
Volumetric Lattice Boltzmann Models
in General Curvilinear Coordinates:
Theoretical Formulation
Hudong Chen*

Dassault Systemes, Waltham, MA, United States

A theoretical formulation of lattice Boltzmann models on a general curvilinear coordinate
system is presented. It is based on a volumetric representation so that mass and
momentum are exactly conserved as in the conventional lattice Boltzmann on a
Cartesian lattice. In contrast to some previously existing approaches for arbitrary
meshes involving interpolation approximations among multiple neighboring cells, the
current formulation preserves the fundamental one-to-one advection feature of a
standard lattice Boltzmann method on a uniform Cartesian lattice. The new approach
is built on the concept that a particle is moving along a curved path. A discrete space-time
inertial force is derived so that the momentum conservation is exactly ensured for the
underlying Euclidean space. We theoretically show that the new scheme recovers the
Navier-Stokes equation in general curvilinear coordinates in the hydrodynamic limit, along
with the correct mass continuity equation.

Keywords: lattice Boltzmann methods, curvilinear coordinates, Riemann geometry, hydrodynamics, non-
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1 INTRODUCTION

Lattice Boltzmann Methods (LBM) have been developed as an advantageous method for
computational fluid dynamics during past few decades [1, 2]. The underlying dynamics of a
lattice Boltzmann system resides on the kinetic theory, in that it involves motion of many
particles according to the Boltzmann equation [3, 4]. There are two fundamental dynamical
processes in a basic Boltzmann kinetic system, namely advection and collision. In the advection
process, a particle moves from one location to another according to its microscopic velocity, while in
the collision process particles interact with each other obeying conservation laws and relax to
equilibrium. In a standard LBMmodel, particle velocity takes on a discrete set of constant values, and
the latter form exact links from one lattice site to its neighboring sites on a simple Bravais lattice
corresponding to a three dimensional (3D) uniform cubical Cartesian mesh [5–7]. Therefore, having
these discrete velocity values, a particle moves from one lattice site to a unique neighboring site per
constant time interval (say Δt � 1). This exact one-to-one advection of a particle on the lattice
effectively realizes a Lagrangian advection characteristics. That is, a particle location during the
advection process is exactly predicted at any later time from its location at a given time. Such a
Lagrangian advection characteristics is the reason for one of the key advantages of LBM, besides its
simplicity, the advection process produces an extremely low numerical dissipation (due to no
smearing of locations of a single particle). Indeed, if such a one-to-one advection is relaxed,
numerical dissipation has been seen to significantly increase even with the usage of much higher
order interpolation schemes. In addition, the Lagrangian one-to-one advection may also have non-
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trivial implications in simulations of flows at finite Knudsen
numbers [7–9]. In contrast, unlike particle velocity, a fluid
velocity varies in both time and space, hence an one-to-one
advection process is impossible for a Navier-Stokes equation
based numerical scheme on a spatially fixed mesh.

However, a uniform and cubical Cartesian mesh poses
fundamental limitations. First of all, often in realistic fluid
study one deals with a solid geometry with curved surfaces,
and obviously a Cartesian mesh does not smoothly conform
with such a geometric shape. Secondly, a flow usually has small
scale structures concentrated in certain spatial locations and
directions. For instance, in the turbulent boundary layer, the
flow scale in the direction normal to the wall is much smaller than
in the tangential direction or in the fluid region outside of the
boundary layer. Consequently, the requirement on spatial
resolution is significantly higher in the normal direction inside
a boundary layer. A cubic Cartesian mesh does not provide the
flexibility with different spatial resolutions in different directions.
Therefore, it is of fundamental importance to extend the standard
LBM for a general non-cubic Cartesian mesh.

There have been various attempts in the past to extend
LBM on arbitrary meshes, including curvilinear mesh (cf
[10–12]). The essential idea is to relax the aforementioned
exact one-to-one advection between a pair of lattice sites while
keeping the advection of particles according to the original
constant discrete velocity values. As a consequence, on an
arbitrary mesh, a particle after advecting from its original
mesh site does not in general land on a single neighboring
mesh site. Thus its location needs to be distributed onto a set
of neighboring mesh sites via interpolation. As mentioned
above, such an effective “one-to-many” advection process
destroys the preciseness of a Lagrangian advection
characteristics thus resulting in a significantly increased
numerical dissipation.

It is of fundamental interest to formulate an LBM on a general
mesh that preserves the exact one-to-one feature of the particle
advection process. A possible way to accomplish this is to
construct the micro-dynamic process on a non-Euclidean
space represented by a general curvilinear coordinate system
based on Riemann geometry [13]. In such a non-Euclidean
space, a constant particle velocity corresponds to a curved and
spatially varying path in the underlying Euclidean space. Indeed,
the continuum Boltzmann kinetic theory on a Riemannian
manifold can be theoretically described [14, 15]. The key
difference between a constant particle velocity on a Euclidean
and a non-Euclidean space is that the latter is accompanied with
an inertial force, due to the 1st law of Newton in Euclidean space.
According to this concept, it is entirely conceivable to formulate
LBM models on a cubic Cartesian lattice in non-Euclidean space
that corresponds to a general curvilinear mesh in the Euclidean
space. The first such attempts were made by Mendosa et al. in a
series of papers (see [16–18]). The significance of their work is
that it established this fundamental approach to LBM on
curvilinear meshes via a Riemann geometric framework.

As Mendosa et al., we formulate LBM on a general curvilinear
coordinate system via the concept of Riemannian geometry.
There are several critical differences between our approach

presented here and that of Mendosa et al. First of all, we
adopt a volumetric formulation so that the mass and
momentum conservations are exactly ensured. The resulting
continuity equation of mass is automatically shown to have
the correct form in curvilinear coordinates, and there is no
need to introduce any artificial mass source term to correct
for any artifacts in the resulting hydrodynamics. Secondly, as
in the continuum kinetic theory on a manifold, the only external
source term in the extended LBM is associated with an effective
inertial force due to curvilinearity. It contributes no mass source.
Moreover, such a force term is constructed fully self-consistently
within the discrete lattice formulation. This force form in discrete
space and time recovers asymptotically the one in the continuum
kinetic theory in the hydrodynamic limit. It does not rely on any
outside analytical forms borrowed from the continuum kinetic
theory [14, 15]. Thirdly, the inertial force enforces the exact
momentum conservation for the underlying Euclidean space in
the discrete space-time LBM model. Lastly, we demonstrate that
the force term must be constructed properly so that it adds
momentum in the system at a proper discrete time moment in
order to produce the correct resulting Navier-Stokes
hydrodynamics to the viscous order. Indeed, the correct
Navier-Stokes equation is fully recovered in the hydrodynamic
limit with the new formulation without introducing any extra
correction terms.

To summarize, our goal is to theoretically demonstrate how
discrete kinetic theories can be formulated in curvilinear
coordinates in a way that mass and momentum are exactly
conserved, and also the correct hydrodynamics is recovered in
the microscopic limit. We hope the reader may find such
discrete non-equilibrium statistical systems interesting,
similar to discrete systems found in other branches of
physics, e.g., spin models on a lattice in the equilibrium
statistical theory, lattice field theories, etc. In addition to
fundamental interest, non-equilibrium discrete systems like
LBM may be useful for applications in numerical analysis
and for practical use. Computational aspects such as scheme
stability, numerical dissipation, performance, and boundary
conditions treatment, as well as numerical verification of
theoretical results, are outside of the scope of this study. We
also restrict ourselves to one of the simplest situations, namely
the low speed isothermal flow, which admits a closed self-
contained analytical treatment which explicates the main
features of volumetric formulation in curvilinear coordinates.
Possible extensions and applications of this work are briefly
discussed in Section 4 below.

The description of non-equilibrium dynamics and transport at
the spatio-temporal scales not treatable by hydrodynamics can
often benefit from using kinetic theory methods. Here we show
how to construct lattice kinetic theories in a general coordinate
system that possess exact conservation laws at both kinetic and
continuum scales, as well as correct macroscopic limit behavior.
In addition to the fundamental interest, this can be useful for
describing interactions at interfaces between different fluids or
materials with complex geometry.

The subsequent sections are organized as follows. We describe
in Section 2 the formulation of the new LBM on a general
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curvilinear mesh. In Section 3, we provide a detailed theoretical
derivation and show that the new LBM indeed produces the
correct Navier-Stokes equation in general curvilinear coordinates.
In order for the paper to be more self-contained, we provide, in
Supplementary Appendices SA1–SA3 basic theoretical
description of the continuum Boltzmann kinetic theory in
curvilinear coordinates as in the literature [15], some
fundamental properties [13], as well as a derivation of the
Navier-Stokes hydrodynamic equation on a general curvilinear
coordinate system.

2 FORMULATION OF LATTICE
BOLTZMANN IN CURVILINEAR
COORDINATES
This section is divided into two subsections. First, we construct
the geometric quantities that are necessary for defining a general
curvilinear coordinate system. Then we present the volumetric
lattice Boltzmann formulation on a general curvilinear mesh.

2.1 Construction of Geometric Quantities on
a Curvilinear Mesh
We describe how to construct a coordinate system for
formulating kinetic theory on a curvilinear mesh. Let x be
any spatial point in 3D Euclidean space. We choose a
curvilinear coordinate system, so that x � x(q) is uniquely
defined by q. Here q ≡ (q1, q2, q3) are the coordinate values
along three non-collinear congruences of parameterized basis
curves. The above forms the basic starting point for a general
curvilinear mesh. For when a 3D curvilinear mesh with its entire
spatial layout is given, then all its vertex locations in space are
known and specified. Let x now be only defined on sites
(i.e., vertices) of the curvilinear mesh. We choose the
coordinate system {q} that is a one-to-one mapping between
x and q. In other words, for any site x on the curvilinear mesh,
there is a unique value q associated with it, that is x � x(q) is
uniquely defined. In addition, we construct the coordinate
values of q on the mesh as follows: For any site x(q), its
nearest neighbor site along the ith (i � 1, 2, 3) coordinate
curve in the positive or negative direction is a spatial point
x± i. Due to the unique mapping, we have x ± i � x(q± i), where
q ± i is a unique coordinate value for the neighboring site. It is
entirely possible to choose the spatial variation of q in such a
way that q± i and q only differ in their ith coordinate component
values by a constant d0. That is, q± i � (q1± i, q2± i, q3± i), and qj± i −
qj � ±d0δji (i, j � 1, 2, 3). Here we choose the constant d0 to be
unity without loss of generality.

It is easy to see that, under such a construction, the coordinate
values {q} actually form a simple uniform 3D cubic Cartesian
lattice with the lattice spacing unity. One may interpret this
“Cartesian” lattice {q} as a result of deformation (bending,
twisting and stretching/compressing) of the original curvilinear
mesh {x} in the Euclidean space. Thus, its topological structure is
the same as the original curvilinear mesh, but the Cartesian lattice

is on a non-Euclidean space as a result of distortion of the original
Euclidean space.

When a curvilinear mesh is provided, spatial locations of all
the vertices {x} on the mesh are specified, and hence the distance
from any one vertex to another on a such mesh is also fully
determined. Let’s define the distance vector from x(q) to one of
its neighbors x(q± i) (i � 1, 2, 3) as

D± i(q) ≡ x(q ± i) − x(q); i � 1, 2, 3 (1)

For instance, D ± 1(q) ≡ x(q1 ± 1, q2, q3) − x(q1, q2, q3). Notice
that, due to spatial non-uniformity of a general curvilinear
mesh, the spatial distance from one mesh site to its nearest
neighbor site is in general changing from location to location.
In other words, D ± i(q) is a function of q. Furthermore, one can
realize that the distance value in the positive direction along the
ith coordinate curve is in general not equal to that in the negative
direction. Explicitly, in terms of the distance vectors,
Di(q)≠ −D−i(q). For example, according to the definition of
Eq. 1,

D−1(q) � x(q1 − 1, q2, q3) − x(q1, q2, q3) � −D1(q1 − 1, q2, q3)
≠ −D1(q) � −(x(q1 + 1, q2, q3) − x(q1, q2, q3))

(2)

and the inequality only becomes an equality everywhere if the
curvilinear mesh is a uniform lattice (so that |Di| � const,
independent of spatial coordinate value q).

Following the basic differential geometry concept, we now
construct the basis tangent vectors at x(q) along each of the three
coordinate directions,

gi(q) ≡ βi(q)[Di(q) −D−i(q)]/2Δx; i � 1, 2, 3 (3)

where the scalar factor βi(q) is

βi(q) ≡ [
∣∣∣∣Di(q)∣∣∣∣ + ∣∣∣∣D−i(q)∣∣∣∣]∣∣∣∣Di(q) −D−i(q)∣∣∣∣

and βi(q) � 1 when the two distance vectors Di(q) and −D−i(q)
are parallel. With such a construction, the parity symmetry is
achieved, so that

gi(q) � −g−i(q)
Notice, in Eq. 3 Δx is a length scale corresponding to a
representative vertex spacing of the mesh. It is well known
that, unlike a Cartesian coordinate system in Euclidean space,
the basis tangent vectors gi(q) (i � 1, 2, 3) of a curvilinear
coordinate system are not orthonormal in general. That is,
gi(q) · gj(q)≠ δij. Hence, we should further define the
corresponding metric tensor based on these basis tangent
vectors,

gij(q) ≡ gi(q) · gj(q), i, j � 1, 2, 3 (4)

as well as the volume J of the cell centered at x(q),
J(q) ≡ (g1(q) × g2(q)) · g3(q) (5)
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and we can always choose a proper handedness so that J(q)> 0.
Clearly J(q) is a constant in space for a uniform Bravais lattice.
One can easily verify that

g(q) ≡ det[gij(q)] � J2(q) (6)

with det[gij(q)] being the determinant of the metric tensor
[gij(q)]. Furthermore, we can define the co-tangent basis
vectors gi(q) (i � 1, 2, 3) accordingly,

g1(q) ≡ g2(q) × g3(q)/J(q)
g2(q) ≡ g3(q) × g1(q)/J(q)
g3(q) ≡ g1(q) × g2(q)/J(q) (7)

Indeed, the basis tangent vectors and the co-tangent vectors are
orthonormal to each other,

gi(q) · gj(q) � δji, i, j � 1, 2, 3

where δji is the Kronecker delta function. Similarly, we can define
the inverse metric tensor,

gij(q) ≡ gi(q) · gj(q), i, j � 1, 2, 3 (8)

Clearly the inverse metric tensor is the inverse of the metric
tensor, [gij(q)] � [gij(q)]− 1, or

∑3
k�1

gik(q)gkj(q) � δji

and

det[gij(q)] � 1/det[gij(q)]
Having these basic geometric quantities defined above, we can

now introduce the lattice Boltzmann velocity vectors on a general
curvilinear mesh, similar to the ones on a standard Cartesian
lattice,

eα(q) ≡ ciαgi(q)ΔxΔt (9)

Here and thereafter, the summation convention is used for
repeated Roman indices. For convenience, in subsequent
derivations we adopt the ‘lattice units’ convention so that Δx
� 1 and Δt � 1. The constant number ciα is either a positive or
negative integer or zero, and it is the ith component value of the
three dimensional coordinate array cα ≡ (c1α, c2α, c3α). For example,
in the so called D3Q19 with the Greek index α running from 0
to 19,5

cα ∈ {(0, 0, 0), ( ± 1, 0, 0), (0, ± 1, 0), (0, 0, ± 1), ( ± 1, ± 1, 0),
( ± 1, 0, ± 1), (0, ± 1, ± 1)}

As shown in the subsequent sections, a set of necessary moment
isotropy and normalization conditions must be satisfied in order
to recover the correct full Navier-Stokes hydrodynamics [6, 7, 19,
20]. These are, when there exists a proper set of constant weights

{wα; α � 1, . . . , b}, the set of lattice component vectors admit
moment isotropy up to the 6th order, namely

∑
α

wα � 1

∑
α

wαc
i
αc

j
α � T0δ

ij ≡ T0Δ(2),ij

∑
α

wαc
i
αc

j
αc

k
αc

l
α � T2

0[δijδkl + δikδjl + δilδjk] ≡ T2
0Δ(4),ijkl

∑
α

wαc
i
αc

j
αc

k
αc

l
αc

m
α c

n
α

� T3
0[ δijΔ(4),klmn + δikΔ(4),jlmn + δilΔ(4),jkmn

+δimΔ(4),jkln + δinΔ(4),jklm ] ≡ T3
0Δ(6),ijklmn

(10)

where the constant T0 depends on the choice of a set of lattice
vectors and δij is the Kronecker delta function. For example, T0 �
1/3 for the so called D3Q19 lattice (albeit it only satisfies Eq. 10
up to the 4th order). Notice, one should not confuse the three
dimensional array cα with the lattice vector eα(q) in Eq. 9. The
former is simply an array of three constant (integer) numbers,
while the latter is a vector (with a well defined direction and
magnitude) at q on the curvilinear mesh.

Lastly, we define a set of specific geometric quantities below
that are essential for the extended LBM model,

Θi
j(q + cα, q) ≡ [gj(q + cα) − gj(q)] · gi(q)

i, j � 1, 2, 3; α � 0, 1, . . . , b (11)

It is easily seen that Θi
j(q + cα, q) vanish if the mesh is a uniform

Cartesian lattice.
Once a curvilinear mesh is specified, all the geometric

quantities above are fully determined and can thus be pre-
computed before starting a dynamic LBM simulation.

2.2 Volumetric Lattice Boltzmann Model on
a Curvilinear Mesh
Although the basic theoretical framework of the work is more
general, for simplicity of describing the basic concept, we present
the formulation for the so called isothermal LBM in this section.
Similar to the standard lattice Boltzmann equation (LBE), we
write the evolution of particle distribution below [1, 5, 21–23]

Nα(q + cα, t + 1) � Nα(q, t) + Ωα(q, t) + δNα(q, t) (12)

whereNα(q, t) is the number of particles belonging to the discrete
direction cα in the cell q at time t. We have assumed in Eq. 12 a
unity time increment (i.e., Δt � 1) without loss of generality.
Ωα(q, t) in Eq. 12 is the collision term that satisfies local mass and
momentum conservations,

∑
α

Ωα(q, t) � 0

∑
α

eα(q)Ωα(q, t) � 0 (13)
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The particle density distribution function fα(q, t) is related to
Nα(q, t), via

J(q)fα(q, t) � Nα(q, t) (14)

where J(q) is the volume of cell centered at q, as defined
previously. The fundamental fluid quantities are given by the
standard hydrodynamic moments,

ρ(q, t) �∑
α

fα(q, t)
ρ(q, t)u(q, t) �∑

α

eα(q)fα(q, t) (15)

where ρ(q, t) and u(q, t) are fluid density and velocity at the
location x(q) and time t. Using the relationship in Eq. 9, the
velocity moment above can also be rewritten as

ρ(q, t)u(q, t) �∑
α

ciαgi(q)fα(q, t)
� ρ(q, t)Ui(q, t)gi(q) (16)

and the velocity component value in the curvilinear coordinate
system is given by,

ρ(q, t)Ui(q, t) �∑
α

ciα fα(q, t) (17)

Or for simplicity of notation, we define a three-dimensional fluid
velocity array U(q, t) ≡ (U1(q, t),U2(q, t),U3(q, t)). Therefore,
Eq. 17 can be equivalently expressed as

ρ(q, t)U(q, t) �∑
α

c αfα(q, t) (18)

It is immediately seen that Eq. 18 has the same form for the fluid
velocity as that in the standard Cartesian lattice based LBM.
Similarly, the momentum conservation of the collision term in
Eq. 13 can also be written as,

∑
α

cαΩα(q, t) � 0 (19)

Often in LBM the collision term takes on a linearized form [1,
20], namely

Ωα(q, t) �∑
β

J(q)Mαβ[fβ(q, t) − f eqβ (q, t)] (20)

where Mαβ and f eqβ (q, t) represent a collision matrix and the
equilibrium distribution function, respectively. In particular, the
so called Bhatnagar-Gross-Krook (BGK) form corresponds to

Mαβ � − 1
τ
δαβ

with τ being the collision relaxation time [5, 22–24]. In order to
recover the correct Navier-Stokes hydrodynamics, besides Eqs
13,19 the collision matrix needs to satisfy an additional condition
[8, 9, 20, 25–27],

∑
α

cαcαMαβ � − 1
τ
cβcβ (21)

Obviously the BGK form trivially satisfies such an additional property.

The extra term δNα(q, t) in Eq. 12 represents the change of
particle distribution due to an effective inertial force associated
with the curvature and non-uniformity of a general curvilinear
mesh. Obviously δNα(q, t) vanishes in the standard LBM on a
Cartesian lattice. We explain and construct its explicit
form below.

We define the advection process as an exact one-to-one hop
from one site to another as in the standard LBM, namely

Nα(q + cα, t + 1) � N ′
α(q, t) (22)

where N ′
α(q, t) is the post-collide distribution at (q, t) that is

equal to the right side of Eq. 12. Due to curvilinearity, though the
amount of particles advected from cell q is exactly equal to what is
arrived at cell q + cα (as defined in Eq. 22), the momentum is in
fact changed along the way. Indeed, in general

eα(q + cα)Nα(q + cα, t + 1)≠ eα(q)N ′
α(q, t)

In the above, the left side of the inequality sign is the momentum
value at the end of advection process while the right side is the value
at the beginning of the process. The inequality is there because the
path of particles is curved (as well as stretched or compressed), so
that its velocity at the end of the advection is changed from its
original value. This is fundamentally different from that on a
uniform Cartesian lattice, in that the particles have a constant
velocity throughout the advection process. Consequently, we have
the following inequalities in the overall momentum values,

∑
α

eα(q)Nα(q, t)≠∑
α

eα(q − eα)N ′
α(q − cα, t − 1) (23)

where the right side of the unequal sign in Eq. 23 represents the
total amount of momentum advected out of all the neighboring
cells, while the left side is the total momentum arrived at cell q
after the advection along the curved paths. Thus from Eqs 22,23,
we see that the net momentum change via advection from all the
neighboring cells into cell q is given by,

J(q)χI(q, t) � −∑
α

[eα(q) − eα(q − cα)]Nα(q, t) (24)

Similarly, we can realize that the net momentum change via
advection out of cell q to all its neighboring cells is given by

J(q)χo(q, t) � −∑
α

[eα(q + cα) − eα(q)]N ′
α(q, t) (25)

Subsequently, if we impose the constraints on δNα(q, t) below,
∑
α

δNα(q, t) � 0

∑
α

eα(q)δNα(q, t) � J(q)χ(q, t) (26)

then we preserve an exact mass conservation as well as recover the
exact momentum conservation in discrete space-time for the
underlying Euclidean space. Here χ(q, t) � [χI(q, t) + χo(q, t)]/2.
More specifically, the first constraint in Eq. 26 means that no
mass source is introduced by δNα(q, t). On the other hand, the
second constraint in Eq. 26 introduces an “inertial force” that
equals exactly to the amount needed for achieving the
momentum conservation in the underlying Euclidean space at
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any lattice site q and time t. The mechanism is in analogy with the
continuum kinetic theoretic description in a curved space.
Writing in the coordinate component form, we have

Fi(q, t) � χ(q, t) · gi(q)
Using the geometric quantities defined in the previous subsection,
it can be immediately shown that

J(q)Fi(q, t) � − 1
2
∑
α

cjα{Θi
j(q + cα, q)N ′

α(q, t)
− Θi

j(q − cα, q)Nα(q, t)} (27)

where the geometric function Θi
j(q + cα, q) is defined in Eq. 11.

From Eqs 11, 27, one can immediately see that Fi(q, t) vanishes if
the curvilinear mesh is a regular uniform Cartesian lattice, as is
obviously the case for a basic LBM. The second constraint in Eq.
26 can also be expressed in coordinate component form as

∑
α

ciαδNα(q, t) � J(q)Fi(q, t) (28)

As to be demonstrated in the next section, in order to recover the
full viscous Navier-Stokes equation, an additional constraint on
the momentum flux also needs to be imposed below,

∑
α

ciαc
j
αδNα(q, t) � J(q)[δΠij(q, t) + δΠji(q, t)] (29)

with

δΠij(q, t) ≡ − 1
2
(1 − 1

2τ
)∑

α

ciαc
k
α[Θj

k(q + cα, q) − Θj
k(q − cα, q)] f eqα (q, t)

(30)

A specific form of δNα(q, t) can be chosen below

δNα(q, t) � wα J(q)[cjαFj(q, t)
T0

+ (cjαckα
T0

− δjk) δΠjk(q, t)
T0

] (31)

With a simple algebra, one can verify that it satisfies the moment
constraints of Eqs 26, 28, 29. Notice, due to the appearance of
N ′
α(q, t) in Eq. 27, the overall collision process for determining

N ′
α(q, t) defines an implicit relationship, so that various ways to

handle it need to be explored depending on types flows of interest.
The final part for complete specifying the extended LBM on a

curvilinear mesh is the form of the equilibrium distribution
function, which needs to be defined appropriately in order to
recover the correct Euler equation as well as the Navier-Stokes
equation in curvilinear coordinates in the hydrodynamic limit. In
particular, the following fundamental conditions on
hydrodynamic moments must be realized,

∑
α

f eqα � ρ,

∑
α

ciα f
eq
α � ρUi,

∑
α

ciαc
j
α f

eq
α ≡ Πij,eq � gijρT0 + ρ~U

i ~U
j
,

∑
α

ciαc
j
αc

k
α f

eq
α ≡ Qijk,eq � [gij ~Uk + gjk ~U

i + gki ~U
j]ρT0 + ρ~U

i ~U
j ~U

k

(32)

In the above,

~U
i(q, t) � Ui(q, t) + 1

2
ai(q, t)

with ρ(q, t)ai(q, t) ≡ Fi(q, t). It is straightforward to show that
these fundamental conditions are met by the following
equilibrium distribution form,

f eqα � ρwα{1 + ciαU
i

T0
+ 1
2T0
(ciαcjα
T0

− δij)[(gij − δij)T0 + ~U
i ~U

j]
+ 1
6T3

0
(ciαcjαckα − T0(ciαδjk + cjαδ

ki + ckαδ
ij))[T0[(gij ~Uk

− δijUk) + (gjk ~Ui − δjkUi) + (gki ~Uj − δkiUj)] + ~U
i ~U

j ~U
k]}
(33)

The equilibrium distribution form above is analogous to that of a
low Mach number expansion of the Maxwell-Boltzmann
distribution expressed in curvilinear coordinates [14]. It
reduces to the standard LBM equilibrium distribution if the
curvilinear mesh is a uniform Cartesian lattice so that gij � δij

[7, 19, 20].
With all the quantities and dynamic properties defined

above, we can show that the lattice Boltzmann Eq. 12
computed on the (non-Euclidean) uniform Cartesian lattice
{q} obeys the Navier-Stokes hydrodynamics in curvilinear
coordinates. Consequently, mapping of the resulting fluid
values, ρ(q, t) and Ui(q, t), onto the curvilinear mesh is given
by a simple transformation below,

ρ(x(q), t) � ρ(q, t) ,
u(x(q), t) � Ui(q, t)gi(q) (34)

3 DERIVATION OF THE NAVIER-STOKES
HYDRODYNAMICS IN CURVILINEAR
COORDINATES
In this section, we provide a detailed derivation and show that the
extended LBM presented above indeed produces the correct
Navier-Stokes equations in general curvilinear coordinates. We
rewrite the lattice Boltzmann Eq. 12) below,

Nα(q + cα, t + 1) � Nα(q, t) + Ωα(q, t) + δNα(q, t) (35)

Expanding it in both time and space up to the second order
leads to

[zt + ciα
z

zqi
+ 1
2
(zt + ciα

z

zqi
)2]Nα � Ωα + δNα (36)

Now we introduce multiple scales in time and space based on
the conventional Chapman-Enskog expansion procedure,
[21, 28]

zt � ϵzt0 + ϵ2zt1;
z

zqi
� ϵ z

zqi
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and

Nα � Neq
α + ϵN(1)

α + ϵ2N(2)
α +/

Here ϵ (≪ 1) denotes a small number. Conservation laws require,

∑
α

Neq
α �∑

α

Nα � Jρ,∑
α

ciαN
eq
α �∑

α

ciαNα � JρUi

∑
α

N(n)
α �∑

α

ciαN
(n)
α � 0; n> 0 (37)

Likewise, δNα � ϵδN(0)
α + ϵ2δN(1)

α +/, and

∑
α

δN(n)
α � 0; n � 0, 1, . . .

for they introduce no source of mass. Equating the same powers
of ϵ, Eq. 36 leads to the following two equations

(zt0 + ciα
z

zqi
)Neq

α �∑
β

MαβN
(1)
β + δN(0)

α (38)

and

zt1N
eq
α + 1

2
(zt0 + ciα

z

zqi
)2

Neq
α + (zt0 + ciα

z

zqi
)N(1)

α

�∑
β

MαβN
(2)
β + δN(1)

α (39)

where the collision term has taken the linearized form in Eq. 20.
Eq. 38 can be directly inverted,

N(1)
α �∑

β

M−1
αβ[(zt0 + ciβ

z

zqi
)Neq

β − δN(0)
β ] (40)

Therefore, Eq. 39 can also be written as,

zt1N
eq
α + 1

2
(zt0 + ciα

z

zqi
)⎡⎢⎢⎣∑

β

MαβN
(1)
β + δN(0)

α
⎤⎥⎥⎦

+ (zt0 + ciα
z

zqi
)N(1)

α

�∑
β

MαβN
(2)
β + δN(1)

α (41)

Taking the mass moment of Eqs 38, 41, and using mass
conservation properties of Mαβ and δN(n) above, we obtain for
the leading order

∑
α

(zt0 + ciα
z

zqi
)Neq

α � 0 (42)

Based on the equilibrium moment definitions Eqs 37, 42 is
equivalent to

zt0(Jρ) + z

zqi
(JρUi) � 0 (43)

For the next order, we have

zt1∑
α

Neq
α + 1

2
z

zqi
∑
α

ciαδN
(0)
α � 0 (44)

Combining Eq. 43 and Eq. 44, we get

zt∑
α

Neq
α + z

zqi
∑
α

ciαN
eq
α + 1

2
z

zqi
∑
α

ciαδN
(0)
α � 0 (45)

Substitute the definitions in Eqs 37, 45 becomes

zt(Jρ) + z

zqi
[Jρ(Ui + a(0),i

2
)] � 0 (46)

where

∑
α

ciαδN
(0)
α ≡ Jρa(0),i (47)

is to be further discussed later in this section. Define the fluid
velocity as

~U
i ≡ Ui + 1

2
a(0),i (48)

and since J � J(q) is not a function of time, Eq. 46 is in fact the
standard mass continuity equation expressed in general
curvilinear coordinates,

ztρ + 1
J

z

zqi
(Jρ~Ui) � 0 (49)

Recognizing that 1J
z
zqi (JAi) � ∇ · A is the divergence of a vector A

in a general curvilinear coordinate system, Eq. 49 is simply the
familiar mass continuity equation in the coordinate free
representation,

ztρ + ∇ · (ρ~u) � 0 (50)

Taking the momentum moment of Eq. 38, we get,

∑
α

ciα(zt0 + cjα
z

zqj
)Neq

α �∑
α

ciαδN
(0)
α (51)

Define (see also in Eq. 32)

JΠij,eq ≡∑
α

ciαc
j
αN

eq
α (52)

together with Eq. 47, Eq. 51 becomes

zt0(JρUi) + z

zqj
(JΠij,eq) � Jρa(0),i (53)

Similarly, taking the momentum moment of Eq. 41,

zt1∑
α

ciαN
eq
α +∑

α

ciαc
j
α

z

zqj
∑
α

[δαβ + 1
2
Mαβ]N(1)

β

+ 1
2
∑
α

ciα(zt0 + cjα
z

zqj
)δN(0)

α

�∑
α

ciαδN
(1)
α (54)

Let

JΠij,(1) ≡∑
α

ciαc
j
α∑

α

(δαβ + 1
2
Mαβ)N(1)

β (55)
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and use relation Eq. 40, we can derive

JΠij,(1) �∑
α

ciαc
j
α∑

β

(δαβ + 1
2
Mαβ)∑

c

M−1
βc[(zt0 + ckc

z

zqk
)Neq

c − δN(0)
c ]

�∑
α

ciαc
j
α∑

β

(M−1
αβ +

1
2
δαβ)[(zt0 + ckβ

z

zqk
)Neq

β − δN(0)
β ]

(56)

Using the collision matrix property Eq. 21 and its inverse,
namely

∑
α

cαcαMαβ � − 1
τ
cβcβ;∑

α

cαcαM
−1
αβ � −τcβcβ (57)

then Eq. 56 becomes

JΠij,(1) � −(τ − 1
2
)∑

α

ciαc
j
α[(zt0 + ckα

z

zqk
)Neq

α − δN(0)
α ] (58)

Substitute JΠij,(1) of the above into Eq. 54, we get

zt1∑
α

ciαN
eq
α − z

zqj
⎧⎨⎩(τ − 1

2
)∑

α

ciαc
j
α[(zt0 + ckα

z

zqk
)Neq

α − δN(0)
α ]⎫⎬⎭

+ 1
2
∑
α

ciα(zt0 + cjα
z

zqj
)δN(0)

α

�∑
α

ciαδN
(1)
α (59)

After some simple cancellations and rearrangements, it becomes

zt1∑
α

ciαN
eq
α + 1

2
zt0∑

α

ciαδN
(0)
α

− z

zqj
⎡⎣(τ − 1

2
)∑

α

ciαc
j
α(zt0 + ckα

z

zqk
)Neq

α
⎤⎦

+ z

zqj
⎡⎣τ∑

α

ciαc
j
αδN

(0)
α
⎤⎦

�∑
α

ciαδN
(1)
α (60)

Using definitions in Eq. 32, Neq
α � Jf eqα , and Eq. 47, Eq. 60 can be

equivalently expressed as

zt1(JρUi) + 1
2
zt0(Jρa(0),i)

− z

zqj
⎡⎣(τ − 1

2
)∑

α

ciαc
j
α(zt0 + ckα

z

zqk
)Neq

α
⎤⎦

+ z

zqj
⎡⎣τ∑

α

ciαc
j
αδN

(0)
α
⎤⎦ � Jρa(1),i (61)

where in the above we have defined Jρa(1),i ≡ ∑αc
i
αδN

(1)
α .

Now let us examine the forcing terms Jρa(0),i and Jρa(1),i.
Recall from the momentum conservation condition, the overall
forcing term in Eq. 12 is given by Eq. 28, that is

∑
α

ciαδNα(q, t) � J(q)Fi(q, t)

with JFi given by Eq. 27,

J(q)Fi(q, t) � − 1
2
∑
α

cjα{Θi
j(q + cα, q)N ′

α(q, t)
− Θi

j(q − cα, q)Nα(q, t)} (62)

where Θi
j(q + cα, q) is defined in Eq. 11. Taking the continuum

limit, we have for the leading order of Θi
j(q + cα, q)

Θi
j(q + cα, q) ≡ [gj(q + cα) − gj(q)] · gi(q)

≈ ckα
zgj(q)
zqk

· gi(q) (63)

Similarly,

Θi
j(q − cα, q) ≡ [gj(q − cα) − gj(q)] · gi(q)

≈ − ckα
zgj(q)
zqk

· gi(q) (64)

Consequently, when substitute Eqs 63, 64 in Eq. 62, we obtain, to
the leading order

J(q)Fi(q, t) � − 1
2
Γijk(q)∑

α

cjαc
k
α[N ′

α(q, t) + Nα(q, t)] (65)

where

Γijk(q) ≡ zgj(q)
zqk

· gi(q) (66)

is the Christoffel symbol as defined in differential geometry [13].
Also in the above, the relationship Eq. 22 is used, namely

Nα(q + cα, t + 1) � N ′
α(q, t) (67)

Furthermore, since

Nα(q + cα, t + 1) ≈ Nα(q, t) + (zt0 + ckα
z

zqk
)Nα(q, t)

we have from Eq. 65 the following

∑
α

ciαδNα(q, t) � J(q)Fi(q, t)
� −Γijk(q)∑

α

cjαc
k
αNα(q, t)

− 1
2
Γijk(q)∑

α

cjαc
k
α(zt0 + clα

z

zql
)Nα(q, t) (68)

Comparing terms of the same order in ϵ, we recognize that

∑
α

ciαδN
(0)
α � Jρa(0),i � −Γijk∑

α

cjαc
k
αN

eq
α (69)

and

∑
α

ciαδN
(1)
α � Jρa(1),i � −Γijk∑

α

cjαc
k
αN

(1)
α (70)

− 1
2
Γijk∑

α

cjαc
k
α(zt0 + clα

z

zql
)Neq

α (71)
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Replacing N(1)
α with that in Eq. 40, with the use of property

Eq. 57 and after some straightforward algebra, Eq. 71
becomes

∑
α

ciαδN
(1)
α � Jρa(1),i

� Γijk
⎧⎨⎩(τ − 1

2
)∑

α

cjαc
k
α(zt0 + clα

z

zql
)Neq

α

− τ∑
α

cjαc
k
αδN

(0)
α

⎫⎬⎭ (72)

From the definition Eqs 52, 69, we see that

Jρa(0),i � −ΓijkJΠjk,eq (73)

Similarly, let us also define

JΠij,neq ≡ − (τ − 1
2
)∑

α

ciαc
j
α(zt0 + ckα

z

zqk
)Neq

α

+ τ∑
α

ciαc
j
αδN

(0)
α

� −(τ − 1
2
)[zt0(JΠij,eq) + z

zqk
(JQijk,eq)]

+ τ∑
α

ciαc
j
αδN

(0)
α

(74)

where

JQijk,eq ≡∑
α

ciαc
j
αc

k
αN

eq
α (75)

Hence, from Eq. 72, we have

Jρa(1),i � −ΓijkJΠjk,neq (76)

Taking Eq. 73 to Eq. 53, we have for the leading order the
equation below

zt0(JρUi) + z

zqj
(JΠij,eq) + ΓijkJΠjk,eq � 0 (77)

On the other hand, taking Eqs 74, 76 to Eq. 61, we get in the
viscous order

zt1(JρUi) + 1
2
zt0(Jρa(0),i) + z

zqj
(JΠij,neq) + ΓijkJΠjk,neq � 0 (78)

Combining Eqs. 77, 78 together and using the definition in Eq.
48, one obtains formally the Cauchy’s transport equation,
namely

zt(ρ~Ui) + 1
J

z

zqj
(JΠij) + ΓijkΠjk � 0 (79)

where Πjk � Πjk,eq + Πjk,neq.
Eq. 79 can be further expressed in terms of hydrodynamic

quantities. From the moment properties of the equilibrium
distribution function in Eq. 32, we have

Πij,eq � gijρT0 + ρ~U
i ~U

j
(80)

which has exactly the same form as that from the continuum
kinetic theory. On the other hand, from Eq. 74 we have

Πij,neq � −(τ − 1
2
)[zt0Πij,eq + 1

J
z

zqk
(JQijk,eq)]

+ τ

J
∑
α

ciαc
j
αδN

(0)
α (81)

where, from Eq. 32, Πij,eq is given by Eq. 80 and Qijk,eq is given
below

Qijk,eq � [gij ~Uk + gjk ~U
i + gki ~U

j]ρT0 + ρ~U
i ~U

j ~U
k

(82)

which has exactly the same form as that from the continuum
kinetic theory. However, the term τ∑

α
ciαc

j
αδN(0)

α needs to be
further evaluated in terms of the hydrodynamic quantities.

From Eqs 29, 30, we have

∑
α

ciαc
j
αδNα(q, t) � J(q)[δΠij(q, t) + δΠji(q, t)] (83)

with

δΠij(q, t) ≡ − 1
2
(1 − 1

2τ
)∑

α

cjαc
k
α[Θi

k(q + cα, q) − Θi
k(q − cα, q)]f eqα (q, t)

(84)

Taking the long wave length limit, Eq. 84 in the continuum limit
becomes

δΠij(q, t) ≈ − (1 − 1
2τ
)Γikl(q)∑

α

cjαc
k
αc

l
α f

eq
α (q, t)

� −(1 − 1
2τ
)Γikl(q)Qjkl,eq(q, t) (85)

Therefore,

τ∑
α

ciαc
j
αδN

(0)
α � −(τ − 1

2
)J(q)[Γikl(q)Qjkl,eq(q, t)

+ Γjkl(q)Qikl,eq(q, t)] (86)

So we finally obtain from Eq. 81 that

Πij,neq � −(τ − 1
2
){zt0Πij,eq + 1

J
z

zqk
(JQijk,eq)

+ [Γikl(q)Qjkl,eq + Γjkl(q)Qikl,eq]} (87)

with Πij,eq and Qijk,eq given by Eqs 80, 82.
Substituting Eqs 80, 87 into Eq. 79, comparing with eqn (B.9)

in Supplementary Appendix SA2, together with the definitions
of Eqs 80, 82 (having the same forms as that from the continuum
kinetic theory), we finally arrive at exactly the same form as
derived out of a continuum kinetic theory in curvilinear
coordinates. The only difference between the two is that the
collision time τ is replaced by (τ − 1/2) here. The rest of
derivation for obtaining the Navier-Stokes hydrodynamics is a
straightforward algebra and is no different from that of the
continuum kinetic theory in curvilinear coordinates (provided
in Supplementary Appendices SA1, SA2). Notice, same as the
derivation in the continuum kinetic theory, in Eq. 87 the 0th
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order time derivative term zt0Πij,eq is to be replaced by the leading
(Euler) order equations on the right hand sides of Eqs 43, 77.
Without repeating the rest of algebra, here we present the final
form - the Navier-Stokes equation in a general curvilinear
coordinate system,

zt(ρ~Ui) + 1
J

z

zqj
(Jρ~Ui ~U

j) + Γijkρ~U
j ~U

k

� −gij zp
zqj

+ 1
J

z

zqj
(2JμSij) + 2ΓijkμSjk (88)

where the pressure p � ρT0, μ � (τ − 1/2)ρT0, and

Sij � 1
2
[~Ui

kg
kj + ~U

j
kg

ki]∣∣∣∣∣∣∣∣∣∣
with the standard covariant derivative of the velocity component
defined as

~U
i
k ≡

z~U
i

zqk
+ Γikl ~U

l

∣∣∣∣∣∣∣∣∣
Using the standard definitions of differential operators in
differential geometry [13], we can recognize that Eq. 88 is
indeed the familiar Navier-Stokes equation in a generic
coordinate-free operator representation,

zt(ρ~u) + ∇ · (ρ~u~u) � −∇p + ∇ · (2μS) (89)

4 DISCUSSION

In this paper, we present a theoretical formulation of lattice
Boltzmann models in a general curvilinear coordinate system.
The formulation is an application of the Riemannian geometry
for kinetic theory [14] to discrete space and time. Unlike some
previous works [16–18], here we use a volumetric representation
so that conservation laws are exactly ensured [11]. Furthermore,
in the current formulation, we find that the main and the only
additional source term in the extended LBM model is
corresponding to the inertial force to ensure the exact
momentum conservation in the underlying Euclidean space.
This is the same as in the continuum kinetic theory. On the
other hand, this forcing term needs to be applied at an
appropriate discrete time in order to realize the correct viscous
fluid effect associated with non-equilibrium physics. The
equilibrium distribution function also needs to be properly
modified that is directly analogous to the Maxwell-Boltzmann
distribution on a curved space. Unlike the previous formulations
[16–18], there are no other terms or treatments added to cancel
any discrete artifacts. Through a detailed analysis, we have shown

that the current LBM formulation recovers the correct Navier-
Stokes behavior in the hydrodynamic limit, as long as a discrete
lattice velocity set satisfying a sufficient order of isotropy is used.
Extensive numerical validations of this extended LBM for various
flows on various curvilinear meshes are to be presented in future
publications. The main benefit of this kind of theoretical
formulation in a general curvilinear coordinate system is its
preservation of the key LBM one-to-one Lagrangian nature of
particle advection. Not only this is desirable in algorithmic
simplicity, as a standard LBM on a Cartesian lattice, it also
has non-trivial implications for flows at finite Knudsen
number [7–9]. Although the specific LBM model constructed
here is for an isothermal fluid, the fundamental framework is
directly extendable to more general fluid flow situations. Possible
extensions in the future may include transport of scalars, complex
fluids, finite Knudsen flows, as well as higher speed flows with
energy and temperature dynamics in curved space. The latter is
essential for study of highly compressible flows and flows with
substantial temperature variations. Another interesting possible
extension of the current theoretical formulation in the future is
for a time varying coordinate system. This is useful particularly
for studying of fluid flows around a dynamically deforming solid
object.
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