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Herein we describe new frontiers in mathematical modeling and statistical analysis of
oscillatory biomedical signals, motivated by our recent studies of network formation in the
human brain during the early stages of life and studies forty years ago on cardiorespiratory
patterns during sleep in infants and animal models. The frontiers involve new nonlinear-
type time–frequency analysis of signals with multiple oscillatory components, and efficient
particle filters for joint state and parameter estimators together with uncertainty
quantification in hidden Markov models and empirical Bayes inference.
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1 INTRODUCTION

The 2017 Nobel Prize in Physiology or Medicine was awarded to Jeffrey Hall andMichael Rosbash of
Brandeis University, andMichael Young of Rockefeller University, “for their discoveries of molecular
mechanisms controlling the circadian rhythm.” In 1984, they succeeded in isolating the “period gene”
(i.e., the gene that controls the circadian rhythm). Hall and Rosbash then went on to “discover PER,
the protein encoded by period, accumulated during the night and degraded during the day.” In 1994,
Young answered a “tantalizing puzzle” concerning how PER produced in the cytoplasm could reach
the cell nucleus where genetic material is located. He discovered a second gene timeless, encoding the
TIM protein so that TIM bound to PER can enter the cell nucleus to block the period gene activity.
“Such a regulatory feedback mechanism explained how this oscillation of cellular protein levels
emerged, but questions lingered,” such as what controlled the frequency of the oscillations. Young
identified another gene doubletime encoding the DBT protein that delayed the accumulation of the
PER protein. The three laureates identified additional proteins required for the activation of the
period gene, as well as for the mechanisms by which light can synchronize the circadian clock.

One of us (Muotri) was PI of a project on “spontaneous network formation” displaying “periodic
and regular oscillatory events that were dependent on glutamatergic and GABAergic signaling”
during early the brain maturations, for which structural and transcriptional changes “follow fixed
developmental programs defined by genetics,” see [1] who also found that “the oscillatory activity
transitioned to more spatiotemporally irregular patterns which synchronous network activity
resembled features similar to those observed in preterm human EEG.” This project is similar in
spirit to the exemplary work of Hall, Rosbash, and Young but the “experimental inaccessibility” of
the human brain during the early stages of life pushes mathematical modeling and statistical analysis
of the oscillatory signals and events to new frontiers that we present in the next section. We describe
in the next paragraph the underlying biomedical background of this project.
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One of the major recent realizations, especially in the
neurosciences, is that while we can obtain important
information from animal studies, there are major differences
between humans and animals. This is manifested in many ways,
especially in those major clinical trials based on animal findings
that did not pan out. Therefore, if we intend to study pathogenesis
of disease, treat them, prevent them, or cure diseases across the age
spectrum, we need to refocus our scientific approaches and
strategies in order to be more efficient and effective. Since
embryonic stem cells are often problematic to obtain for ethical
reasons, the discovery of being able to re-program somatic cells
from humans into induced pluro-potential stem cells (iPSCs,
taking these somatic cells back into their “history”) and
differentiate them into different relatively mature cell types have
opened a major avenue for the scientific community, resulting in
the 2012 Nobel Prize in Physiology or Medicine to John Gurdon of
Cambridge and Shinya Yamanaka of Kyoto. If these iPSCs are
exposed to the right growth factors, they would assemble into the
early human brain (brain organoids) by an amazing process of self-
organizing the 3-dimensional cellular elements that recapitulate
the network, cellular, andmembrane properties of neurons and the
glia. Many types of organoids such as the kidney, the intestine, the
liver, and the lung organoids have been recently developed. These
organoids have been particularly useful for studying either normal
early human biology or developmental disorders as in
neurodevelopmental diseases.

2 METHODS

The statistical methods used by Trujillo et al. (2019, pp. 16–19) in
their analysis of data on oscillatory signals and events consist of 1)
multi-electrode array (MEA) recording and custom analysis, 2)
network event analysis that involves detecting spikes (when at
least 80% of the maximum spiking values) over the length of the
recording when reached at least 1 s away from any other network
event, 3) oscillatory spectral power analysis, in which “oscillatory
power” is defined as “peaks in the PSD (power spectral density
estimated by Peter D. Welch’s method) above the aperiodic 1/f
power law decay,” and 4) resampled Pearson’s correlation
coefficient between neonatal age and each of 12 EEG features.
Because of “the inability to interrogate the electrophysiology of
intact human brains” and the emergence of induced pluripotent
stem cells (iPSCs) and organoids as “a scaled-down and three-
dimensional model of the human brain, mimicking various
developmental features at cellular and molecular levels,” [1,
pp. 4, 7–9, 18] used oscillatory dynamics of LFP (local field
potential) and other mesoscopic brain signals, which manifest “a
phenomenon known as cross-frequency phase-amplitude
coupling (PAC) wherein the high-frequency content of LFP is
entrained to the phase of slow oscillations.” Noting that “the
pattern of alternating periods of quiescence and network-
synchronized events resembles electrophysiological signatures
in preterm human EEG,” [1] analyzed “a publicly available
dataset of 101 serial EEG recordings from 39 preterm infants
ranging from 24 to 38 weeks post-menstrual age,” containing 23
precomputed features (including spectral power in canonical

oscillatory bands, duration, and timing of “spontaneous
activity transients” or SATs) for each EEG record. To compare
the features between cortical organoids and preterm infants, [1]
trained a regularized regression model (ElasticNet) with cross-
validation for hyparameter selection based on the preterm
infants’ EEG recordings and applied the model to the
organoid dataset to “obtain the predicted developmental time.”
The results were mixed and [1] concluded that “given the
potential roles of synchronized and oscillatory network
dynamics in coordinating information flow between developed
brain regions, these results highlight the potential for cortical
organoids to advance our understanding of functional
physiology” and to model “cellular interactions and neural
circuit dysfunctions related to neurodevelopmental and
neuropsychiatric pathologies” that “affect millions of people
but otherwise lack an existing animal model.” These statistical
methods are “custom” (or traditional) methods, as acknowledged
by [1]. We describe innovative and powerful methods in the next
two subsections, first for time–frequency analysis of oscillatory
biomedical signals with time-varying features and then a new
hidden Markov model (HMM) which incorporates the key
features of the cortical organoid model and provides
uncertainty quantification for empirical Bayes inference based
on the model and observed data.

2.1 Time–Frequency Analysis of Signals
With Multiple Oscillatory Components
The first author (Wu) has been working on time–frequency
analysis (TFA) and its applications to high-frequency
biomedical signals in the last ten years. Examples include
electrocardiography, electroencephalogram, local field
potential, photoplethysmogram (PPG), actinogram, peripheral
venous pressure (PVP), arterial blood pressure,
phonocardiogram, and airflow respiratory signal, to name
several. Usually, these signals are composed of multiple
components, each of which reflects the dynamics of a
physiological system. The analysis is challenged by the
physiological variability that appears in the form of
time-varying frequency and amplitude or even time-varying
oscillatory pattern that is referred to as the “wave-shape
function.” Furthermore, depending on the signal, the “waxing
and waning” effect is sometimes inevitable for its components; see
[2, Figure 1] for an illustration. Take the widely applied PPG
signal as an example, for which [3] has given an introduction to
photoplethysmogram (PPG) and its applications “beyond the
calculation of arterial oxygen saturation and heart rate.” In
addition to the well-known cardiac component reflecting
hemodynamic information, PPG may contain the respiratory
dynamics as another component. The frequency of the cardiac
component (respiratory component, respectively) is impacted by
the heart rate variability (breathing rate variability, respectively).
Cicone and [4] provide an algorithm to “extract both heart and
respiratory rates” from the PPG signal and thereby to analyze
their interactions. Such information can be used in conjunction
with other biomedical signals reflecting hemodynamics. In
particular, PVP is ubiquitous in the hospital environment and
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a rich source of hemodynamic information [5]. But, it typically
has a low signal-to-noise ratio (SNR), and its oscillatory pattern is
sensitive to the physiological status, making it much less used in
comparison with PPG. Wu et al. [6] have developed new signal
processing tools to facilitate its use.

Combining time–frequency analysis (TFA) with statistical
analysis, the lack of which in the previous work “presents an
opportunity for much future research,” is illustrated in Figure 2
(applied to PPG, fetal ECG, and fetal heart rate variability) of Wu
[2] who describes several recent advances in TFA for high-
frequency biomedical signals. There are several challenges
common to different biomedical signal processing problems.
The first is how to estimate the dynamics (e.g., how to
quantify the time-varying frequency, amplitude, or wave-
shapes) of the signal. The second is to assess signal quality
and determine artifacts, distinguishing between physiological
and nonphysiological ones. The third is to identify oscillatory
components and the fourth is to decompose the signal into
constituent components. To address these challenges, several
TFA tools have been proposed. In addition to the traditional
linear-type time–frequency analysis tools like short-time Fourier
transform (STFT), continuous wavelet transform (CWT), and
bilinear time-frequency analysis tools [7], several nonlinear-type
tools have been developed and applied, including the
reassignment method, empirical mode decomposition (EMD),
Blaschke decomposition (BKD), adaptive locally iterative filtering
(ALIF), sparse time-frequency representation (STFR),
synchrosqueezing transform (SST), scattering transform (ST),
concentration of frequency and time (ConcFT), de-shape and
dynamic diffusion maps [8–14]. The statistical properties of these
methods have been relatively unexplored and we are currently
investigating them; new methods to handle emerging scientific
problems might be developed on the way.

2.2 Efficient Particle Filters for Joint State
and Parameter Estimation in HMM
During the past three years, the second author (Lai) has been
developing a new Markov Chain Monte Carlo (MCMC)
procedure called “MCMC with sequential substitutions”
(MCMC-SS) for joint state and parameter estimation in
hidden Markov models. The basic idea is to approximate an
intractable distribution of interest (or target distribution) by the
empirical distribution of N representative atoms, chosen
sequentially by an MCMC procedure, so that the empirical
distribution approximates the target distribution after a large
number of iterations as explained below.

Lai’s work in this area began with the landmark paper of
Gordon, Salmond and Smith [15] on the development of
sequential Monte Carlo (SMC), also called particle filters, for
the estimation of latent states in a hiddenMarkov model (HMM).
Liu’s monograph [16] contains a collection of techniques that
have been developed since then, with examples of applications in
computational biology and engineering, and Chan and Lai [17]
provide a general theory of particle filters. Let � {Xt , t P 1} be a
Markov chain and let Y1,Y2, . . . be conditionally independent

given, such that Xt ∼ pt(·|Xt−1),Yt ∼ gt(·|Xt) in which pt and gt
are density functions with respect to measures ]X and ]Y . The
density function pT of X0:T � (X0, . . . ,XT) conditional on Y1:T �
(Y1, . . . ,YT) is given by

pT(x0:T |Y1:T)∝ ∏T
t�1

[pt(xt |xt−1)gt(Yt |xt)].
This conditional distribution is often difficult to sample from
and the normalizing constant is also difficult to compute for
high-dimensional or complicated state spaces, and particle
filters use sequential Monte Carlo that involves importance
sampling and resampling to circumvent this difficulty. The
particle filter computes E[ψ(X0:T )

∣∣∣∣Y1, . . . ,YT] by the recursive
Monte Carlo scheme summarized in Algorithm 1. Let Xm

0:t−1
denote the sample path of the mth particle (trajectory),
1 # m # M. The scheme uses importance sampling from
a proposal density qt to circumvent this difficulty and updates
not only the particles Xm

0:t−1 but also the associated weights
wm
t−1 and ancestor Am

t−1 of Xm
0:t . It is initialized with Am

0 � m and
wm
0 � 1. The SMC estimate of ψT :� E[ψ(X0:T)

∣∣∣∣Y1:T ] is
given by:

~ψT � ⎛⎝ ∑M
m�1

wm
Tψ(Xm

0:T)⎞⎠/⎛⎝ ∑M
m�1

wm
T
⎞⎠.

By using martingale theory, Chan and Lai [17] provide a
comprehensive theory of the SMC estimate ~ψT , which includes
asymptotic normality and consistent standard error estimation as
follows:

THEOREM 1. Under certain Integrability Conditions,��
M

√ (~ψt − ψT)0N(0, σ2).
Moreover, letting wt � M−1∑  M

i�1wi
t, σ2 can be consistently

estimated by the following equation:

~σ2 � 1
M

∑M
m�1

⎛⎜⎜⎝ ∑
i:Ai

T−1�m

wi
T

wT
[ψ(Xi

0:T) − ~ψT]⎞⎟⎟⎠
2

.

Chan and Lai [17, Lemmas 1 and 4] use the following representation
of ~ψT − ψT to derive Theorem 1. Let
wt(x0:t) � pt(xt |xt−1)gt(Yt|xt)/qt(xt |x0:t−1), in which that Yt can
be treated as constants since the particle filter is the conditional
distribution of X0:t given the observations Y1, . . . ,YT . Let
Hm

t � (w1, . . . ,wt)/∏  t
j1w

m
j , ηt � Eq[∏ t

i�1wi(X0:t)], where Eq denotes
expectation underwhichXt |X0:t−1 has the conditional density function

Algorithm 1 | SMC with M particles

1. Initialization: Ai
0 � i,wi

0 � 1 for i � 1, . . . ,M.
2. Importance sampling at the stage t ∈ {1, . . . , T}: Generate conditionally

independent Xi
t from qt(·

∣∣∣∣∣Xi
0:t−1) and set Xi

0:t �(Xi
0:t−1 ,X

i
t),wi

t�
pt(Xi

t

∣∣∣∣∣Xi
0:t−1)gt(yt

∣∣∣∣∣Xi
t)/qt(Xi

t

∣∣∣∣∣Xi
0:t−1), i�1,... ,M .

3. Bootstrap resampling at the stage t ∈ {1, . . . ,T − 1}: Generate i.i.d. random

variables B1
t , . . . ,B

M
t such that P(Bi

t � j) � wj
t/∑i�1Mwi

t , j � 1, . . . ,M. Let

(Xm
0:t ,A

m
t ) � (XBm

t
0:t ,A

Bm
t

t−1),m � 1, . . . ,M.
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qt(·|X0:t−1) for 1 # t # T . Letting Ψ0 � ψT and Ψt(X0:t) �
Eq{ψ(X0:T )∏ T

i�1wi(X0:i)
∣∣∣∣X0:t} for 1 # t # T , define

ϵm2t−1 � ∑
i:Am

t−1�m
{ψ(Xi

0:t) − Ψt−1(xi0:t−1)}Hi
t−1,

ϵm2t � ∑
i:Am

t−1�m
(#mt −mWi

t){Ψt(Xi
0:t)HBit

t − Ψ0},
in which Wi

t � wi
t/∑ M

j�1w
j
t , #

i
t is the number of copies of Xi

0:t
generated by bootstrap resampling from {X1

0:t , . . . ,X
M
0:t} in

Algorithm 1 (where the Bi
t is also defined). Then

(#1t , . . . , #Mt ) ∼ Multinomial(M;W1
t , . . . ,W

M
t ) and

~ψT − ψT � {(w1/wT)− 1ηT}M−1 ∑M
m�1

(ϵm1 +/ + ϵm2T−1);
see Eqs. (3.3) and (3.36) of the study by authors of reference [15]
which show that {ϵmt , 1 # t # 2T − 1} is a martingale
difference sequence and that (w1/wT)− 1ηT � 1 + op(1)
under the integrability assumptions ηT <∞ and
Eq[∏ T

i�1w2
i (X0:t)]<∞.

The assumption of a single fully specified HMM in particle
filter is often too restrictive in applications since the model
parameters are usually unknown and also need to be estimated
sequentially from the observed data. A standard method to
estimate unknown parameters is to assume a prior distribution
for the unknown parameter vector and to use the Markov chain
Monte Carlo (MCMC) to estimate the posterior distribution.
Authors of reference [15] carried out this method for time-
homogeneous Markov chains Xt ∼ pθ(·|Xt−1) for t P 1 and
X0 ∼ pθ(·), with latent states Xt and observations
Yt ∼ gθ(·|Xt), in which θ is an unknown parameter with a
prior density function π(·) with respect to some measure ]θ
on the parameter space Θ. The posterior density of (θ,X0:T )
given Y1:T is proportional to

pT(ϑ, x0:T) � π(ϑ)pϑ(x0)∏T
t�1

{pϑ(xt |xt−1)gϑ(Yt |xt)}.
PMCMC uses SMC involving M particles (each of which
consists of a sampled parameter and state trajectory) at
every iteration k to construct an approximation ~pT to pT in
a Metropolis–Hastings (MH) MCMC scheme that uses a
proposal density f (·|θk−1) with respect to the measure vθ to
the sample θk at the kth iteration, as summarized in
Algorithm 2. Chopin et al. (2013, Section 1.2) point out
the difficulties in the asymptotic analysis of PMCMC as k
becomes infinite. In particular, although the authors of

reference [15] have shown that under some strong
assumptions, PMCMC converges to a measure in total
variation norm as k→∞, for fixed value of M, the limiting
measure is not the target posterior distribution of (θ,X0:t). On
the other hand, allowingM to approach∞with k would lead to
an analytically intracAlgorithm scheme involving state spaces
whose dimensions change with k. Authors of reference [16]
propose the SMC2 scheme to target heuristically the posterior
distribution of (θ,X0:t) given Y1:t (1 # t # T) as follows. It
involves N θ-particles, which we will call “atoms,” and attaches
to each atom θ a particle filter that propagates and resamplesM
particles (state trajectories Xm

0:t) generated by SMC (as in
Algorithm 1 with the given θ). It carries out the MH
iterations to determine if a candidate atom is accepted (as
in Step (c) of Algorithm 2). For the N atoms θ1t , . . . , θ

N
t and

their corresponding importance weights at time t generated in
this way, if the degeneracy criterion in the study by the author
of reference [17] is satisfied, carry out bootstrap resampling of
the weighted parameter-particle set to replace it by an
unweighted set, but no convergence theory as k→∞ is
provided.

Although MCMC methods with MH iterations are widely
used computational tools in Bayesian inference on θ ∈ Θ that
has prior density function with respect to some measure ]θ,
they do not have convergence rate guarantees in terms of the
number of iterations to automate termination of the iterations.
On the other hand, if the target density p, which is the posterior
density of θ given Y1:t , was known and easy to sample from,
then the standard Monte Carlo approximation of μ :�
Ep(ψ(θ)) could be carried out by generating i.i.d. θ1, . . . , θN
from p(·) dm and using the sample average ~μ � N−1∑ N

n�1ψ(θn)
to estimate μ. Under the assumption Ep(ψ2(θ))<∞, the
estimated standard error is ~σN /

��
N

√
, and ~μ ± N−1/2~σNζ1−α/2 is

an approximate (1 − α)-level confidence interval for μ, where
~σ2N � (N − 1)− 1∑ N

n�1(ψ(θn) − ~μ)2 and ζq is the qth quantile of
the standard normal distribution. This follows from the
classical central limit theorem and is very useful for
determining N to ensure ~μ to be within some prescribed
tolerance limit ϵ of μ: N−1/2~σNζ1−α/2 # ϵ and has inspired Lai
to develop, with his current Ph.D. students Huanzhong Xu, Michael
Hongyu Zhu, and former Ph.D. student Hock Peng Chan, the
following novel MCMC algorithm which is asymptotically
equivalent to the oracle procedure that assumes known target
density p and which they call MCMC with sequential state
substitutions (MCMC-SS).

As in MH, let f be a given function that is proportional to the
target density. Let {q(·∣∣∣∣c) : c ∈ Γ} be a family of positive proposal
densities with respect to somemeasurem, where Γ is a convex subset
of Rd . MCMC-SS initializes by choosing c0 ∈ Γo and generating ]B
i.i.d. θ11,0, . . . , θ

]
1,0; . . . ; θ

1
B,0, . . . , θ

]
B,0 from the proposal distribution

q(·∣∣∣∣c0) dm, thereby forming the B disjoint sets
Θb,0 � {θ1b,0, . . . , θ]b,0}. At the stage k, it uses the sequential
substitution procedure SS(Θb,k,wb

k) in Algorithm 3 to update
the atom set in the bth block and to assign the weight wb

i,k to the
ith atom in Θb,k, b � 1, . . . ,B. MCMC-SS estimates μ � Epψ(θ) by
the following equation:

Algorithm 2 | PMCMC at the kth iteration, initialized with θ0 ∼ f(·)

1. θ* ∼ f(·|θk−1).
2. Run SMC (Algorithm 1) to generateM particles Xm,k

0:t with corresponding weights
wm,k

T . Let ~pT(θ*) � ∑ M
m�1w

m,k
T .

3. Accept θ* with probability 1∧{~pT(θ*)f(θk−1
∣∣∣∣∣θ*)}/{~pT(θk−1)f(θ*

∣∣∣∣∣θk−1)}.
4. If θ* is accepted, let θk � θ* and (Xm,k

0:t ,w
m,k
T ) be the corresponding weighted

particles.
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ψ̂ � 1
B(K − κ) ∑

B

b�1
∑K

k�κ+1
ψ̂b,k, with ψ̂b,k �

∑ ]
i�1w

b
i,kψ(θbi,k)∑ ]
i�1w

b
i,k

,

in which κ represents an initial burn-in period that is asymptotically
negligible as κ � o(K). In many applications, the parameter c of the
family of proposal densities is a function c : P→ Γ, where P is the
space of probability measures on Θ. Assuming this framework, we
now describe the choice of cb,k−1 in Algorithm 3. For k # κ, let
cb,k−1 � ]−1∑θ ∈ Θb,k−1 c(θ), which is the mean of the empirical
measure of the atoms in the bth block at the end of stage k − 1.
On the other hand, for k> κ, we pool across blocks by letting
ck−1 � B−1∑ B

b�1cb,k−1, which we use as the modified cb,k−1 for all
blocks. Therefore, after the burn-in period, we can carry out the
update SS(Θb,k) in the order b � 1, . . . ,B, so that if the candidate
atom in SS(Θb,k) is not used for block b, it can serve as candidate
atom for the block b + 1 (#B), which then does not need to
generate another random variable from q(·∣∣∣∣ck−1), an obvious
advantage for high-dimensional and complicated states. Lai, Xu,
Zhu, and Chan have developed a comprehensive asymptotic theory
of MCMC-SS showing its asymptotic optimality with respect to
computational and statistical criteria and have also derived
consistent estimators of the standard errors for the Monte Carlo
state/parameter estimates; see reference [18] for which the main
results are summarized in the following that includes Algorithm 3.
Moreover, Algorithm 3 that can be vectorized and parallelized and
illustrate its applications to latent variable analysis with uncertainty
quantification in image reconstruction and brain network
development.

THEOREM 2. Suppose Epψ2(θ) and there exist β> α> 0 and V :
Θ] → [1,∞) such that for c : P→ Γ,

∫
Θ]

V(θ)q(θ1∣∣∣∣c0) . . . q(θ]∣∣∣∣c0)dm](θ)<∞ with θ � (θ1, . . . , θ]), and
αV(θ) # λ(~θ∣∣∣∣∣c(θ)) # βV(θ) for all θ ∈ Θ] and ~θ ∈ Θ,

where λ(~θ
∣∣∣∣∣c) � f (~θ

∣∣∣∣∣c)/p(~θ).
(i) Let Gb,k be the joint distribution of (θb1,k, . . . , θb],k) and let Q]

be the probability measure on Θ] that has the density of ]
independent components each of which has density q(·

∣∣∣∣∣cf )
with respect to m, where cf � argminc ∈ ΓI(qc ‖ f ) and
I(q ‖ f ) � Ef {log(q(θ)/f (θ))} is the Kullback–Leibler
divergence (or relative entropy) of q from the target density
f in Algorithm 3 Then there exist positive constants a and c

such that
���Gb,k − Q]���V # ce−ak for 1 # k # K, where ‖ ·‖V

denotes the weighted total variation norm associated with the
weight function V. Hence, after k_logB iterations,∑b# B

���Gb,k − Q]���V → 0.
(ii) Let N � B(K − κ) be the total number of atoms used to define

theMCMC-SS estimate of ~ψ of μ � Ep(ψ(θ)). Then as K→∞
and B→∞ such that B � O(K),

���
N]

√ (ψ̂ − μ)0N(0, σ2),
where σ2 � Varp(ψ(θ)) and can be consistently estimated by:

σ̂2 � 1
B(K − κ) ∑

B

b�1
∑K

k�κ+1

1
] − 1

∑
θ ∈ Θb,k

(ψ(θ) − ψ̂b,k)2.
As shown in reference [21], with probability approaching 1

by large k, the candidate atom ~θ in Algorithm 3 substitutes
some existing atom in Θb,k−1. Hence, similar to the case of
known target density p from which ~θ is sampled, the newly
sampled atom features in the weighted average ψ̂b,k. The reason
we need the weighted average, with “importance sampling
weights” wb

i,k, is that for large k, the conditional distribution
of Θb,k given Θb,k−1 behaves like the ]-fold product measure Q]

on Θ]. This shows that importance sampling (likelihood ratio)
weights wb

i,k are needed to convert Q to P and suggests the
asymptotic optimality of ψ̂, which is the overall average of the
B(K − κ) estimates ψ̂b,k, similar to μ̂ that is described for the case
of known p. Each random variable generated in the MCMC-SS
scheme asymptotically contributes weight (N])− 1 to (a) the
estimate ψ̂ of μ and (b) the asymptotic variance of ψ̂. Theorem 2
shows that there is in fact considerable flexibility in the choice
of the factors K (the number of iterations) and B (the number of
blocks) in N � B(K − κ) that determines the scaling factor in
the central limit theorem, although the theorem highlights the
case B � O(K) to emphasize that K should not be chosen too
small relative to B. Reference [21] gives an application to
uncertainty quantification in the following image
reconstruction problem. Reference [22] propose to use
MCMC methods “whenever the target measure has density
with respect to a Gaussian process or Gaussian random field
reference measure.” A wide range of applications involving
such a framework considers Bayesian inference on a latent
random field {u(x) : x ∈ D} ⊂ Rd generated by some stochastic
partial differential equation (SPDE) in which D is a connected
subset of Rd’, based on data generated by some nonlinear
function of the random field. It is shown that after
discretization and truncation to fit into this framework, the
Radon–Nikodym derivative of the target measure P with
respect to the reference measure Q has the following form:

(dQ/dP)(u)∝ exp(−l(u)),
for some real-valued function l, which [19] call “potential” in their
substantive applications. The advantage of using a zero-mean
Gaussian random field reference measure Q is that it is specified
by the covariance operator C whose eigenvalues λi and
orthonormal eigenfunctions ϕi yield the Karhunen–Loève

Algorithm 3 | Updating procedure SS(Θb,k ,wb
k ) for MCMC-SS

1. Sample ~θ from q(·∣∣∣∣cb,k−1) as candidate atom.
2. Let θb]+1,k−1 � ~θ and compute

λbi,k � q(θbi,k−1∣∣∣∣cb,k−1)/f (θbi,k−1), i � 1, . . . , ] + 1.

3. Sample J from {1, . . . , ] + 1} with probability πb
i,k � λbi,k /(∑ ]+1

j�1 λ
b
j,k) for i.

4. If J � ] + 1, let Θb,k � Θb,k−1. Otherwise, let Θb,k � (Θb,k−1∪  {~θ})∖{θb~J,k−1}.
5. Let wb

i,k � 1/πbi,k for i � 1, . . . , ] and wb
k � (wb

1,k , . . . ,w
b
],k).
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expansion u(x) � ∑ ∞
i�1ξiϕi(x), with i.i.d. ξi that are N(0, λ2i ) and∑ ∞

i�1λ
2
i <∞. Reference [22] uses a random truncation τ with a

sieve prior to convert the infinite-dimensional expansion to a
finite sum u(x) � ∑ τ

i�1ξiϕi(x). In addition, a discrete
approximation of the random field u(x) is used, with x taken
over a mesh of width δ in each coordinate.

MCMC-SS uses a parametric family of Gaussian proposal
measures Q(c) instead of a single one by [22]. Putting
1/L(θ) � exp(−l(u(x))), we can also incorporate the random
truncation τ and possibly also other random effects ρ into the
state θ � (τ, ζ1, . . . , ζτ , ρ), where ζ j � G(u(xj)), j � 1, . . . , τ, and
G is an operator associated with the SPDE and the discretization
scheme for which xj belongs to a discrete subset of D. With this
definition of θ, MCMC-SS uses the updating procedure described
in Algorithm 3. Section 4.2 of [22] argues that simply applying
MCMC to a discretized random field leads to a singular reference
measure with respect to the target measure. However, the
MCMC procedure used in [22] is the random walk Metropolis
algorithm that involves the acceptance probability
a(u, v) � min{1, (dη*/dη)(u, v)}, where η is the measure
defined by the transition kernel q(u, v) of the MCMC
algorithm (i.e., v

∣∣∣∣u ∼ q(u)) and η* is the measure obtained by
reversing the roles of u and v in the definition of η. Theorem 6.3 of
[22] shows that after discretization, η* is singular with respect to η
and therefore “all proposal moves are rejected with probability 1”
for the random walk Metropolis algorithm, which proposes
v(k) � u(k) + βξ(k), with ξ(k) ∼ N(0,C), and chooses u(k+1) �
v(k) with probability a(u(k), v(k)), setting u(k+1) � u(k) if v(k) is
rejected. To get around this difficulty, [22] introduces a
preconditioned Crank–Nicolson (pCN) adjustment, which
proposes v(k) �

�����
1 − β2

√
u(k) + βξ(k). Here, β2 � 8δ/(2 + δ)2 and

C is the covariance matrix (after truncation and discretization) of the
covariance operator C for the Gaussian proposal measure. Because
MCMC-SS does not involve η and η*, it does not require the pCN
adjustments; see reference [20] for details and further discussion.

Making use of bounds on a weighted total variation norm of the
difference between the target distribution and the empirical measure
defined by the sample paths of theMCMC procedure, reference [21]
has developed an asymptotic theory of the MCMC-SS estimates, as
both K and N approach∞, of functionals of the target distribution.
This asymptotic theory includes asymptotic normality of the
MCMC-SS estimates, provides consistent estimators of their
standard errors, and establishes their asymptotic optimality by
deriving certain oracle properties. Implementation via sequential
Monte Carlo schemes called “particle filters” and parallelization is
also given. In his Ph.D. thesis, Zhu who is a coauthor of [21] describes
a numerically stable implementation of MCMC-SS that can be
vectorized and parallelized, using Julia v0.62 [23] and the
ArrayFire GPU library [24]. He also develops scalable
implementations for high-dimensional states/parameters using
differentiation through mixture distributions for stochastic gradient
descent; see [25].

In the context of cortical organoids described in the first paragraph
of Section 2, the target distribution is the posterior distribution of a
precomputed feature of the organoid as a scaled-down model of the
preterm human brain, conditional on the observations which are the
101 serial EEG recordings from 39 preterm infants. The uncertainty

quantification [21] of the posterior distribution of a precomputed
feature of cortical organoids provides a principled and systematic
approach to the comparison of the feature between cortical organoids
and the observations from the preterm infants, in contrast to the lack
of uncertainty quantification for the approach and results of [1, pp.
8–9 and Fig. 4A, B, C, and D on p. 31] mentioned in the first
paragraph of Section 2. Moreover, the methods of time–frequency
analysis in the preceding subsection can be used to compute the
predictive distribution of the feature of the cortical organoids given
the observations, which is the same as the target distribution. The
predictive distribution typically also involves an unspecified
hyperparameter vector θ, as in manifold learning of [14]. This
corresponds to a Bayesian approach with prior densities
belonging to a family of proposal densities q(θ∣∣∣∣c), in which
c ∈ Γ indexes the family and Γ is a convex subset of Rd .
Reference [21] has shown that MCMC-SS eventually samples
from q(·

∣∣∣∣∣cp) that has the smallest Kullback–Leibler divergence
from p(·), and therefore from the target density if it belongs to
{q(·∣∣∣∣c) : c ∈ Γ}.

3 DISCUSSION AND CONCLUDING
REMARKS

Haddad and Lai actually initiated similar research forty years ago
when they worked on cardiorespiratory patterns during sleep in a
SIDS (Sudden Infant Death Syndrome) project at Columbia
University’s Pediatrics Department; see reference [26] which
describes the study population consisting of 12 infants “with
one or more episodes of aborted SIDS” (four of whom had
siblings who died of SIDS), and 19 normal infants, all born
full-term except for one aborted SIDS infant born at 37 weeks of
gestation. After describing the study design and methods of
statistical analysis, the authors of reference [26] presented
results on total tidal volume (Vt), respiratory cycle time
(Ttot), and increase in Vt/Ttot resulting from 2% increase in
CO2 concentration in the sleeping chamber, comparing aborted
SIDS to normal infants in both REM (rapid eye movement) and
quiet sleep. Because of the inability to induce stress such as loaded
breathing as in reference [27, 28], animal models involving sheep,
puppies, and dogs were used; see also [29]. In particular, the
authors of reference [24] “studied diaphragmatic muscle function
during inspiratory flow resistive loaded breathing” in 6
unanesthetized sheep over periods of 6–8 months. Data were
collected (baseline) and after application of the loads that were
sustained for up to 90 min. Loads were divided into mild (<50 cm
H2O· l−1s), moderate (50–150 cm H2O· l−1s), and severe
(>150 cm H2O· l−1s). They found that “1) the diaphragm is
capable of generating large pressure for prolonged periods
with no evidence of fatigue, 2) with very high inspiratory
resistive loads mechanical failure of the diaphragm can occur,
3) diaphragmatic fatigue is associated with acute hypercania and
therefore failure of the entire respiratory pump, and 4) a decrease
in integrated EMG (iEMG) and a concomitant shift in the EMG
power spectral density toward lower frequencies precede the
mechanical failure of the diaphragm.” Thus, similar to the
power spectral density of the EEG signal in the first paragraph

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 6899916

Wu et al. Oscillatory Biomedical Signals

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


of Section 2, [27] uses a shift of the power spectrum of the EMG
toward lower frequencies to identify the onset of diaphragmatic
muscle fatigue in adult sheep. The frontier methods of
time–frequency analysis in Section 2.1 are therefore also
relevant to the problem of diaphragmatic muscle fatigue
and rhythmic variations in cardiorespiratory signals studied
by Haddad and Lai forty years ago. Pointing out that in the
1980s “investigators from various disciplines focused their
efforts on finding out whether SIDS is related to hypoxia or
anoxia (acute or chronic) before death and whether this
relation is responsible for events leading to death”, Haddad
[30], reviewed “studies in the recent past” from various
fields—epidemiology, physiology of infant death and SIDS,
pathology of the airway, and animal studies. Although “most
of the evidence accumulated so far, including that obtained
in the past two years, is circumstantial,” he concluded that
“SIDS was little understood for many years until, over the
past few years, its basic underlying genetic defect was
better characterized (from recent animals and human
studies), and light could finally be seen at the end of the
tunnel,” again linking genetics and feedback mechanisms
to see this light, as in the exemplary work of Hall, Rosbach,
and Young on the circadian rhythm. Combining various clues
and insights from different areas/studies via an empirical
Bayes model is the capability of the frontier approach
described in Section 2.2; see Sections 3.6.3, 5.4, 6.2.3 and
7.4 of reference [31] on postmarketing monitoring of medical
product safety.

A related direction of our ongoing research is to combine
several biomedical signals, which form a multivariate time
series, thereby providing a more holographic view of a
human subject. For example, in an intensive care unit, PPG
can be combined with EEG, EMG, respiratory, and other signals
to evaluate a patient’s health status. Wu and his collaborators
have applied in [32,33] a combination of ST and EEG channels
to study sleep dynamics and an “interpretable machine learning
algorithm” to assess consistency of sleep-stage scoring rules

across multiple sleep centers. How to utilize available
information from multiple centers is a sensor fusion
problem. We are currently combining recent advances in
sensor fusion with those in TFA to develop integrated
statistical analysis of the multivariate time series of multiple
biomedical signals.
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