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The analysis correction made by data assimilation (DA) can introduce model shock or
artificial signal, leading to degradation in forecast. In this study, we propose an Ensemble
Transform Kalman Incremental Smoother (ETKIS) as an incremental update solution for
ETKF-based algorithms. ETKIS not only has the advantages as other incremental update
schemes to improve the balance in the analysis but also provides effective incremental
correction, even under strong nonlinear dynamics. Results with the shallow-water model
show that ETKIS can smooth out the imbalance associated with the use of covariance
localization. More importantly, ETKIS preserves the moving signal better than the overly
smoothed corrections derived by other incremental update schemes. Results from the
Lorenz 3-variable model show that ETKIS and ETKF achieve similar accuracy at the end of
the assimilation window, while the time-varying increment of ETKIS allows the ensemble to
avoid strong corrections during strong nonlinearity. ETKIS shows benefits over 4DIAU by
better capturing the evolving error and constraining the over-dispersive spread under
conditions of long assimilation windows or a high perturbation growth rate.

Keywords: data assimilation, numerical weather prediction, ensemble Kalman filter, incremental update method,
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INTRODUCTION

Data assimilation (DA) seeks to optimally combine the information of observations and short-range
model forecast to estimate the optimal analysis, which is closest to the real atmosphere [1]. The
analysis serves as the initial condition for numerical weather prediction (NWP), and thus, its
accuracy plays an important role in improving NWP. During the recent decades, the ensemble
Kalman filter (EnKF; [2, 3]) has become a popular choice to establish a stand-alone or component of
hybrid DA systems due to its ability to use flow-dependent background errors so that observations
can be assimilated effectively to provide flow-dependent corrections.

Although the advancement of DA has proven to be a milestone to improve numerical weather/
climate prediction, it is known that DA could also bring unwelcome side effects. Corrections not only
eliminate errors but also may introduce unrealistic signals into the model state and induce model
shock as the forecasts are initialized. This problem can result in spin-down, such as unrealistic heavy
rain after initialization or unrealistic gravity wave propagation induced by the imbalanced model
state, and can degrade the forecast skill and computational stability. Specifically, the structure of
background error covariance plays an important role in providing analysis increment, affecting the
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balance of the initial model state. The improper representation of
background error covariance is a major source of generating
dynamical imbalance and model shock [4]. Under the framework
of the EnKF, the issues of model shock and imbalance are also
related to the use of covariance localization ([5, 6], 34) to avoid
sampling errors causing spurious corrections at far distance. The
covariance localization is generally done with a chosen distance-
dependent function [7] without the dynamical dependency and
will distort the structure of the corrections [8]. Applying a
distance-dependent localization can break the geostrophic
balance [5], and the choice of localization radius is an issue of
trade-off between accuracy and balance in the analysis [6,9]. No
matter in which DA framework, the analysis and observation
frequency can also affect the degree of imbalance, and the issue of
model shock can be further magnified under strong nonlinearity.

To deal with the issues of imbalance from DA, Bloom et al.
[10] first proposed an incremental update strategy, the
incremental analysis update (IAU), to add the analysis
increment gradually during the update window. As
demonstrated in many previous studies, IAU eliminates high-
frequency oscillation by a moving average–like mechanism and
provides a more balanced model state. Also, the added increment
at each step is smaller than the original increment derived at the
analysis time, and thus reduces the risk of model shock. Such an
incremental update scheme has been commonly used in the DA
community [11, 12]. With a heavy rainfall event, Lee et al. [13]
demonstrated that IAU can avoid the unrealistic large rain
tendency forecast during the first few minutes and thus
improve the precipitation spin-up. The implementation of
IAU has different forms by using different update windows or
time-weighting configurations, such as defining the analysis at the
beginning [14], center [15], or end [16] of the update window to
compute the incremental analysis corrections. Yan et al. [17]
compared these three types of update window with different
time-weighting configurations for the ocean assimilation system
and showed that the main difference is the computational cost
rather than the corrections to the model state. However, the
original IAU implementation uses constant increments within
the update window and ignores the error propagation, which
becomes non-negligible for conditions with strong nonlinearities,
such as severe weather systems. To better consider the temporal
evolution of the errors, Lorenc et al. [18] proposed a four-
dimensional IAU (4DIAU) scheme by using the trajectory
from the four-dimensional ensemble variational (4DEnVar)
DA system to get time-varying increments. The 4DIAU
algorithm has been implemented within the operational
4DEnVar system at Environment and Climate Change Canada
[19]. Their results show that the 4DIAU improves the balance
and reduces the spin-up issue compared with a digital filter. We
should emphasize that it is the incremental correction that
mitigates the imbalance. A full update with rapid analysis
cycles and frequent observation does not necessarily avoid
such issues.

The concept of 4DIAU is also adopted for the EnKF. Lei and
Whitaker [20] introduced a time-relevant method similar to that
of Lorenc et al. [18], which calculates analysis increments at the
beginning, center, and end of the update window, and

interpolates them into time-varying increments. In their
experiments with a two-layer quasi-geostrophic (QG) model
and the Global Forecast System (GFS), the use of 4DIAU
improves not only the balance in the analysis but also the
forecast skill. Furthermore, taking the analysis increments
more frequently to construct the time-varying 4DIAU
increment is beneficial to accurately represent the temporal
variations; however, this also brings more high-frequency
noise into the model state. Such a dilemma can be alleviated
by using a large ensemble size to avoid sampling errors.

Although 4DIAU has overcome some drawbacks in IAU, there
is still a potential issue with a nonlinear dynamic system. When
the model state rapidly changes with strong nonlinear dynamics,
the interpolated analysis increments in 4DIAU may be less
optimal to capture the temporal evolution of the errors.
Besides, the increment of 4DIAU is based on the analysis
increments obtained from the EnKF at different times, given
an ensemble of background trajectories; in other words, the
incremental update corresponds to a fixed background
evolution. However, as the incremental update begins and the
model state is re-evolved, the subsequent model trajectory is
expected to be different from the original one. This difference
would be larger at later steps of the update window with more
increments added sequentially. As a result, the increments from
4DIAU at later steps of an update window could become
suboptimal. This issue becomes more serious when dealing
with strong nonlinear dynamics.

Ensemble Transform Kalman Incremental Smoother (ETKIS)
is proposed in this study to tackle the problem related to
nonlinear dynamics and keep the benefit of the incremental
update for obtaining a balanced state. Following the
assumption used in 4DETKF [21] and ETKF no-cost
smoothing (ETKS, [22]) that the weights for combining the
ensemble members are valid for constructing an analysis
trajectory over an interval of time, ETKIS is derived by
reformulating the ETKF algorithm into an incremental update.
ETKS has been applied to construct schemes like the iterative
EnKF [23] and the running-in-place scheme [24] to deal with
analysis update under conditions of strong nonlinearity. With the
reformulation, ETKIS is designed to update the model state
incrementally and, crucially, with the gradual increment
corresponding to the updated ensemble. In brief, ETKIS
constructs time-varying increments by distributing the ETKF
weight coefficients to each update step and applying them to the
evolving ensemble state. For deriving an analysis increment
trajectory, the weight can be a better gateway than the
increment. Yang et al. [25] applied the ETKF weight
interpolation at coarse grids to obtain the weights at fine
analysis grids and use them to construct high-resolution
analysis. They pointed out that applying spatial interpolation
on weights better preserves the observation information than
applying it on the analysis increment, since the weights vary at
larger spatial scales than the analysis increment in the model
space. In this study, we perform experiments testing different
methods used for addressing the problems discussed above and
compare the performance of the different methods. ETKIS’s
performance is found to be either similar or much better than
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that of IAU and 4DIAU. As will be demonstrated in Ensemble
Transform Kalman Incremental Smoother section, it is very
straightforward to use the ETKF/4DETKF analysis formulas to
derive ETKIS. In this study, the ETKF/4DETKF algorithm follows
the method described by Hunt et al. [21] and is different from the
ETKF formulations used by Bishop et al. [26] and Wang and
Bishop [27]. We note that in addition to the IAU-based methods,
other methods are also proposed to deal with the imbalance
during the assimilation, such as the mollified EnKF that combines
nudging and EnKF [28], including climatological information as
a constrain in the EnKF [29] and including a penalty term in the
4DVAR cost function for damping the high-frequency noise [30].

This study is organized as follows. In Data Assimilation
Schemes section, we introduce the methodology of all the DA
schemes used in this study. Under the OSSE framework,
Experiments With the Shallow-Water Model section discusses
the results with the shallow-water model used in Greybush et al.
[6] and focuses on the filtering property. Experiments With the
Lorenz three-variable model section presents results with the
Lorenz 3-variable model [31] and focuses on the condition
with strong nonlinearity. Summary section summarizes the
findings of this study.

DATA ASSIMILATION SCHEMES

Ensemble Transform Kalman Filter and the
No-Cost Smoother
All the DA schemes used in this study are based on the framework
of the local Ensemble Transform Kalman Filter (ETKF, [21]). The
EnKF updates the background ensemble states with the
information of observations, and the updated ensemble states
are referred to as the analysis ensemble states. In the ETKF, the
update process is separated into two parts: the ensemble mean (x)
and ensemble perturbations (X). x is a column vector defined as

1
K ∑K

k�1
xk, where xk is a column vector storing the kth member of

the model state and K is the ensemble size. X is a matrix whose
columns are the ensemble perturbations deviating from the mean
state, that is, X � [x1 − x, . . . , xk − x, . . . , xK − x]. The error
covariance matrix, P, is estimated by the ensemble

perturbations, P � XXT

K−1.
The ETKF algorithm calculates the analysis mean and

perturbations at the analysis time ta by linearly combining the
background ensemble perturbations with a weight vector (wETKF

ta )
and weight matrix (WETKF

ta ), respectively:

xata � xbta + Xb
ta
wETKF

ta
, (1)

Xa
ta
� Xb

ta
WETKF

ta
. (2)

The superscripts of model states b and a indicate the
background and analysis state, respectively. Hunt et al. [21]
provide the formulas for wETKF and WETKF:

wETKF � [(K − 1)I + (Yb)TR−1Yb]
−1
(Yb)TR−1(yo − yb) , (3)

WETKF � [(K − 1)[(K − 1)I + (Yb)TR−1Yb]
−1
]
1
2
. (4)

In Eqs 3, 4, yo is the observation,R is the observation error
covariance, and Yb and yb are background ensemble
perturbations and ensemble mean in the observation space,
respectively.

Eqs. 1–4 can further expand to 4DETKF by taking
observations at different times in an assimilation window. The
elements used in the Eqs 3, 4 are gathered from an assimilation
window instead of just analysis time only. Thus, the obtained
weights give the optimal linear combination of ensemble
trajectories to fit the observations during the assimilation
window. In other words, 4DETKF can provide an analysis
trajectory by combining the background ensemble trajectory
with the weight [22].

Ensemble Transform Kalman Incremental
Smoother
Following the idea of incremental update, we revise the ETKF
update in Eqs 1, 2–Eqs 5, 6 to alternately apply the gradual
incremental update during an update window. The update
window is composed of N incremental update times which is
denoted as ts,n, where nis the sequential number of incremental
updates ranging from 1 to N , and s indicates that the update is to
smooth the ensemble states.

xsts,n � xsbts,n + Xsb
ts,n
wETKIS

ts,n , (5)

Xs
ts,n

� Xsb
ts,n
WETKIS , (6)

xsbk,ts,n+1 � Mts,n → ts,n+1(xsk,ts,n), k � 1, . . . ,K . (7)

At time ts,n, the incrementally smoothed ensemble ( xsts,nand
Xs

ts,n ) is derived by linearly combining the background ensemble
perturbations (Xsb

ts,n ) with the newly defined weight coefficients
(wETKIS

ts,n and WETKIS). Then this incrementally smoothed
ensemble is integrated to ts,n+1 to obtain the background
ensemble at the next update time, ts,n+1. In Eq. 7, M(·)is the
nonlinear operator of model integration, and the subscript
indicates the integration period. We note that the Ensemble
Kalman Transform Smoother (ETKS) proposed by Kalnay and
Yang [24] can be regarded as a special case, that is,N � 1, with the
weights directly applying at the beginning of the update window.
Given that the new incremental update scheme is technically an
integration of IAU and ETKS, this scheme is named as Ensemble
Transform Kalman Incremental Smoother.

wETKIS
ts,n and WETKIS are derived from the weight coefficients of

the ETKF (wETKF
ta and WETKF

ta ) with the purpose that the
incremental update at the end of update window (ts, N) has
the equivalent effect as the one-time analysis increment from
the ETKF (xsk,ts,N � Mta → ts,N(xak,ta )), assuming that the analysis
time is defined at a time within the update window (ta ≤ ts,N ).
Note that integrating the initial ensemble at ts,1 to the analysis
time gives the background ensemble for the ETKF
computation,Mts,1 → ta(xsbk,ts,1), k � 1,/,K . With the linearized
model operator (M � zM/zx), the perturbation of the
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background ensemble at the analysis time can be approximated as
Mts,1 → taX

sb
ts,1 . The linear operator gives thatMts,1 → taMta → ts,Nequals

to Mts,1 → ts,N .
At the end of the update window, the mean and perturbation

of the ensemble that initialized from the ETKF analysis ensemble
are approximated as

Mts,1 → ts,N(xsbts,1) +Mts,1 → ts,NX
sb
ts,1
wETKF

ta
, (8)

Mts,1 → ts,NX
sb
ts,1
WETKF

ta (9)

With Eq. 9, the perturbation at ts,N is incrementally updated N
times as

Xs
ts,N

� Mts,N−1 → ts,N/Mts,2 → ts,3Mts,1 → ts,2X
sb
ts,1
(WETKIS)N

� Mts,1 → ts,NX
sb
ts,1
(WETKIS)N . (10)

Assuming the equality between Eqs 9, 10, this gives

WETKIS � (WETKF
ta ) 1

N . (11)

For the mean of the incrementally update state at ts,N ,

Mts,1 → ts,N(xsbts,1) +Mts,1 → ts,NX
sb
ts,1[wETKIS

ts,1
+WETKISwETKIS

ts,2
+/

+ (WETKIS)N−1
wETKIS

ts,N ].
(12)

Each term in the bracket of Eq. 12 can be regarded as the
weight vector for correcting the original background ensemble
mean and is assumed to be a factor 1

N of wETKF
ta . This gives

wETKIS
ts,n

� (WETKIS)−(n−1) × 1
N
wETKF

ta
. (13)

It is noted that wETKIS
ts,n contains an inverse matrix to offset the

effect that previous gradual increment update has introduced to the
ensemble perturbation (e.g., Mts,1 → ts,3X

sb
ts,1(WETKIS)2 at ts,3). The

Eqs 11,13 show that the weight coefficients for incremental update
depend on the sequential number of the update time and the
original ETKF weight coefficients, without involving model
integration or temporal interpolation. This implies that there is

flexibility in the update window arrangement. The update time can
be arranged with uneven temporal distribution or repeated to
emphasize a specific update time with more weight. We note that
for illustration purpose, we use the linearized model operator to
explain how wETKIS

ts,n and WETKIS are derived. In the real
implementation, the quantities in Eqs. 9–12 will be ensemble
based with the use of the fully nonlinear model, and the
linearized model operator is not required.

In the following example, we summarize the steps of the ETKIS
algorithm with an update window centered at the ETKF analysis
time. Such configuration is commonly used for the IAU and 4DIAU
schemes, and also adopted for the Experiments with the shallow-
water model and Experiments with the Lorenz three-variable model
sections in this study. The update windows ranges from t−3 to t+3,
and the analysis time of the ETKF is t0. There are totally seven
(i.e., N � 7) incremental update times, denoting from ts,1 to ts,7 and
ts,4 � t0. We also assume that the update window overlaps with the
assimilation window if 4DETKF is used.

Step 1: The model ensemble is integrated from t−3 to t0 (or t+3
if 4DETKF is used) to provide the background
ensemble for the
ETKF (xbk,t0 � Mt−3 → t0(xbk,t−3 ), k � 1, . . . ,K).

Step 2: With the model state and observation information,
(4D)ETKF is conducted to obtain wETKF

t0 and
WETKF

t0 following Eqs 3, 4.
Step 3: With WETKF

t0 and wETKF
t0 , WETKIS and wETKIS

ts,n at the nth
update step (ts,n) are calculated with Eqs 11, 13,
respectively. They are used to update xsbts,nand
Xsb

ts,nwith Eqs 5, 6, and xsts,nand Xs
ts,nare obtained. For

n � 1, xsbk,ts,1 is x
b
k,t−3 for k � 1, . . . ,K .

Step 4: xsk,ts,n is then integrated to ts,n+1 (Eq. 7) to obtain the
background at the next incremental update
time (xsbk,ts,n+1 ).

Step 5: Steps (3) and (4) are repeatedly conducted till n � N
and xsk,ts,N (i.e., x

s
k,t+3 ) is obtained.

The final product xsk,ts,N is expected to be the same as the
forecast from the analysis of the ETKF (Mt0 → t+3(xak,t0)), if the
model is linear and no error covariance localization is applied.

FIGURE 1 | The time series of RMSE of the h variable in (A) the experiment with balanced initial conditions and (B) the experiment with imbalanced initial condition.
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Incremental Analysis Update and
4-Dimensional Incremental Analysis Update
The IAU and 4DIAU are also used in this study to compare with
ETKIS and check whether any of them provide additional benefits or
drawbacks. They are implemented under the framework of the ETKF
and use the same configuration of the assimilation and update
windows as the ETKIS illustrated above. While both schemes and
ETKIS share the same steps to obtain the (4D)ETKFweights, we focus
on the steps after wETKF

t0 andWETKF
t0 are obtained (i.e., steps (1) and (2)

in ETKIS), and the numbering of the steps starts from (3).

• IAU
Step 3:The wETKF

t0 and WETKF
t0 are applied to the background

ensemble at the analysis time (t0 or ts,4) to obtain the
analysis increment for the ensemble (δxak,t0 , k � 1, . . . ,K).
Then the gradual increment for the ensemble is derived
by dividing the analysis increment by N .

Step 4:The gradual increment obtained in step (3) is added
onto xsbk,ts,n to obtain xsk,ts,n (x

s
k,ts,n

� xsbk,ts,n + 1
N δx

a
k,t0

). For

n � 1, xsbk,ts,1 � xbk,t−3 .

Step 5: For k � 1, . . . ,K , xsk,ts,n is then integrated to ts,n+1 to obtain
the background at the next incremental update
time (xsbk,ts,n+1 ).

Step 6: Steps (4) and (5) are repeatedly conducted till n � N and
xsk,ts,N is obtained.

• 4DIAU
Step 3: To obtain the analysis increments at different times with

the same set of observations within the assimilation
window, wETKF

t0 and WETKF
t0 are applied to the

background ensemble at the beginning, middle, and
end of the update window (t−3, t0, and t+3,
respectively). Note that t−3, t0, and t+3 correspond to
ts,1, ts,4, and ts,7, respectively.

Step 4: Three analysis increments from step (3) are divided by N
and interpolated into each update time (ts,1 to ts,N), to
obtain the gradual increment of 4DIAU.

Step 5: The gradual increment from step (4) is added to xsbk,ts,n to
obtain xsk,ts,n .

For n � 1, xsbk,ts,1 � xbk,t−3 .
Step 6: xsk,ts,n is then integrated to ts,n+1 to obtain the background at

the next incremental update time (xsbk,ts,n+1 ).
Step 7: Steps (5) and (6) are repeatedly conducted till n � N and

xsk,ts,N is obtained.

Details of the 4DIAU implementation can be found in the
study by 20.

EXPERIMENTS WITH THE
SHALLOW-WATER MODEL

Experiment Settings
A shallow-water model with simple dynamics and the property
of geostrophic balance is used to investigate the performance of
the incremental update schemes based on the observation

system simulation experiments (OSSE). Following the study
by Greybush et al. [6], the shallow-water model is one-
dimensional, with a homogeneous state in the ordinate
(Figure 1 in [6]). The governing equations of this model are
as follows:

zh
zt

� z

zx
((H + h) × u) , (14a)

zu
zt

� −u zu
zx

+ fv − g
zh
zx

, (14b)

zv
zt

� −u zv
zx

− fu . (14c)

In Eq. 14, h is the depth deviation of the fluid from the average
depth, H. u and v are the velocities in the x and y directions,
respectively. H is set to 500 m and the Coriolis parameter, f �
10−4 rad/s. The model domain has rigid boundaries, and the
range is 5,000 km with 101 grids in the abscissa with a grid
spacing of 50 km. The model is integrated using the fourth-order
Runge–Kutta scheme with a 15-min time step.

In the first OSSE, all experiments, including the nature run, are
initialized from balanced conditions, in which the h variables are
generated by Eq. 15a, and u and v variables are diagnosed by the
geostrophic balance relationship (Eqs 15a,c). Experiments are
conducted to verify whether the incremental update schemes can
reduce the imbalance induced by covariance localization.

h � hamp × cos(2π
L
(x − xps)) , (15a)

ug � −g
f
zh
zy

� 0 , (15b)

vg � g
f
zh
zx

. (15c)

In Eq. 15a, the hamp is the amplitude of depth deviation, xps is
the phase shift, and L is the wavelength. The nature run has a
stationary waveform (i.e., no propagation or oscillation), in which
the values of hamp, xps, and L are 10 m, −100, and 2,100 km,
respectively. Following the setup used in the study by Greybush
et al. [6], all DA experiments use five ensemble members with the
same set of initial conditions generated by perturbing hamp from 9
to 11, xps from −50 to 50 km, and L from 1,950 to 2,050 km. The
wave in each member is in geostrophic balance and stationary
until the adjustment from DA disrupts the balance.

The second OSSE is designed to investigate the ability of the
incremental update schemes to correct the moving errors when
the nature run carries propagating signals, and also how the
moving signals in the corrections will be filtered by the schemes.
The initial h of this nature run and ensemble for the DA
experiments are taken from those of the first OSSE, but the
initial u and v values are set to be zero. By destroying the balance,
propagating waves are generated: a moving signal in the nature
run and moving error originated from the initial condition in the
experiments.

For both OSSEs, observations are generated every 24 steps (6-
h) for h and v by adding random perturbations to each variable of
the nature run, and the observation error is 10% of their
amplitude (h � 1 m, v � 0.2932 m/s). Observations are
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available every five model grids (250 km). Under the ETKF
framework, three incremental update schemes, ETKIS, IAU,
and 4DIAU, are implemented. All experiments adopt the same
assimilation parameter settings used in the study by Greybush
et al. [6], including an R-localization scale of 500 km, the
truncation distance of 2,000 km, and a multiplicative inflation
of 5%. The localization scale is broader than the spacing of the
observations (250 km). Therefore, the imbalances in model
variables are not related to the arrangement of the
observational network. Each experiment carried out four
analysis cycles with an interval of 6 h and a 24-h forecast
initialized from the final analysis. The root-mean-square error
(RMSE) of h is used to evaluate the state accuracy, and the
ageostrophic v wind is used to assess the amount of imbalance.

Results of the Experiment With Balanced
Initial Conditions
When initializing the shallow-water system with a balanced
condition, any projection on the ageostrophic component will
result in imbalance and error (the nature run has zero
ageostrophic wind). Figure 2 is the Hovmoller diagram of the
ageostrophic v wind during the forecast-analysis cycles, showing
the impact of the imbalance induced by performingDA. Significant
ageostrophic wind is generated at the first analysis time (6-h) from
the ETKF experiment (Figure 2A), and the imbalance propagates
within the model domain and deflects due to the rigid boundaries.
The analysis increments from later cycles do not eliminate this
imbalance and even superpose more newly generated imbalance.
In comparison to Figure 2A, there is very little discontinuity in
IAU (Figure 2B). The reduced ageostrophic wind with much
smoother structures in Figure 2B justifies IAU’s property of
low-pass filtering. 4DIAU and ETKIS also have similar results
as IAU (Figures 2C,D). However, the ETKIS experiment has
slightly larger ageostrophic wind (Figures 2C vs. 2D). Such
difference comes from the fact that, at each update step, ETKIS

uses the incrementally smoothed ensemble model state to calculate
the gradual correction (Eqs 5, 6), which contains the incompletely
removed ageostrophic momentum from the previous gradual
increment in the update window.

The h RMSEs from all experiments (Figure 1A) suggest that the
performance of all incremental update schemes is comparable to that
of the standard ETKF, which applies the full correction at once at the
analysis time. In comparison with ETKIS and IAU/4DIAU schemes,
the ETKF experiment exhibits larger oscillations in the RMSE due to
the larger errors shown in the ageostrophic wind component.

Results of the Experiment With Imbalanced
Initial Condition
In the second set of the experiments, we evaluate the performance
of incremental update schemes in correcting the propagating
errors with the condition that the nature carries fast-moving
waves. To highlight the accumulated effect of the DA schemes in
correcting the propagating errors, the cumulative correction is
presented in Figure 3 and is defined as the difference between this
no DA run and DA experiments.

As the one-time update scheme, the pattern of the ETKF
corrections (color shading in Figure 3) corresponds to those of
the errors; however, the discontinuity at the analysis times is
evident and leads to serious imbalance. Similar to what have
been shown in Figure 2, IAU, 4DIAU, and ETKIS all work well
in providing smooth corrections. However, the errors and signals
are both propagating, and this increases the difficulty for the
incremental update schemes to adapt the moving errors.
Figure 3 shows that the cumulative corrections among these
schemes are different in terms of filtering characteristics, and
this affects their correction effect much. The high-frequency
signals are strongly filtered by IAU, while they are more
retained by 4DIAU and ETKIS. The difference in their filtering
property comes from the fact that ETKIS and 4DIAU have flow-
dependent gradual increment.

FIGURE 2 | Evolution of the ageostrophic v wind in the shallow water experiments using different DA schemes: (A) ETKF, (B) IAU (C) 4DIAU and (D) ETKIS.
Experiments are initialized from a balanced condition.
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To illustrate the filtering mechanism of ETKIS and its
difference from the IAU, Figure 4 shows the h increment at
the end of the update window contributed from the gradual
increment at each time step. Each increment is derived by the
difference between the analysis mean of the first cycle (from 3rd
to 9th h) using the full gradual increment and the one
reconstructed without the gradual increment to be estimated.
The earlier added gradual increments are integrated for more
time steps in either scheme. However, IAU uses the same gradual
increment at every time step in the update window, and the
increments at the end of window will consequently have phase
shifts (color lines in Figure 4A), which are caused by the
displacement in time. Due to the phase shift, signals with high
frequency tend to cancel out each other, and thus, IAU has a
property of a low-pass filter. The averaged increment shows

(black line in Figure 4A) that signals with a wavelength
shorter than 1,500 km are strongly damped. In contrast,
ETKIS uses flow-dependent gradual increments which adapt
to the dynamical evolution, and thus tends to produce the
same increments at the end of the update window. Therefore,
the ETKIS gradual increments have the property of dynamical
consistency. For this reason, the h increments of ETKIS at the end
of the window have a similar pattern (Figure 4B) and retain
much more small-scale corrections, which are proven to be valid,
as shown in Figure 3D. Furthermore, ETKIS still smooths some
signals which are not dynamically consistent. In Figure 4B, there
is still phase shift which corresponds to the artificial waves
induced by the covariance localization. Such artificial signals
are independent to time, and consequently, its integration will
have phase shift as the IAU increments. As a result, with such a

FIGURE 3 | Temporal evolution of the h error (contour) and cumulative correction (shaded) in the shallow water experiments using different DA schemes: (A) ETKF,
(B) IAU (C) 4DIAU, and (D) ETKIS. Experiments are initialized from a balanced condition. The cumulative correction is calculated as the difference between NoDA and DA
experiments. Contour value ranges from −3.75 to −0.75 (dashed) and 0.75 to 3.75 m with 1-m interval; values of 1.75 and −1.75 are denoted with thick contours.

FIGURE 4 | The h increment at t+3 (i.e., 9th hour) for gradual increment added during the update window from t−3 to t+3 (3rd hour to 9th hour) with (A) IAU and (B)
ETKIS schemes. The black dot line is average of the h increments at t−3.
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mechanism, ETKIS can retain valid signals, since most of them
are dynamically consistent, and still have a low-pass filtering for
the dynamically inconsistent signals. With the corrections shown
in Figure 3C, 4DIAU is expected to have flow-dependent gradual
increment and has a similar selective filtering property. As will be
discussed in Experiments with the Lorenz three-variable model
section, the ETKIS will have better ability to retain dynamically
consistent signals with the nonlinear dynamic system.

The selective filtering property is a key advantage of 4DIAU
and ETKIS of computing the gradual increment with the time-
evolving state and avoids the degeneracy with the IAU
corrections (Figure 3B). For example, the moving correction,
which started from 3,500 km at the 15th h–500 km at the 24th h
(the green circles in Figure 3), was filtered seriously with IAU. In
comparison, the corrections from 4DIAU and ETKIS retain most
signals corresponding to error. Results suggest that ETKIS has a
better capability in providing valid corrections than 4DIAU does,
for instance, stronger corrections (Figure 3C vs. 3 days) and a
lower RMSE than the ETKF in Figure 1B.

Results from two OSSEs show that ETKIS not only preserves
the good correction from the ETKF scheme but also provides
smooth update, which leads to a more balanced model state as the
important purpose that incremental update schemes seek. More
importantly, ETKIS shows a selective filtering property that only
filters out high-frequency but dynamically inconsistent signals
induced by the covariance localization in our experiment. This
suggests that ETKIS could have the least sacrifice for the dilemma
between improving the state balance and retaining effective
correction.

EXPERIMENTS WITH THE LORENZ
THREE-VARIABLE MODEL

Experiment Settings
This section presents how the ETKIS performs under the scenario
of strong nonlinearity. OSSEs are conducted with the Lorenz
three-variable model [31] to mimic such a scenario. The model
state (x, y, and z) is governed by three equations (Eq. 16), where σ
� 10, c � 28, and β � 8/3 are model parameters chosen to generate
the model nonlinear trajectory with two attractors (the butterfly
pattern).

dx
dt

� σ(y − x),
dy
dt

� x(c − z) − y, (16)

dz
dt

� xy − βz.

The fourth-order Runge–Kutta scheme is used for time
integration with a time step of 0.01. Hereafter, this model is
referred to as the L63 model.

The nature run is a 60,000-step long simulation initialized
from a spun-up model state, which is generated by integrating the
model from a state of (8.0, 0.0, and 30.0) for 600 steps. Ten
ensemble members are generated by adding Gaussian random
values with a variance of nine to a chosen initial mean state, which

is prepared by adding an error (−3, 3, −3) to the initial condition
of the nature run. Observations are generated for all three
variables by adding Gaussian random values with a variance
of two to the nature state. The first set of observations is arranged
at the 6th time step and available every 12 time steps afterward.

In the following, the results of the DA experiments are
presented with the offline and online settings. The offline
experiments aim to provide a clean illustration of the
importance to have a time-varying gradual increment when
strong nonlinearity takes place. The increment schemes use
the same background ensemble at each assimilation window,
and the impact of the incremental schemes is not cycled. For
online experiments, the impact of the incremental schemes is
cycled and accumulated. All online experiments are initialized
from the same initial ensemble.

The performances of five schemes are compared in this
section, including the ETKF, ETKIS, IAU, 4DIAU, and
4DIAU_EX. Each scheme is conducted with three different
lengths of the assimilation window, including 12, 24, and
48 time steps, to investigate the sensitivity to the nonlinearity.
With the observation setup, there will be one, two, and four sets of
observations available for these three types of the assimilation
window. The ETKF (and other update schemes) experiment uses
the 4DETKF algorithm [21] in order to assimilate all observations
within the assimilation window and produce an analysis
trajectory. ETKIS, IAU, and 4DIAU perform the incremental
update at every time step with an update window spanning the
whole assimilation window. Unlike 4DIAU that only uses three
analyses at the beginning, middle, and end of the update window,
4DIAU_EX uses full analysis trajectory from the ETKF to
calculate the gradual increment and is expected to catch the
nonlinear error evolution better than 4DIAU.

General Performance
The general performance of the analysis schemes is first evaluated
according to the average RMSE of the analysis mean at the end of
the assimilation window. Tables 1, 2 list the results categorized
into four groups according to the perturbation growth rate of
each DA cycle. The perturbation growth rate is defined for a
period between the beginning of the DA cycle and analysis time.
It is the averaged growth rate from 36 perturbation samples
generated by combining the first two eigen modes of the tangent
linear model of Eq. 16. The colored numbers in Tables 1, 2
indicate that the comparison to the ETKF RMSE is statistically
significant. According to the perturbation growth rate, cycles are
sorted into the groups of negative, low, mid, and high
perturbation growth rates. The sample number is even among
groups to avoid sampling errors for the following investigation.

Results from the offline experiments (Table 1) show that larger
difference between the ETKF and incremental update schemes
appears in the categories with higher perturbation growth rates and
longer assimilation windows, that is, conditions of stronger
nonlinearity. Compared with the ETKF, ETKIS keeps a
comparable performance, while the remaining incremental
update schemes show larger RMSEs. The smaller RMSE of
4DIAU_EX than that of 4DIAU confirms that 4DIAU_EX has
better ability to catch the nonlinear error evolution.
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Compared with Table 1, the result of the online cycling
experiment (Table 2) shows the impact of each scheme
accumulated through the forecast-analysis cycles. For IAU,
4DIAU, and 4DIAU_EX, their RMSEs increase in most of the
categories and assimilation windows, especially for the ones with
longer assimilation windows and a high perturbation growth rate.
This indicates a negative feedback deteriorates the state accuracy
when using IAU/4DIAU to update the state incrementally. By
contrast, RMSE of ETKIS is smaller than those of the ETKF when
the length of assimilation windows is shorter than 24 time steps.

Results from both the offline and online experiments indicate
that ETKIS can achieve better accuracy than IAU and 4DIAU for
conditions with strong nonlinearity. Focusing on an example with
strong nonlinearity, we illustrate how ETKIS/4DIAUmodifies the
state accuracy in the next subsection.

An Example of the Time-Varying Gradual
Increment
Focusing on an example with strong nonlinearity, we illustrate
how ETKIS/4DIAU modifies the state accuracy in the next
subsection. A case with a large perturbation growth rate is

used to demonstrate how the flow-dependent gradual
increment of ETKIS and 4DIAU is different. The example is
taken from the update process during the 316th cycle from the
offline experiments with a 24-time step assimilation window in
which the observations are available at 6th and 18th time steps. It
should be noted that the innovation at the 18th time step is large
(−3.162 for the z variable) because the ensemble mean has large
error due the strong nonlinearity. Given the same background
ensemble, the derived weights are the same in all schemes with
Eqs 3, 4, but the way to use these weights to derive increments
varies in all schemes. Thus, it is not anticipated to keep the same
effect on constraining the ensemble spread after translating the
one-time correction into time-varying increments.

The ensemble states of this cycle start at a condition close to
bifurcation, at which the model evolution is very sensitive to the
initial condition. Figure 5 shows the initial condition and evolution
of the same five selected ensemble states from different schemes
during this cycle. The initial condition of these ensemble members
located in both regimes and the ensemble members disperse
quickly during the forecast, leading to a large ensemble spread.
The error evolution is also highly nonlinear with a fast growth rate
(black line in Figures 6A–D).

TABLE 1 |Mean RMSE of the offline cycling experiments from different update algorithms. RMSE is calculated with the analysis mean at the end of the assimilation window.
Numbers are highlighted if they are significantly higher (lower) than the ETKF RMSE. According to the t test, warm color indicates an RMSE significantly higher than the
ETKF one. Darker and lighter color denote higher and medium confidence, corresponding to a level of 95 and 80%, respectively.

Assimilation window
length

Growth rate
category

ETKF ETKIS IAU 4DIAU 4DIAU_EX

12 Negative 0.325 0.325 0.325 0.325 0.325
Low 0.604 0.603 0.601 0.603 0.605
Mid 0.716 0.714 0.716 0.713 0.717
High 0.968 0.961 0.980 0.985 0.985

24 Negative 0.294 0.294 0.296 0.294 0.293
Low 0.449 0.445 0.485 0.448 0.445
Mid 0.514 0.508 0.570 0.523 0.512
High 0.795 0.783 1.041 0.944 0.891

48 Negative 0.566 0.573 0.585 0.613 0.577
Low 0.502 0.511 0.615 0.566 0.542
Mid 0.420 0.391 0.716 0.510 0.420
High 0.942 1.194 2.671 1.490 1.269

TABLE 2 | RMSE of online cycling experiments. As Table 1, but for online cycling experiment.

Assimilation window
length

Growth rate
category

ETKF ETKIS IAU 4DIAU 4DIAU_EX

12 Negative 0.325 0.314 0.369 0.336 0.350
Low 0.604 0.593 0.670 0.629 0.659
Mid 0.716 0.693 0.808 0.716 0.739
High 0.968 0.973 1.047 0.985 0.983

24 Negative 0.294 0.273 0.514 0.394 0.398
Low 0.449 0.420 0.706 0.522 0.531
Mid 0.514 0.486 0.796 0.644 0.604
High 0.795 0.762 1.419 1.095 1.019

48 Negative 0.566 0.561 1.687 1.229 0.788
Low 0.502 0.503 2.270 1.288 0.672
Mid 0.420 0.422 1.922 1.288 0.670
High 0.942 1.143 4.503 2.920 1.723
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Taking the trajectory of the ETKF as an example
(Figure 5A), most ensemble members evolve faster than
nature, and the error of the z-variable background mean
grows quickly (black line in Figure 6A). With the large
ensemble spread and innovation, the ETKF makes strong
corrections at the analysis time (Figure 6E), which pull the
over-evolving members back and result in a strong
discontinuity, especially those members in the wrong

regime (e.g., a correction of −2.846 for member 10). With
the analysis trajectory from the ETKF, the gradual increments
derived by the 4DIAU and 4DIAU_EX (Figures 6F,G) are well
proportional to the evolution of the background error (black
line in Figure 6B). Their gradual increments during the second
half of the update window have large magnitude
corresponding to the great z error due to the fast-growing
ensemble spread during the update window and partially the

FIGURE 5 | The trajectories of ensemble forecast (blue) and nature (red) during the 316th DA cycle with the L63 model with different DA schemes: (A) ETKF, (B)
4DIAU (C) 4DIAU_EX and (D) ETKIS. The green dot is the initial condition of the ensemble member and the green line is the adjustment of the DA scheme from the offline
experiment. The number corresponds to the ensemble member number. The gray line is a trajectory from long-term free integration to exhibit the nonlinear behavior of
the L63 model. Only five ensemble members are selected for clear illustration.

FIGURE 6 | The error and increment during the 316th DA cycle in the offline cycling experiment for the ETKF, ETKIS, 4DIAU, and 4DIAU_EX. The upper panel (A–D)
shows the error evolution of the z variable: the black line indicates how the error grows without correction, and the red line indicates how the error evolves after applying
the analysis increment. The lower panel shows the (E) analysis increment and (F–H) gradual increment of the z variable.
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large innovation at the 18th time step. The 4DIAU incremental
update process successfully corrects the ensemble during the
first half of the update window (red line in Figure 6B), pulling
the ensemble members toward the correct regime (Figure 5B).
Thus, the ensemble evolution has been improved, and the need
for a negative correction in z becomes less. Therefore, the large
gradual increments at later time steps become unsuitable to the
incrementally updated ensemble. They do not provide useful
corrections and fail to shrink the ensemble spread. The gradual
increments with large and negative values eventually
overcorrect the z value and lead to an analysis worse than
that of the ETKF (Figures 5B vs. 5A). As shown in Figure 5B,
the z variable of the 3rd and 10th members are overcorrected to
a value much smaller than the nature, and their state evolution
does not follow the model behavior, that is, a very imbalanced
condition. In other words, the incremental corrections at later
steps, derived for the original background trajectories, cannot
correspond to the errors that existed in the modified ensemble
and thus degrade the accuracy of analysis and the following
prediction. For the same reason, even when using gradual
increment derived by a full analysis trajectory, the 4DIAU_EX
is still not able to achieve better performance. This example
also indicates that 4DIAU has difficulty in constraining the
ensemble spread under the condition of a fast perturbation
growth rate.

By contrast, the ensemble in ETKIS can smoothly evolve into
the correct regime with the gradual increment, and the ensemble
spread in ETKIS is more constrained than in 4DIAU. The amount
of gradual increment in ETKIS is much smaller than that in either
the ETKF or 4DIAU, and its sign alters during the incremental
update process (at the 19th step on Figure 6D). During ETKIS’s
incremental update process, the evolution of the ensemble forecast
is modified and the weights are applied to the updated ensemble
space. The incremental correction adapts the evolution of the
ensemble, and the overcorrection shown in the 4DIAU z
variable is avoided in ETKIS. This example illustrates that
ETKIS has the advantage of allowing the incremental correction
having a temporal variation corresponding to the error evolution
during the update steps. Such property is particularly beneficial
during strong nonlinearity.

SUMMARY

This study proposes a new incremental update scheme, ETKIS,
based on the framework with the ETKF algorithm. In addition
to the optimal purpose of incremental update schemes that
reduce the imbalance from DA correction, ETKIS mitigates the
degradation caused by the nonlinear evolution during the
update window. The traditional incremental update schemes
(IAU and 4DIAU) use the background trajectory to calculate the
analysis increment and update the model state with gradual
increment. Unlike applying temporal interpolation to the
analysis increment in 4DIAU, ETKIS constructs time-varying
increments by distributing the ETKF weight coefficients to each
update step and applying them to the evolving ensemble state.
Two numerical models, the shallow-water model and the L63

model, with simple dynamics are used to verify the ability of
ETKIS to mitigate imbalance and highlight the challenge in the
application of the incremental update schemes under nonlinear
dynamics.

When the shallow-water model is initialized by a balanced state,
the one-time analysis correction made by the ETKF results in
serious imbalance in the ageostrophic wind due to the use of
covariance localization. Result confirms that ETKIS has the ability
to mitigate the imbalance and its performance is comparable to
that of IAU and 4DIAU. With another scenario that propagating
signals exist in both nature and initial errors, the flow-dependent
incremental correction from ETKIS helps to capture the
propagating error better than that from 4DIAU, while IAU has
the worst performance, and its correction is overly smoothed out.
Conclusively, ETKIS has the advantage of selective filtering which
damps high-frequency correction like IAU does, but retains signals
with dynamical consistency. The incremental updates from ETKIS
can be regarded as a mechanism like constructive interference.

Results from the experiments with the L63 model show that
ETKIS provides a more accurate model state than 4DIAU at the
end of the assimilation window, in particular for the conditions
with strong nonlinearity (conditions with long assimilation
window and a high perturbation growth rate).

An example with the initial model state close to bifurcation
illustrates that the fast-growing (and large) ensemble spread leads
to large analysis increment at later analysis time in 4DIAU’s update
window. After applying temporal interpolation to the analysis
increments at different update times, large gradual increments
appear in the latter half of the update window. However, once the
model state at the early steps in the assimilation window has been
corrected, there is no need for such large correction at later steps
and the state accuracy at the end of the assimilation window is
degraded due to overcorrection. Such an ensemble cannot well
present the error structure and could degrade the DA performance
in the following cycle. For the same reason, 4DIAU is less effective
to compress the ensemble spread and results in an overestimated
ensemble spread. Thus, the detrimental impact is accumulated in
the online experiments. By contrast, ETKIS applies the
precomputed weight to the ensemble evolved from the previous
time step of incremental update to calculate the correction. This
helps the ETKIS increment capture more current error and reduce
the forecast error effectively. Also, the constrained spread allows
the following increment to have a modest amplitude. For this
simple nonlinear model, ETKIS can catch the nonlinearly evolving
error during increment update. The correction from ETKIS can
give considerations to provide a smooth and moderate update
process and provide better accuracy than 4DIAU. In conclusion,
ETKIS can be regarded as a more robust choice to gain the benefit
from the incremental process and maintain the effective correction
from the ETKF under nonlinear dynamics.

Although the incremental update schemes involving
interpolating the analysis increments can mitigate the model
shock and gently bring in the impact of assimilating
observations, this study points out that a potential issue could
appear when dealing with conditions with strong nonlinearity,
such as the development of severe weather systems like tropical
cyclones (TC). Currently, ETKIS has been implemented in a
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regional EnKF system to investigate its impact on mitigating the
spin-up issue when the model TC structure is adjusted in
responding to the analysis corrections from assimilating inner-
core dropsonde data [32]. We also note that ETKIS could be
incorporated with other EnKF frameworks, such as the iterative
EnKF [33], in which a cost function is constructed with the weight
coefficient as the control variable, and the minimization is solved
by the iterative method.
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