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Data-space inversion (DSI) is a data assimilation procedure that directly generates
posterior flow predictions, for time series of interest, without calibrating model
parameters. No forward flow simulation is performed in the data assimilation process.
DSI instead uses the prior data generated by performing O(1000) simulations on prior
geomodel realizations. Data parameterization is useful in the DSI framework as it enables
representation of the correlated time-series data quantities in terms of low-dimensional
latent-space variables. In this work, a recently developed parameterization based on a
recurrent autoencoder (RAE) is applied with DSI for a real naturally fractured reservoir. The
parameterization, involving the use of a recurrent neural network and an autoencoder, is
able to capture important correlations in the time-series data. RAE training is accomplished
using flow simulation results for 1,350 prior model realizations. An ensemble smoother with
multiple data assimilation (ESMDA) is applied to provide posterior DSI data samples. The
modeling in this work is much more complex than that considered in previous DSI studies
as it includes multiple 3D discrete fracture realizations, three-phase flow, tracer injection
and production, and complicated field-management logic leading to frequent well shut-in
and reopening. Results for the reconstruction of new simulation data (not seen in training),
using both the RAE-based parameterization and a simpler approach based on principal
component analysis (PCA) with histogram transformation, are presented. The RAE-based
procedure is shown to provide better accuracy for these data reconstructions. Detailed
posterior DSI results are then presented for a particular “true” model (which is outside the
prior ensemble), and summary results are provided for five additional “true”models that are
consistent with the prior ensemble. These results again demonstrate the advantages of
DSI with RAE-based parameterization for this challenging fractured reservoir case.

Keywords: data-space inversion, history matching, data assimilation, time-series parameterization, deep learning,
naturally fractured reservoir

INTRODUCTION

Traditional model-based history matching entails the calibration of model parameters such that flow
predictions match observed data, to within some tolerance. History matching, also referred to as data
assimilation, represents an essential component of the overall reservoir management workflow,
because without this calibration, predicted reservoir performance can be highly uncertain. Although
model-based history matching approaches are well developed and widely applied, there are still some

Edited by:
Alexandre Anozé Emerick,

Petrobras, Brazil

Reviewed by:
Ahmed H. Elsheikh,

Heriot-Watt University,
United Kingdom
Yuguang Wang,

Shanghai Jiao Tong University, China
Smith Washington A. Canchumuni,

Pontifical Catholic University of Rio de
Janeiro, Brazil

*Correspondence:
Su Jiang

sujiang@stanford.edu

Specialty section:
This article was submitted to

Mathematics of Computation and Data
Science,

a section of the journal
Frontiers in Applied Mathematics and

Statistics

Received: 27 March 2021
Accepted: 11 June 2021
Published: 12 July 2021

Citation:
Jiang S, Hui M-H and Durlofsky LJ
(2021) Data-Space Inversion With a
Recurrent Autoencoder for Naturally

Fractured Systems.
Front. Appl. Math. Stat. 7:686754.
doi: 10.3389/fams.2021.686754

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 6867541

ORIGINAL RESEARCH
published: 12 July 2021

doi: 10.3389/fams.2021.686754

http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2021.686754&domain=pdf&date_stamp=2021-07-12
https://www.frontiersin.org/articles/10.3389/fams.2021.686754/full
https://www.frontiersin.org/articles/10.3389/fams.2021.686754/full
https://www.frontiersin.org/articles/10.3389/fams.2021.686754/full
http://creativecommons.org/licenses/by/4.0/
mailto:sujiang@stanford.edu
https://doi.org/10.3389/fams.2021.686754
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2021.686754


outstanding issues surrounding their characteristics and use.
These include high computational demands, challenges
associated with providing history matched (posterior) models
that are fully consistent geologically with prior models, and lack
of formal guarantees regarding posterior sampling.

Complementary approaches, referred to as data-space
inversion procedures, have been developed in recent years.
These methods do not provide posterior models but rather
posterior predictions for key time-series of interest, such as
well or field injection and production rates. Although their
inability to generate posterior models represents a limitation
in some application areas, DSI procedures have advantages
over model-based methods in other settings. These include the
ability to consider prior realizations from a range of different
scenarios, decreased computational demands (in many cases),
and flexibility in terms of data error and data weighting
specifications. Data-space methods are commonly applied in
conjunction with a data parameterization procedure. This
allows data from prior realizations to be represented concisely
and, ideally, assures that posterior data predictions (well-rate time
series) display the correct physical character.

In recent work, we introduced a new data parameterization
procedure and incorporated it into the DSI framework. This
approach entails the use of a recurrent autoencoder in
combination with a long short-term memory (LSTM)
recurrent neural network. This treatment was shown to
outperform existing approaches, including the use of principal
component analysis with histogram transformation, and the
direct use of time-series data without parameterization, for a
set of idealized test cases. In this paper, we will explore the
properties and behavior of this RAE-based parameterization for a
complicated case based on an actual naturally fractured reservoir.
We will, in particular, assess the ability of the new
parameterization method to capture key correlations in the
time-series production data. Accurately capturing such
correlations is important for computing so-called derived
quantities (i.e. quantities such as water cut that are
constructed by combining data from one or more time series
treated directly in DSI), and for quantifying uncertainty reduction
when observations involve data of different types.

The basic DSI method applied here was originally developed
by [1, 2]. DSI is formulated within a Bayesian framework, and
different posterior sampling methods have been applied. In the
original implementation [1–3], the randomized maximum
likelihood method was used. Recent work by [4] demonstrated
the advantages of ensemble smoother with multiple data
assimilation (ESMDA) for posterior sampling. ESMDA was
also found to perform well with our deep-learning-based DSI
method [5].

A number of other methods that share some similarities with
DSI have also been proposed. These include the prediction
focused method originally developed by [6]. This approach
entails the construction of a statistical relationship between
observed data and the prediction objective in the
parameterized latent space. Multivariate kernel density
estimation [6], canonical correlation analysis [7–9], and
artificial neural network with support vector regression [10]

have been applied to build the relationship between
observations and predictions in the low-dimensional space.
When the latent space is not of very low dimension, however,
these approaches may have difficulty capturing nonlinear data.
The ensemble variance analysis (EVA) method developed by [11]
represents another type of data-space method. This approach
entails the construction of the cumulative distribution function
for posterior results under a multi-Gaussian assumption. In [12],
a nonlinear generalization of EVA was developed by applying
nonlinear simulation regression with localization. EVA-based
procedures, however, treat the various quantities of interest
(QoI) individually, and thus do not fully capture the
correlations between different QoI. In addition, they are not
designed to provide time-series forecasts.

Data-space (and related) methods often apply some type of
parameterization to provide a low-dimensional representation of
the time-series data. Such a parameterization should, ideally,
capture the complex physical behavior of, and correlations
between, the various data streams. In [9, 10, 13], PCA was
applied directly for dimension reduction and parameterization.
PCA has also been combined with specialized mappings for time-
series data with particular (problem-specific) characteristics [1].
This treatment was later generalized to a PCA procedure
combined with histogram transformation, which was applied
to noisy data resulting from multiple operational stages [2].
Nonlinear PCA [6] and functional data analysis methods
[7, 8] have also been used to parameterize data from tracer
flow and oil reservoir production problems. Recently, deep-
learning based methods for time-series data, including auto-
regressive [14] and recurrent neural network [15] treatments,
were developed for reservoir forecasting. As noted earlier, our
previous work entails the use of an LSTM-based RAE [5], which
was shown to capture important correlations in time-series data.

A key goal of this work is to assess the performance of our new
DSI treatments, previously demonstrated only for idealized cases,
in a complicated real-field setting. The models considered here
derive from an actual naturally fractured reservoir, though the
operational specifications used in our examples represent one out
of several possible scenarios. The field has over 10 years of
primary production history, and a multiyear waterflood pilot
involving two injectors with tracers is currently being planned to
evaluate water injection as a potential full-field improved oil
recovery (IOR) strategy. In this study, a large set of prior models
(1850) is generated and simulated using an efficient workflow
[16]. These models are based on nine discrete fracture network
realizations and a range of matrix and fracture parameters (e.g.
permeability, porosity, and rock compressibility). As a result of
the multiple development stages considered, complex flow
physics, and field-management logic (necessary for water and
gas processing), the time-series data are quite complicated. Thus,
this case represents a challenging test for the RAE-based
parameterization. In this study, we are particularly interested
in assessing the ability of the new parameterization to capture
correlations in the waterflood pilot and full-field water injection
forecasts, since pilot surveillance data will be used as indicators
for future field performance [17]. It is important to note, however,
that we do not use actual production data in our assessments here,
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but rather synthetic data. These data are derived from simulations
of randomly selected realizations not used in the construction of
the parameterizations. This approach enables us to avoid data-
confidentiality issues and, importantly, allows us to assess DSI
performance for multiple “true” models.

This paper proceeds as follows. In Section 2, we provide a
concise review of the two data parameterization methods
considered in this study and the overall DSI procedure. In
Section 3, we describe the field and the models, and present
results for the reconstruction of new (prior) data realizations not
used in training. Correlations between data of different types will
be considered. Posterior DSI predictions for primary and
secondary quantities are presented in Section 4. Conclusion
and suggestions for future work are provided in Section 5.

DATA PARAMETERIZATION AND
DATA-SPACE INVERSION

In this section, we first provide a review of the two data
parameterization methods considered in this work–principal
component analysis with histogram transformation (HT) [2],
and the recurrent autoencoder procedure [5]. The use of these
parameterizations in the DSI framework is then discussed.

Parameterization of Time-Series Data
In DSI, we use prior realizations of time-series data in
combination with observed data to construct posterior data
realizations. The generation of the prior data vectors, which is
the time-consuming step in DSI, is accomplished by simulating a
relatively large number (typically ∼ O(1000)) of prior geological
models. As noted earlier, in DSI, posterior models are not
constructed–only posterior data realizations.

The generation of the prior ensemble of data vectors di,
i � 1, 2, . . . ,Nr, can be expressed as

di � g(mi), (1)

where g represents the forward simulation process, m denotes the
geomodel, and Nr is the number of prior models (and thus data
vectors) considered. The data variables d ∈ RNf×1 include a
concatenation of the time-series flow rates for key QoI. These
can include injection and production rates at wells, or time series
at a sector or field level. In this work, we consider NQoI quantities
of interest and Nt simulation time steps. We thus have Nf �
NQoI × Nt as the dimension of each d vector.

The data vectors typically follow high-dimensional non-
Gaussian distributions as a result of the strongly nonlinear
forward simulation process and the heterogeneous property
fields that characterize the geomodels. Data parameterization
enables us to use low-dimensional latent variables, ξ ∈ RNl×1,
where Nl denotes the number of latent variables, to represent d.
The parameterized data ~d are then represented as ~d � f(ξ), where
f indicates the parameterization function. An ideal f should
preserve the physical character and correlations in the high-
dimensional time-series data, and it should accomplish this with
Nl ≪Nf . It is advantageous to have Nl ≪Nf as this reduces

complications associated with high-dimensional inversion.
Potential problems that may be avoided include ensemble
collapse with ensemble-based methods (as are applied in this
work) and issues related to high-dimensional minimization with
optimization-based methods.

PCA With Histogram Transformation
Sun et al. [2] applied PCA with histogram transformation for the
parameterization of noisy data. This approach is straightforward
to use and it preserves the marginal distributions of the individual
data variables, but it does not in general capture the correlations
between different data variables (including correlations in time
for a single QoI). The basic approach is as follows. The PCA basis
matrix is constructed by performing singular value
decomposition (SVD) of the data matrix D ∈ RNf×Nr

containing centered prior realizations of d. Specifically,

D � 1�����
Nr − 1

√ [d1 − dprior d2 − dprior . . . dNr − dprior], (2)

where dprior � 1
Nr
∑Nr

i�1di is the mean of the prior data realizations.
The SVD of matrix D provides the PCA basis matrix Φ ∈ RNf×Nl .
We apply an energy criterion to determine the latent space
dimension Nl. See [2, 5] for full details.

With the PCA mapping, the latent-space prior vectors ξPCAi ,
i � 1, 2, . . . ,Nr, are normally distributed [2]. The corresponding
prior data vectors dPCAi , i � 1, 2, . . . ,Nr, generated through
application of dPCAi � ΦξPCAi + dprior, are thus multi-Gaussian.
Because the actual high-dimensional prior data variables are non-
Gaussian, the PCA transformation may generate parameterized
data realizations with nonphysical behavior. To partially mitigate
such issues, histogram transformation is applied in a post-
processing step. This maps the (Gaussian) PCA realizations
dPCA to match the prior marginal distributions associated with
each component of the data realizations d. Specifically, let fT(d)
and fI(dPCA) denote the cumulative distribution function (CDF)
of the prior distribution of d (which is the target distribution) and
the distribution of dPCA (initial distribution), respectively. The
parameterized data vector ~d is then generated through
application of

~d � hT(dPCA) � f −1T (fI(dPCA)), (3)

where hT denotes the histogram transformation function.
As noted earlier, because histogram transformation for each

component of dPCA is applied independently, the joint
distribution of the high-dimensional data will not be fully
captured. The RAE-based parameterization, which we now
describe, was developed in an attempt to maintain the
complex correlations that characterize the prior (and thus
posterior) data vectors.

RAE Procedure
The RAE-based time-series parameterization introduced by [5]
involves an autoencoder and a long short-term memory (LSTM)
network. The basic RAE architecture is shown in Figure 1. The
encoder portion of the RAE maps the time-series data d to the
low-dimensional latent variables ξRAE, while the decoder maps
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the low-dimensional representation back to high-dimensional
(physical) space. LSTM networks are applied in both the
encoder and decoder to capture and reconstruct the time-
series data.

LSTM architectures, introduced by [18], are recurrent neural
networks designed to capture both long-term and short-term
information in time-series data. The LSTM unit for each time step
t is composed of a neural network cell to store the temporal
dynamics and three gates to regulate the input and output
information. Let ct ∈ RNh×1 denote the cell state, where Nh is
the length of the cell state. For each LSTM unit at time step t, the
input vector xt ∈ RNd×1 and the previous cell output (hidden)
state ht−1 ∈ RNh×1 are received and controlled by the forget gate
f t ∈ RNh×1, the input gate it ∈ RNh×1 and the output gate
ot ∈ RNh×1. The gate operations are expressed as

f t � σ(Wf [ht−1, xt] + bf ),
it � σ(Wi[ht−1, xt] + bi),
ot � σ(Wo[ht−1, xt] + bo),

(4)

where W ∈ RNh×(Nh+Nd) denotes the weight matrix, b ∈ RNh×1 is
the bias term, and σ(·) is the (nonlinear) sigmoid function.

The candidate new cell state ~ct is given by

~ct � tanh(Wx[ht−1, xt] + bc). (5)

The cell state ct at time step t involves the forget gate f t applied to
the previous cell state ct−1 and the input gate it applied to the
candidate state ~ct , i.e.,

ct � f t+ct−1 + it+~ct , (6)

where + denotes the Hadamard product. The output gate ot is
then applied to provide the output state ht via

ht � ot+tanh(ct). (7)

The LSTM network is combined with an autoencoder to
parameterize the time-series data. In the encoder component,

LSTM is applied to map the high-dimensional data to the latent
space variable, here designated ξRAE. As noted earlier, the data
vector contains NQoI quantities at Nt time steps. The input to the
LSTM unit for each time step t, t � 1, 2, . . . ,Nt, is the vector
xt ∈ RNQoI×1, which includes data for all QoI. The LSTM output
states ht , t � 1, 2, . . . ,Nt, are transformed to the latent space
ξRAE ∈ RNl×1 by a dense layer in which no activation function is
applied. The dense layer performs a linear mapping from the
LSTM output to the specified latent space. The overall encoding
procedure is expressed as

ξRAE � fe(d;We), (8)

where fe denotes the encoding process with LSTM and We

represents all parameters in the encoder. Before the encoding
process, we normalize the data for each QoI time series to the
range [−1, 1].

For the decoder component, LSTM is applied tomap the latent
space variable ξRAE to the high-dimensional data vector d. We use
three stacked LSTM layers in the decoder to perform this
nonlinear mapping. The latent variables ξRAE are included in
the input vector xt ∈ RNl×1 for all time steps in the first layer. The
inputs to the second and third LSTM layers are the output states
from the previous layers. A dense layer is applied to map the
output of the last layer to the data vector ~d. The decoding process
is represented as

~d � fd(ξRAE;Wd), (9)

where fd denotes the decoder function, and Wd includes all
parameters. We apply a tanh activation function to map the
data to the range [-1, 1], which ensures the components of ~d fall
within the prior range. In the final step, each component of ~d is
mapped back to the physical range.

A supervised-learning procedure is used to train the RAE
network. The training loss is defined as the root mean square
error (RMSE) between the normalized prior simulation data dn

and the normalized reconstructed data ~d
n
, i.e.,

FIGURE 1 | Schematic of RAE architecture (figure modified from [5]).
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LRAE � ⎛⎝ 1
N

1
Nf

∑N
i�1






dn
i − ~d

n

i






22⎞⎠
1
2

, (10)

where N denotes the number of samples used for training. We
apply the adaptive moment estimation (ADAM) algorithm [19]
in the training process to determine the parameters We and Wd

for the encoding and decoding processes. The performance of the
training procedure will be considered in Section 3.2.

DSI With Parameterized Data
As noted previously, in the DSI procedure, we first generate an
ensemble of prior data vectors di, i � 1, 2, . . . ,Nr, through
application of Eq. 1. Each data vector di is then divided into
two parts; i.e., we write di � [(dhm)Ti , (dpred)Ti ]

T
. Here

(dhm)i ∈ RNhm×1 represents data corresponding to the historical
time frame, (dpred)i ∈ RNpred×1 represents data corresponding to
the forecast/prediction period, and Nhm andNpred are the number
of observed and predicted components in each di. For the
examples in this work, we generate a “true” (synthetic) model
realizationmtrue. The corresponding data dtrue, obtained via Eq. 1,
are not included in the prior ensemble of data vectors. The
observed (in contrast to true) data dobs ∈ RNhm×1 used in DSI
are sampled from

dobs � dhm + ϵ � Hdtrue + ϵ, (11)

where matrix H ∈ RNhm×Nf extracts historical-period data dhm
from d and ϵ ∈ RNhm×1 denotes random measurement error. This
error is sampled from a zero-mean Gaussian distribution with
specified covariance (measurement noise level) CD.

In DSI with parameterized data, we perform inversion on the
latent space variable ξ and then generate predictions based on
~d � f(ξ). In a Bayesian setting, the posterior probability density
function (PDF) of the latent variables ξ conditioned on
observations dobs is given by [1]:

p(ξ|dobs)∝ exp( − 1
2
(Hf(ξ) − dobs)TC−1

D (Hf(ξ) − dobs) − 1
2
ξTξ).
(12)

An underlying assumption of this representation is that the prior
distribution of ξ is multi-Gaussian. This is the case for the PCA
with histogram transformation parameterization, and it is nearly
the case with the RAE-based parameterization. Following [4, 5],
we generate posterior samples of ξ using an ensemble smoother
with multiple data assimilation (ESMDA). The update equation
for ξ is [5]:

ξk+1i � ξki + Ck
ξ,dhm

(Ck
dhm

+ αkCD)−1(dobs + ��
αk

√
eki − (dhm)ki ), (13)

for i � 1, 2, . . . ,Nr and k � 1, 2, . . . ,Na. Here, Na is the number of
data assimilation steps and αk is the inflation coefficient used at
step k. The number of iterations Na and coefficients αk should
satisfy the requirement ∑Na

k�1α
−1
k � 1, as given in [20].

At each iteration k, we update the ensemble of historical-
period data dhm using the parameterization, i.e.,

(dhm)ki � Hf(ξki ). (14)

We resample the observed data by adding random noise e
sampled based on the measurement error (i.e., from
N(0,CD)). The auto-covariance Cdhm ∈ RNhm×Nhm of dhm and
cross-covariance Cξ,dhm ∈ RNf×Nhm between ξ and dhm are
calculated based on the updated ensemble.

Most of our treatments here are identical to those in our earlier
work [5], though there is one important difference in the ESMDA
procedure. In [5], because our goal was to compare DSI results to
reference rejection sampling results, we had only a small number
of observations (O(10)). In that case we directly computed the
inverse of the (Ck

dhm
+ αkCD) matrix that appears in Eq. 13. For

the case considered here, however, we have more quantities and
more observations (O(100)), and the matrix may be poorly
conditioned. Thus we apply the subspace inversion method of
[21], with the rescaling procedure of [22], to construct the pseudo
inverse. Specifically, we perform truncated SVD on the scaled
matrix (C−1/2

D
1���
Nr−1√ [(dhm)k1 − d

k
hm, . . . , (dhm)kNr

− d
k
hm]), and

preserve 99.9% of the energy (which allows us to determine
the number of columns to maintain). The pseudo inverse is
then generated from the SVD as described in [22].

We now briefly summarize the overall DSI procedure with
data parameterization and ESMDA for posterior sampling. First,
an ensemble of prior models mi are constructed and simulated to
provide prior data di, i � 1, 2, . . . ,Nr. We then construct the
parameterization with the prior data and generate prior samples
of latent variables, ξi, i � 1, 2, . . . ,Nr. For the PCA and HT
parameterization, the prior latent variables ξPCA are generated
through application of ξPCAi � ΦT(di − dprior), i � 1, 2, . . . ,Nr.
For the RAE-based parameterization, prior latent variables
ξRAE are generated with the encoding process,
ξRAEi � fe(di;We), i � 1, 2, . . . ,Nr. We then apply ESMDA to
update the latent variables (Eqs. 13 and 14). After all data
assimilation steps have been performed, the posterior
predictions dpost are constructed using the parameterized
representation. Specifically, with PCA and HT
parameterization, posterior predictions are generated using
(dpost)i � hT(Φ(ξPCApost )i + dprior), i � 1, 2, . . . ,Nr. With RAE-
based parameterization, we apply (dpost)i � fd((ξRAEpost )i;Wd), i �
1, 2, . . . ,Nr.

MODEL SETUP AND PRIOR
RECONSTRUCTION

In this section, we first describe the geomodels and simulation
settings used to model the naturally fractured reservoir
considered in this work. We then present detailed results for
prior-data reconstruction using the two parameterization
procedures described in Section 2.

Fractured Model Setup
We consider a challenging waterflooding problem that involves
three-phase flow in a real light-oil reservoir. The carbonate
reservoir comprises heterogeneous matrix rocks that are highly
fractured in some regions, especially in tight facies. The natural
fractures strongly impact flow behavior. We account for
geological uncertainty using an ensemble of 3D embedded
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discrete fracture models (EDFMs). The realizations are based on
nine stochastic discrete fracture networks (DFNs), shown in
Figure 2. These nine DFNs are intended to ‘span’ the range of
uncertainty in the spatial variability and connectivity of the
fracture system. Please see [16] for a more detailed description
of the workflow used to grid and simulate the ensemble of
EDFMs.

In addition to the different DFNs, three model properties
(fracture permeability, fracture pore volume, and matrix
permeability) are varied through use of three categorical global
multipliers (low, mid, and high) to capture their ranges of
uncertainty. There is considerable variability in these
properties, e.g., matrix permeabilities are on the order of
0.1 mD, while fracture permeabilities can be a factor of 106

higher. Further, three discrete sets of relative permeabilities,
(corresponding) capillary pressures, and rock compressibilities
are used to represent uncertainty in the degree of water
imbibition in the rock matrix as well as the impact of pore
pressure/stress changes in the matrix and fractures. It should be
noted that straight-line relative permeabilities, zero capillary
pressure, and higher rock compressibilities are employed for
fractures.

One model parameter, fracture pore volume, warrants
additional elaboration because we will consider a value beyond
its prior range when we apply DSI in Section 4. Fracture pore
volume is a function of the heterogeneous distribution of fracture
apertures, which themselves range from less than 1 mm to greater
than 1 m. This latter value, which is much higher than that
observed in typical fractured reservoirs, accounts for the existence

of “caverns” in the carbonate formation. The fracture pore
volume strongly impacts the amount of recoverable oil in the
reservoir, so its value has a large effect on reservoir performance.

A total of Nr � 1850 simulations are performed using the nine
DFNs and low, mid and high values of the five uncertain
parameters. A full-factorial experimental design with the nine
DFNs and the set of uncertain parameters leads to an ensemble of
2,187 models. Because the simulations are challenging (due to the
field-management logic and complex displacement physics),
about 15% of the runs fail, which leaves us with 1850
successful runs. The models are represented on structured
grids containing over 500,000 matrix cells, many of which
contain embedded discrete fracture cells. An aggregation-based
upscaling scheme that preserves network connectivity was further
applied to the fracture cells, resulting in coarse EDFMs that
contain ∼60,000 to 100,000 fracture cells.

The simulations capture three field stages: part of the primary
depletion period with 11 existing producers (2.5 years), followed
by a five-year water-injection pilot, and finally the large-scale full-
field waterflood development that lasts for 17.5 years. Note that
we did not consider the actual full depletion period (14 years) in
order to have a more typical ratio of historical period (3,600 days)
to forecast period (5,400 days). During the pilot period, two wells
inject water at a target rate subject to a maximum bottom-hole
pressure (BHP), while the existing producers operate at
prescribed target oil rates subject to minimum BHP
constraints. Injected water contains different tracers (referred
to as A and B) that can be detected at nearby producers.
Breakthrough time, for example, is one of several pilot

FIGURE 2 | EDFMs representing uncertainty in fracture networks of the real carbonate reservoir. Color bar displays cluster size, with pink being the largest. Only
cells belonging to the 10 largest clusters are shown; isolated cells are not displayed (figure from [16]).
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indicators measured to assist in predicting future full-field
waterflood performance (water breakthrough is expected to be
controlled in part by fracture connectivity, which impacts sweep
efficiency [17]). Three new producers will be introduced into the
model during the pilot period.

At the start of the full-field development phase, an additional
four injectors and three producers are drilled. The total water-
injection rate for the six injectors is controlled to achieve a target
voidage replacement ratio. The reservoir pressure drops below the
bubble point at some point during this stage, leading to the
evolution of free gas. The resulting three-phase flow is one of
several simulation challenges. For example, the producers are
subject to many other constraints such as tubing head pressure
(controlled by flow tables as a proxy for surface network
dependencies), as well as maximum gas/oil ratio and watercut
due to plant-handling capacities for water and gas. As a result,
wells are shut-in and revived frequently based on a complicated
set of field-management rules. This leads to “spiky” well
production and injection behavior, which in turn poses
significant challenges for the parameterization procedures.

The flow simulations are also difficult because the reservoir
models contain many stratigraphic layers that pinch-out, which
can lead to small cells (especially fracture cells) that limit the
time-step size. This is partly ameliorated by the EDFM gridding,
which enforces a lower bound on fracture cell size, as well as by
the upscaling. The overall workflow requires on average about
10 min per model for gridding and i/o, and 2.0 h for simulation
(in parallel, with 16 processors on 64-bit LINUX clusters
equipped with 2x AMD EPYC 7502 32-Core Processor with
512 GB of memory). The additional computational effort
required by the DSI procedure (for parameterization and
posterior sampling) is essentially negligible compared to that
for generating the prior data realizations.

Reconstruction of Prior Data With PCA
and RAE
Although our eventual goal is the use of the data parameterization
treatments for data-space inversion, it is important to first assess
the ability of the two methods to reconstruct new data
realizations; i.e., prior data vectors not included in training. As
is evident from the discussion in Section 2.2, ESMDA is applied
to the latent variable ξ generated from the parameterization
process, and the initial guess for ξPCApost or ξRAEpost is the associated
prior ξ. Thus, the quality of the posterior predictions is likely to
depend on the quality of the prior reconstruction.

In this study, we construct parameterizations and apply DSI
only for selected field-wide and well-level QoI. Specifically, we
model water injection rates (WIR) for the field and for pilot
injectors I1 and I2, as well as the water production rates (WPR)
and oil production rates (OPR) for the field and for four of the 14
producers (P1–P4). These producers are deemed to be the most
promising for tracer detection during the pilot due to their
proximity to I1 and I2. We also include the tracer A
production rate (TAR) for the field and for wells P2 and P4,
and the tracer B production rate (TBR) for the field and for wells
P1 and P3. The final quantities considered are the static well

pressures (SWP) for all injectors and producers. In total, there are
25 QoI, i. e, NQoI � 25. The simulation period is 9,000 days. We
sample data every 180 days, which partially smooths the time-
series data that result from the complex field management
strategy. Thus the number of time steps (Nt) is 50, and the
length of the data vector (Nf ) is 1,250.

We simulate a total of Nr � 1850 prior model realizations. Of
these, Ntrain � 1350 data vectors, selected randomly from the full
set, are used to construct the PCA basis matrix and for the
training of the RAEmodel. The remainingNval � 500 data vectors
are used for validation. Although these 500 realizations are not
used for PCA basis construction or for RAE training, they are
included in the set of prior data realizations used for DSI in
Section 4 (meaning we have Nr � 1850 prior samples).

We preserve 99% of the energy in the construction of the PCA
basis matrix. This results in Nl ≈ 100. The prior samples of ξPCA

are generated through application of ξPCAi � ΦT(di − dprior),
i � 1, 2, . . . ,Nr. We then reconstruct the prior data using the
basis matrix and histogram transformation;
i.e., ~di � hT(Φ(ξPCAi + dprior)). We set Nl � 100 for the RAE
latent space to maintain consistency with PCA. The Glorot
uniform initializer [23] is applied to initialize the LSTM layer.
The prior samples of the latent variables ξRAE are generated with
the encoder; i.e., ξRAEi � fe(di;We), i � 1, 2, . . . ,Nr. Prior-data
reconstruction is then accomplished by the decoder,
~di � fd(ξRAEi ;Wd), i � 1, 2, . . . ,Nr. In all results shown in this
work, we normalize the time-series data using the maximum
value of the corresponding field-wide quantity.

Before considering prior-data reconstruction, we present
results for RAE training and testing performance. The
evolution of RAE training and testing error (RMSE is defined
in Eq. 10) with varying numbers of epochs, for Ntrain � 1350 and
training/testing split ratio of around 4.5/1, is shown in Figure 3A.
Beyond around 400 epochs, we see the training error continue to
generally decrease (though there are fluctuations), while the
testing error has plateaued. From this plot we conclude that
500 epochs is sufficient for training, and this is the value used in
this work.

Figure 3B shows the training and testing RMSE, with different
numbers of training samples, at the end of 500 epochs. Note
“training samples” refers to both data realizations used for the
actual loss function minimization and data realizations used for
testing during the training procedure. Here we again use a
training/testing split ratio of around 4.5/1. Increasing the
number of training samples generally decreases the training
and testing RMSE, as expected, though the results approach a
plateau by Ntrain � 1350, which is the value used in this study. For
Ntrain � 1350, 1,100 samples are used for loss function
minimization and 250 samples are used for testing.

Results for the reconstruction of prior data realizations are
now presented. We show results drawn from the set of Nval � 500
validation cases. For visual clarity, we display results for 50 cases,
randomly selected from the full set of 500. As explained earlier,
these data realizations are not used in the training process.
Figures 4 and 5 display prior simulation results (gray curves
in the left column), PCA with histogram transformation–referred
to as PCA+HT–reconstructions (blue curves in the middle
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column), and RAE reconstructions (black curves in the right
column). These results are for primary quantities, meaning that
these QoI appear directly in the d vector. Results in Figure 4 are
for field-wide quantities (water injection and production rates
and tracer A production rate), while those in Figure 5 are for well
P4 (oil, water and tracer A production rates). We present
quantities that are of particular relevance to the waterflood
pilot and full-field development in question, even though
many others, such as gas/oil ratio, may also display interesting
behavior. The reconstructions are for data realizations that
correspond to the 50 curves shown for prior simulation results
in the left column.

Figure 4 shows the clear ramp-up of field water injection rate
as more injectors come online after the end of the pilot (around
2,700 days). The corresponding rise in water production rate is
also apparent. Eventually, the field water injection rate drops.
This occurs after the field liquid production rate reaches a peak, in
accordance with the voidage-replacement-ratio specification
(required to be less than 1). In Figure 5, we see that, in some
cases, P4 tracer A production rate increases and then decreases.
This is due to dilution from tracer-free water from injectors that
are drilled after the pilot ends. In other cases, where I1 remains
the main source of water, the P4 tracer A production rate
continually increases.

FIGURE 3 | RAE error evolution during training and RAE error with different numbers of training samples.

FIGURE 4 | Prior simulation results (left column), PCA+HT reconstructions (middle column) and RAE reconstructions (right column) for field-wide quantities (A)–(C)
field-wide water injection rate (D)–(F) field-wide water production rate (G)–(I) field-wide tracer A production rate.
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The simulation results are complex due to frequent changes in
well operations resulting from the field management logic.
Abrupt variations in the reference simulation results are
evident in many of the curves, particularly in Figures 5D,G
(and to some extent in Figure 4G). The PCA+HT reconstruction
results are in general agreement with the prior simulation results,
but they do show noticeable overprediction in some cases, at
around 3,000–5,000 days, in Figure 4H and Figures 5E,H. Some
higher-frequency oscillation compared to the reference results,
particularly in Figure 4E and Figure 5E, is also apparent. These
oscillations occur because, as discussed previously, time
correlations are not maintained with this approach.

The RAE reconstructions in Figures 4 and 5 are in better
visual agreement with the reference prior results than the
PCA+HT reconstructions. More specifically, the overprediction
and oscillatory behavior evident in some of the PCA+HT results
does not occur in the RAE reconstructions (e.g. compare Figures
5E,F). Interestingly, the RAE results tend to be slightly smoother
than the reference results. Although this may actually be desirable
in some settings, such smoothing can in general be mitigated by
increasing the latent-space dimension and/or using a more
complex network.

We now assess the performance of the reconstructions for
derived quantities. By derived quantity, we mean QoI not directly
included in d, which must be computed from the results for
primary quantities. We consider cumulative injection and
production, liquid production rate (sum of oil and water
production rates), and water cut for producers (water rate
divided by liquid production rate). To provide accurate

derived QoI, the parameterization must capture the
correlations between primary quantities.

Figure 6 displays prior simulation results and reconstruction
results for P4 water cut, P4 liquid production rate, and field-wide
liquid production rate. In Figures 6B,E, we see a high degree of
nonphysical oscillations in the PCA+HT results. Capturing the
correct behavior of derived quantities such as water cut is
important because it has implications for the field
development plan (e.g. on the timing for additional water-
handling capacity). The RAE reconstructions, by contrast,
display close agreement with the reference prior simulation
results. This suggests that, consistent with our earlier findings
for much simpler systems [5], the RAE parameterization is able to
capture correlations more accurately than the PCA+HT
treatment for this complicated case.

We now further assess the ability of the two parameterizations
to capture correlations in the prior simulation data. This will be
evaluated both visually, through cross-plots, and in terms of the
covariance between sets of quantities. For two quantities x and y,
covariance is given by

Cov(x, y) � E[(x − μx)(y − μy)], (15)

where μx and μy denote the mean values of x and y. We compute
the covariance between two quantities at each time step to
evaluate the time evolution.

Figures 7–10 show cross-plots for different primary and
derived quantities at 8,280 days, along with the covariance
between the two time series. In these plots, results for all Nval � 500

FIGURE 5 | Prior simulation results (left column), PCA+HT reconstructions (middle column) and RAE reconstructions (right column) for well P4 quantities (A)–(C) P4
oil production rate (D)–(F) P4 water production rate (G)–(I) P4 tracer A rate.
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FIGURE 6 | Prior simulation results (left column), PCA+HT reconstructions (middle column), RAE reconstructions (right column) for derived quantities (A)–(C) P4
water cut (D)–(F) P4 liquid production rate (G)–(I) field-wide liquid production rate.

FIGURE 7 | Cross-plots and covariance curves for tracer A production rate in well P4 and water production rate in well P4 (A) prior simulation results (B) PCA+HT
reconstructions (C) RAE reconstructions (D) covariance.
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validation cases are displayed. Figure 7 shows results for P4 water
production rate and tracer A production rate. The gray points in
Figure 7A are the prior simulation results, the blue points in
Figure 7B are from the PCA+HT reconstruction, and the black
points in Figure 7C are from the RAE reconstruction. We

observe an approximately linear relationship between tracer
A production and water production for producer P4. This
behavior is expected because the injected tracers partition
into the water phase. The PCA+HT reconstruction
overestimates the scatter in this relationship, while the RAE

FIGURE 8 | Cross-plots and covariance curves for tracer B cumulative production in well P1 and cumulative water production in well P1 (A) prior simulation results
(B) PCA+HT reconstructions (C) RAE reconstructions (D) covariance.

FIGURE 9 |Cross-plots and covariance curves for water cut in well P4 and oil production rate in well P4 (A) prior simulation results (B) PCA+HT reconstructions (C)
RAE reconstructions (D) covariance.
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reconstruction is in close visual agreement with the prior. The
covariance plot in Figure 7D also demonstrates that the RAE
reconstruction provides a closer match to the prior. The small
(y-axis) values on this and subsequent covariance plots result
from the data normalization.

Figures 8–10 present cross-plots and covariance curves for
three different sets of derived quantities. Figure 8 displays results
for cumulative production of tracer B at well P1 against
cumulative water production for well P1, Figure 9 shows
results for well P4 water cut against well P4 oil production
rate, and Figure 10 presents results for field-wide cumulative
liquid production against field-wide cumulative water injection.
The linear trends evident in Figure 10 are reflective of the
voidage-replacement control in field-wide injection, while the
separation into three clusters reflects the three different rock-
compressibility curves considered (see Section 3.1). In all cases,
we observe better agreement with the reference simulation results
with the RAE reconstruction than with the PCA+HT
reconstruction. This is evident in all of the covariance plots,
and in the ranges and character of the cross-plots. For example,
the range of the prior is better captured in Figure 8C than in
Figure 8B, and the continuity and linear character of the upper
cluster of points is better captured in Figure 10C than in
Figure 10B.

POSTERIOR PREDICTIONS USING DSI

We now assess DSI posterior results using the two
parameterization procedures. Although the reservoir models
considered in this study are used for actual field modeling, the

field data are confidential and thus not available for use in our
assessments. We therefore utilize simulated data as described
earlier. The “synthetic” nature of the data is partially mitigated
through the addition of random noise (see Eq. 11). To further
“stress-test” the DSI framework, in the first assessment (in
Section 4.1) we generate synthetic data from a true model
that is characterized by a key model parameter that is outside
the prior range. Specifically, we assign this true model a fracture
pore volume that is 1/2 of the lowest value used in the prior
ensemble. Importantly, although the model itself is outside the
prior, the data still fall within the prior data range. Because the
prior range in this work is much broader than that often
considered in history matching studies (recall we consider
nine DFN realizations coupled with wide ranges for other key
parameters), the requirement that the data lie within the prior
range is not an overly limiting constraint.

We note finally that a general correspondence between the
observed data and the prior simulation results should be
established in an initial prior-validation step. This can be
accomplished, for example, through use of the Mahalanobis
distance, as described within a DSI context in [24]. If the data
fall well outside the prior range, then the prior must be extended
before DSI, or any other inversion procedure, is applied.
Although important in practice, we view the prior-validation
step as outside the scope of this study.

In all cases considered, the observed data (generated from
simulation results for the true model with noise added, as
described in Section 2.2) include values for all primary
quantities at 900, 1800, 2,700 and 3,600 days. The number of
observed data values (Nhm) is 100 and measurement error is
prescribed to be 5% of the true value for all quantities. As noted

FIGURE 10 | Cross-plots and covariance curves for field-wide cumulative liquid production and field-wide cumulative water injection (A) prior simulation results
(B) PCA+HT reconstructions (C) RAE reconstructions (D) covariance.
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earlier, we have a total of Nr � 1850 prior data realizations.
ESMDA is applied Na � 10 times to generate Nr � 1850
posterior samples.

In Section 4.1, we present detailed DSI results, with both
parameterizations, for true model 1. Then, in Section 4.2, we
consider the representation of DSI posterior data predictions (for
true model 1) in terms of linear combinations of prior data
realizations. In Section 4.3, DSI performance for five additional
true models is assessed through use of coverage probability
metrics.

DSI Results for True Model 1
As indicated above, the fracture pore volume for true model 1 lies
outside of the prior range, while the other model parameters fall
within the prior range. Posterior results for three field-wide

primary quantities–water injection rate, water production rate,
and tracer A production rate–are shown in Figure 11. Additional
results for primary quantities for well P4–oil production rate,
water production rate, and tracer A production rate–appear in
Figure 12. In the figures, the gray-shaded regions indicate the
P10–P90 interval for the prior simulation results, where P10 and
P90 denote the 10th and 90th percentile values of the data variable
at each time step (results at different time steps in general
correspond to different data realizations). The red curves show
the true data, generated via simulation of the true model. The red
points show the observed data, which include random
measurement error. The lower, middle and upper black curves
represent the P10, P50 and P90 posterior results. The black curves
in the left columns of Figures 11 and 12 depict the PCA+HT DSI
posterior results, and those in the right columns display RAE-based

FIGURE 11 | Posterior DSI results using PCA+HT parameterization (left column) and RAE-based parameterization (right column) for (A) and (B) field-wide water
injection rate (C) and (D) field-wide water production rate (E) and (F) field-wide tracer A production rate.
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DSI results. The true field-wide water injection and production
rates (Figure 11) are near the low end of the prior distribution due
to the low fracture pore volume.

We see that more uncertainty reduction is accomplished using
RAE-based DSI than with the PCA+HT treatment. This is evident
through comparison of all posterior results in Figure 11 and
Figure 12. The general shape of the true response is also better
captured by RAE, as can be seen by comparing Figure 11B to
Figure 11A, and Figure 12B to Figure 12A. The true response is
within the P10–P90 posterior uncertainty range for most time
steps, for all QoI, for both sets of DSI results. We will presented
coverage probability results in Section 4.3, which will enable
further comparisons between posterior predictions for the two
parameterization procedures.

Figure 13 displays posterior results for three derived
quantities–well P4 water cut, well P4 liquid production rate,

and field-wide liquid production rate. We again see a greater
amount of uncertainty reduction with RAE-based DSI than with
the PCA+HT treatment. This is particularly noticeable in the
liquid production rate results for both well P4 and for the full
field. Note that, because the true model is outside of the prior, the
field-wide liquid production rates in Figures 13E,F are below the
P10 prior results. Both the PCA+HT and RAE treatments are,
however, still able to provide posterior predictions that appear
reasonable.

Next, we consider correlations between posterior quantities
for the two parameterization methods. Figures 14 and 15 display
cross-plots for primary and derived quantities. The
corresponding prior results appear in Figures 7–10. The gray
points in the left column display the prior simulation results (for
all 1850 prior samples), the blue points in the middle column
show DSI results using the PCA+HT parameterization, and the

FIGURE 12 | Posterior DSI results using PCA+HT parameterization (left column) and RAE-based parameterization (right column) for (A) and (B) P4 oil production
rate (C) and (D) P4 water production rate (E) and (F) P4 tracer A rate.
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black points in the right column are DSI results using the RAE-
based parameterization. The gray points in the background in the
middle and right columns are the prior simulation results (these
points are the same as in the plots in the left column). The red
points depict the true data.

These figures again demonstrate the increased uncertainty
reduction achieved using the RAE-based parameterization in DSI
relative to that using the PCA+HT parameterization. In
Figure 14B, with the true data point falling near the (lower-
left) edge of the prior data, we see very little uncertainty reduction
with PCA+HT. In the RAE-based result (Figure 14C), by
contrast, a reasonable degree of uncertainty reduction is
achieved. Similar observations can be made between Figures
14E,F, and between Figures 15B,C.

In this assessment, it is important to capture correlations
between key data quantities to obtain accurate estimates of the

expected uncertainty reduction in the main QoI. For example, by
collecting indicator data such as P4 tracer production rate
(Figures 12E,F), we can potentially gain insight regarding
future P4 oil production (Figures 12A,B). In particular, for P4
water production rate, we see more uncertainty reduction, and a
shift toward lower predicted production rates, with RAE-based
DSI (Figures 12C,D). This shift is likely due, at least in part, to the
impact of data types other than historical P4 oil rate.
Relationships such as that between tracer production rates and
field oil/water rates will be used to select the appropriate pilot
surveillance plan and to interpret pilot data. This in turn will
enable us to evaluate the cost-effectiveness of expanding the
waterflood to the full field. More details on the interpretation
of pilot data (and related issues) are provided by [17].

Although the posterior DSI results presented in this section
(along with the prior reconstruction results shown earlier)

FIGURE 13 | Posterior DSI results using PCA+HT parameterization (left column) and RAE-based parameterization (right column) for derived quantities (A) and
(B) P4 water cut (C) and (D) P4 liquid production rate (E) and (F) field-wide liquid production rate.
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suggest that the RAE-based parameterization outperforms the
PCA+HT parameterization, we cannot draw definitive
conclusions on this point in the absence of a clear set of
reference posterior results. In our earlier study [5], we applied
rejection sampling to provide reference posterior results.
Comparisons with these results indeed demonstrated that the
RAE-based parameterization provided posterior predictions of
high accuracy and that it outperformed the PCA+HT treatment.
The rejection sampling results required O(106) simulation runs,
which was manageable for the much simpler cases in [5].
However, for the models considered in this work (and the

larger number of observations), it would be extremely time-
consuming to perform the runs required for rejection
sampling. In Section 4.3 we will proceed in a more indirect
manner, by considering coverage probability for multiple “true”
models.

Prior Realization Selection
In some settings, it may be useful to identify a subset of prior
models that can be used to explain the DSI posterior responses.
These “most-relevant” prior models could then be used for other
reservoir management applications. This identification is

FIGURE 14 | Cross-plots for prior simulation results (left column), posterior DSI results using PCA+HT parameterization (middle column) and posterior DSI results
using RAE-based parameterization (right column) (A)–(C) P4 tracer A production rate against P4water production rate (D)–(F) P1 tracer B cumulative production against
P1 cumulative water production.

FIGURE 15 | Cross-plots for prior simulation results (left column), posterior DSI results using PCA+HT parameterization (middle column) and posterior DSI results
using RAE-based parameterization (right column) (A)–(C) P4 water cut against P4 oil production rate (D)–(F) field-wide cumulative liquid production against field-wide
cumulative water injection.
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challenging, however, because each posterior data realization
corresponds to a different set of prior realizations.
Nonetheless, if the data are highly informative, we might
expect that posterior data realizations can be expressed in
terms of linear combinations of a relatively small set of prior
realizations.

To quantify the relationship between prior and posterior data
realizations for true model 1, we now reconstruct each of the Nr

DSI (with the RAE-based parameterization) posterior samples as
a linear combination of the Nr prior realizations. For each
posterior data sample (dpost)i, i � 1, 2, . . . , Nr, we apply Lasso
regression [25] to determine the weights wi,j associated with each
prior realization (dprior)j, j � 1, 2, . . . ,Nr. The goal of Lasso
regression is the minimization of the mismatch SL, given by

SL �










(dpost)i −∑Nr

j�1
wi,j(dprior)j












2

2

+ λ∑Nr

j�1

∣∣∣∣wi,j

∣∣∣∣. (16)

Here the L1 norm of the weights is applied for regularization, with
λ representing the tuning parameter that balances prediction
accuracy with the number of prior realizations used in the
approximation of each (dpost)i. All weights are specified to be
positive, which enforces physically meaningful interpolations. By
combining all of the prior realizations used for the full set of
posterior samples, a subset of prior realizations that can be
applied to construct the posterior statistics is identified. We
consider different cutoff values for the wi,j coefficients (larger
cutoffs lead to a smaller number of prior realizations needed for
the reconstructions).

Figure 16 shows the posterior results (for primary quantities)
considered in this assessment. Results for 50 posterior realizations
are displayed, but all 1850 are considered in the results that
follow. Table 1 presents the number of prior realizations needed
to reconstruct the Nr � 1850 posterior samples for a range of

cutoff values. We see that, even for a cutoff value of 0.1 (which is
rather large), 135 prior realizations are needed. Significantly more
prior realizations are required to fully characterize the posterior
results with smaller cutoff values.

The results in Table 1 clearly indicate that DSI posterior
results cannot be expressed in terms of a small number of prior
data realizations that fall near the observations. It should be
noted, however, that particular responses (e.g. one of the curves in
Figure 16) may be represented, through use of Eq. 16, in terms
of ∼10 or even fewer prior realizations. Thus, for the P50 oil rate
for well P4, for example, we can identify a small number of model
realizations that can be used to capture the DSI response. This
could be useful both for enhancing the “explainability” of DSI
results and for subsequent reservoir management applications
where models are needed, such as well placement optimization.

DSI Results for Multiple True Models
In our final assessment, we construct posterior DSI results using
both parameterization procedures for a set of five additional true
models. For conciseness, in these results we present only a single
metric, coverage probability (CP). The coverage probability is
defined as the fraction of the true data that fall in a specific range
of the DSI posterior results, i.e.,

FIGURE 16 | Posterior data realizations for primary quantities (A) field-wide water injection rate (B) field-wide water production rate (C) field-wide tracer A
production rate (D) P4 oil production rate (E) P4 water production rate (F) P4 tracer A rate.

TABLE 1 | Number of prior realizations required to construct all posterior samples
for different coefficient cutoff values.

Cutoff value Number of prior
realizations required

0.1 135
0.01 432
0.001 571
0.0001 603
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CP � Nc

Nf
, (17)

where Nc denotes the number of posterior data variables that fall
within the specified range. Here we consider three uncertainty
ranges for CP, specifically the P10–P90, P5–P95, and P25–P75

intervals. The target values of CP for these intervals are 0.8,
0.9, and 0.5. Higher CP values indicate the overestimation of
posterior uncertainty and lower values indicate underestimation.

The five new true models (denoted true models 2–6) are
random realizations not included in the set of prior models, but
the values of all model parameters are in the prior range (this was
not the case for true model 1 considered in Sections 4.1 and 4.2).
We construct posterior DSI results precisely as in Section 4.1.
Results for coverage probability are presented in Figure 17. For the
P10–P90 range (Figure 17A), DSI results using the PCA+HT
parameterization (blue bars, mean value of 0.859) consistently
overpredict the target value of 0.8, while those using the RAE-based
parameterization (orange bars, mean value of 0.810) are closer to

the target value. Similar observations apply for the other intervals.
Specifically the average CP values for the PCA+HT posteriors are
0.927 for the P5–P95 interval and 0.643 for P25–P75 interval, while
those using RAE are 0.901 and 0.539.

These results are consistent with our observation in Section
4.1 that the PCA+HT treatment generally corresponds to higher
DSI posterior uncertainty. This is likely due to the fact that the
PCA+HT parameterization does not fully capture correlations
between different QoI. As a result, measurements for a particular
quantity at a particular time may not lead to the correct level of
uncertainty reduction for other quantities. Because the RAE-
based parameterization better captures correlations in the data, it
provides more accurate estimates for posterior uncertainty.

CONCLUDING REMARKS

In this paper, we applied recently developed data-space inversion
treatments for a naturally fractured reservoir. These treatments
involve the use of a recurrent autoencoder (RAE) for the
parameterization of well-level and field-level time series of
interest. The RAE utilizes a long short-term memory (LSTM)
architecture, and the resulting network is able to capture the
physical behavior and correlations in the time-series data. The
overall RAE-based DSI procedure, introduced in [5], applies
ESMDA for posterior sampling, as originally suggested (within
a DSI context) by [4]. The examples considered in [5] were
somewhat idealized, however. The (real) case considered here, by
contrast, is much more complicated and includes multiple 3D
fracture scenarios, three-phase flow, tracer injection and
production, and detailed well and field management logic that
forces frequent well shut-in and reopening. A total of 1850 prior
data vectors (time series) were constructed though simulation of
prior geomodels. This is the time-consuming step in DSI.

In addition to the RAE-based parameterization, we also
considered the use of a parameterization based on PCA and
histogram transformation [2]. We first assessed the two
parameterization procedures in terms of their ability to
reconstruct time-series data for realizations not included in the
training set. The RAE-based parameterization outperformed the
PCA-basedmethod for these time-series reconstructions, and was
shown to better capture correlations in the prior data. Superior
RAE performance was observed both for primary quantities (data
variables included in the data vector) and for derived quantities
(which are not directly included in the data vector).

Posterior DSI results (P10, P50, P90 time series and cross-plots
at particular times) using the two parameterizations were then
presented. A greater degree of uncertainty reduction was achieved
with the RAE-based parameterization. We do not have reference
results for posterior uncertainty because rigorous approaches
such as rejection sampling are intractable for this challenging
field case. Nonetheless, we believe the RAE-based results to be the
more accurate because of their greater accuracy in prior
reconstruction and due to the limited amount of uncertainty
reduction observed with the PCA approach in cases where the
data appear to be informative. This speculation is somewhat
corroborated through the consideration of five additional “true”

FIGURE 17 | Coverage probability (CP) for five new true models (A) CP
for P10–P90 interval (B) CP for P5–P95 interval (C) CP for P25–P75 interval.
Target values indicated by the dashed lines.
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models, for which we computed coverage probabilities over three
different uncertainty intervals. These results indicated that the
posterior uncertainty range was more accurately quantified by the
RAE-based procedure than by the PCA approach.

There are many interesting directions that should be pursued in
future work. In the current RAE method, the latent space provided
by the encoder is close to (but not precisely) multivariate-Gaussian
distributed. It will be useful to develop and test other encoding
treatments, e.g., variational autoencoder or generative adversarial
network, in an attempt to achieve (precise) multi-Gaussian latent
variables which, upon decoding, still provide highly accurate
reconstructions of the prior data. If we are able to accomplish
this, we could apply the network to provide synthetic prior data
realizations; i.e., realistic data realizations, with correct correlations
between data variables, that do not require numerical simulation.
Further investigation of the selection of the most-relevant prior
realizations, using the approach presented in Section 4.2, should
also be performed. It will additionally be of interest to combine
model-based inversion with data-space inversion by introducing
parameterizations that couple data and model parameters. Then,
by conducting data assimilation in the joint space, we could
efficiently generate posterior models along with posterior data
realizations.
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