occurrence of the retained set of tuning parameters).

SGPLS CV SGPLS BootYT RSGPLS Lasso.Cl Lasso.MSE Lasso.Dev

44 (9) 26 (16) 64 (5) 33 (8) 6 (44) 5 (48)

TABLE 8 | Number Γ1 of different extracted supports (%Ssel) (first row) and number Γ2 of different extracted sparse models (%Msel) (second row).

SGPLS CV SGPLS BootYT RSGPLS Lasso.Cl Lasso.MSE Lasso.Dev BootYT BootYTdyn

44 (9) 14 (16) 26 (40) 26 (13) 5 (83) 4 (83) 4 (35) 2 (80)
44 (9) 16 (16) 60 (5) 33 (8) 6 (44) 5 (48) 4 (35) 2 (80)

FIGURE 5 | Summary of selected supports.

TABLE 9 | Summary of model fitting and predictive abilities.

GSE MC MSE

39582trai 39582test 18088 14333 39582trai 39582test 18088 14333

SGPLS CV 48 19 10 45 0.1372 0.1374 0.1743 0.1520
SGPLS BootYT 40 15 12 46 0.1295 0.1328 0.1848 0.1601
RSGPLS 53 13 17 45 0.1005 0.0912 0.1909 0.1276
Lasso.Cl 50 11 12 44 0.0928 0.0827 0.1283 0.1425
Lasso.MSE.Dev 46 15 12 47 0.0875 0.0828 0.1242 0.1406
BootYT 73 23 13 111 0.1272 0.1256 0.1817 0.2924
BootYTdyn 92 25 13 35 0.1507 0.1446 0.1695 0.1325
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datasets compared to MSE obtained on the training dataset, an
over-fitted one would be related to higher PMSE values, due to its
dependance on training data. Thus, the differences, noted ΔMSE,
between the MSE obtained on the training subset of the original
dataset, and those obtained on the three test datasets, are shown
in Figure 6.

Our new dynamic bootstrap-based approach is the only one
that exhibits this MSE stability property. In contrast, all other
approaches provided higher PMSE values on the two other
datasets than on the original. This led BootYTdyn to have
only 48 (16%) misclassified values on these two additional
datasets, representing the best result among all studied
approaches. Thus, we can reasonably assume that our new
method has helped to remove non-informative predictors, in
the sense of not being relevant for improving predictive ability.

Lastly, the unique extracted probe set, named 230784_at, is
already known to be related to the original location in the distal
colon. The sign of the regression coefficient obtained with
BootYTdyn is coherent with this state-of-the-art result, and
thus strengthens our conclusion.

5 DISCUSSION

In this article, we developed a new dynamic bootstrap-based
technique for variable selection, suitable for both the PLS and
GPLS frameworks, and proposed a bootstrap-based version of the
SPLS and SGPLS methods for selecting the number of
components. While the first of these lets us completely avoid
CV, the second lets us select the set of tuning parameters in a
more reliable way.

In state-of-the-art approaches, the use of CV-based
techniques for selection of hyper-parameters is common,
and can lead to important stability issues, observed
notably by Boulesteix [31] and Magnanensi et al. [32], and
confirmed in our studies. Our new dynamic bootstrap-based
technique represents a useful method for avoiding CV-
related issues, since the unique hyper-parameter is
successively selected using a bootstrap-based criterion.

This new technique improves on the original bootstrap-
based methodology introduced by Lazraq et al. [20], in
that it permits us to approximate the distribution of
covariates’ regression coefficients by removing the
condition of working in a subspace of fixed dimension K.
Theoretical results have been established that strengthen the
usefulness of building subspaces spanned by a dynamic
number of components for performing PLS regressions on
bootstrap samples.

In the PLS framework, conclusions based on our simulations
are twofold. First, for datasets with negligible random noise in y,
SPLS BootYT is recommended. Indeed, both in terms of accuracy
and predictive abilities, it outperforms all other techniques
compared here. Second, for datasets with non-negligible
random noise in y, which represents the more realistic case,
our new dynamic bootstrap-based method is recommended. As
for SPLS BootYT for the negligible random noise variability
framework, BootYTdyn outperform all other methods for each
property studied. Furthermore, it is the only method which
concludes as to a decreasing number of significant predictors,
while the random noise variability increases, which was
expected here.

Results obtained from our classification study using real
datasets match with previous conclusions. Indeed,
BootYTdyn is the only one which leads to the expected
PMSE values on two additional independent datasets,
which allows us to suppose that over-fitting issues were
avoided, and that these PMSE are induced by noise or
information which cannot be modeled using only gene
expression. Furthermore, the extracted probe set is already
known to be linked to the relevant location in the distal colon,
which strengthens our confidence in this new dynamic
approach.

Lastly, our new bootstrap-based SPLS implementation
improves the stability of this method. Indeed, in all cases
studied, both the SPLS CV and SGPLS CV select a higher
number of unique sets of hyper-parameters than our
bootstrap-based versions do, leading to higher numbers of
unique supports and models too.

In the future, our work may be extended in the following three
directions. Firstly, Sun et al. [42] also worked on this subject, and
proposed a methodology for selecting tuning parameters of
penalized regressions in order to stabilize variable selection.
Even if their method is not applicable to the selection of the
number of components in PLS regression, it would be interesting
to adapt it to both SPLS CV and our new SPLS BootYT
implementation, in order to look for potential stability gains.

Secondly combining partial least squares based regular or
sparse techniques with the existing techniques that were
developed in [24–28] may speed up, specialize toward a
specific target or improve the accuracy of those existing
algorithms by taking into account some latent structure of
the data.

Thirdly, simulations may be performed to strengthen the
results obtained on real data sets for the logistic framework
(Section 4). In addition, testing the performance of these new
approaches for responses following other distributions -such as

FIGURE 6 | Differences between the MSE computed on the training
subset of the original dataset and the PMSE obtained on test sets.
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Poisson, Gamma-should also be done. However, based on all the
results obtained in this paper, our new dynamic method seems to
be the most efficient compared to the state of the art approaches
for datasets with non-negligible noise variability, a common
situation in daily practice.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the
Datasets_benchmark Github repository, https://github.com/
fbertran/Datasets_benchmark. The packages used for the
simulations in this article are available on the CRAN,
https://cran.r-project.org and especially the plsRglm
package that implements partial least squares generalized
regression, https://CRAN.R-project.org/package�plsRglm
and the bootPLS package that implements number of
components selection using bootstrap for PLS regression
and generalized regression models, https://github.com/
fbertran/bootPLS.

AUTHOR CONTRIBUTIONS

JM, FB, MM-B and NM designed the study. JM did the
simulations. JM, FB and MM-B wrote the manuscript.

FUNDING

This work was supported by grants from the Agence Nationale de
la Recherche (ANR) (ANR-11-LABX-0055_IRMIA); the CNRS
(UMR 7501) LabEx IRMIA to FB, NM and MM-B; Mastére
Spécialisé® Expert Big Data Engineer of the University of
Technology of Troyes to FB and MM.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fams.2021.693126/
full#supplementary-material

REFERENCES

1. Wold S, Martens H, and Wold H. The Multivariate Calibration Problem in
Chemistry Solved by the PLS Method. In: Matrix Pencils. Heidelberg,
Deutschland: Springer-Verlag (1983) p. 286–93. doi:10.1007/bfb0062108

2. Wold S, Sjöström M, and Eriksson L. PLS-regression: a Basic Tool of
Chemometrics. Chemometrics Intell Lab Syst (2001) 58:109–30.
doi:10.1016/s0169-7439(01)00155-1

3. Boulesteix AL, and Strimmer K. Partial Least Squares: a Versatile Tool for the
Analysis of High-Dimensional Genomic Data. Brief Bioinform (2007) 8:32–44.
doi:10.1093/bib/bbl016

4. Höskuldsson A. PLS Regression Methods. J Chemometrics (1988) 2:211–28.
doi:10.1002/cem.1180020306

5. Tenenhaus M. La régression PLS, Théorie et pratique. Paris, France: Editions
Technip (1998).

6. Wold S, Ruhe A, Wold H, and Dunn, III WJ, III. The Collinearity Problem in
Linear Regression. The Partial Least Squares (PLS) Approach to Generalized
Inverses. SIAM J Sci Stat Comput (1984) 5:735–43. doi:10.1137/0905052

7. Nguyen DV, and Rocke DM.Multi-class Cancer Classification via Partial Least
Squares with Gene Expression Profiles. Bioinformatics (2002) 18:1216–26.
doi:10.1093/bioinformatics/18.9.1216

8. Nguyen DV, and Rocke DM. Tumor Classification by Partial Least Squares
Using Microarray Gene Expression Data. Bioinformatics (2002) 18:39–50.
doi:10.1093/bioinformatics/18.1.39

9. Boulesteix A-L. PLS Dimension Reduction for Classification with Microarray
Data. Stat Appl Genet Mol Biol (2004) 3:1–30. doi:10.2202/1544-6115.1075

10. Marx BD. Iteratively Reweighted Partial Least Squares Estimation for
Generalized Linear Regression. Technometrics (1996) 38:374–81.
doi:10.1080/00401706.1996.10484549

11. Cessie SL, and Houwelingen JCV. Ridge Estimators in Logistic Regression.
Appl Stat (1992) 41:191–201. doi:10.2307/2347628

12. Firth D. Bias Reduction of Maximum Likelihood Estimates. Biometrika (1993)
80:27–38. doi:10.1093/biomet/80.1.27

13. Nguyen DV, and Rocke DM. On Partial Least Squares Dimension Reduction
for Microarray-Based Classification: a Simulation Study. Comput Stat Data
Anal (2004) 46:407–25. doi:10.1016/j.csda.2003.08.001

14. Ding B, and Gentleman R. Classification Using Generalized Partial Least Squares.
J Comput Graphical Stat (2005) 14:280–98. doi:10.1198/106186005x47697

15. Fort G, and Lambert-Lacroix S. Classification Using Partial Least Squares with
Penalized Logistic Regression. Bioinformatics (2005) 21:1104–11. doi:10.1093/
bioinformatics/bti114

16. Bastien P, Vinzi VE, and Tenenhaus M. PLS Generalised Linear Regression.
Comput Stat Data Anal (2005) 48:17–46. doi:10.1016/j.csda.2004.02.005
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