
Performance Analysis of Trust
Region Subproblem Solvers for
Limited-Memory Distributed BFGS
Optimization Method
Guohua Gao1*, Horacio Florez1, Jeroen C. Vink2, Terence J. Wells2, Fredrik Saaf1 and
Carl P. A. Blom2

1Shell Global Solutions (United States) Inc., Houston, TX, United States, 2Shell Global Solutions International B.V., Amsterdam,
Netherlands

The limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization method
performs very efficiently for large-scale problems. A trust region search method generally
performs more efficiently and robustly than a line search method, especially when the
gradient of the objective function cannot be accurately evaluated. The computational cost
of an L-BFGS trust region subproblem (TRS) solver depend mainly on the number of
unknown variables (n) and the number of variable shift vectors and gradient change
vectors (m) used for Hessian updating, withm << n for large-scale problems. In this paper,
we analyze the performances of different methods to solve the L-BFGS TRS. The first
method is the direct method using the Newton-Raphson (DNR) method and Cholesky
factorization of a dense n × n matrix, the second one is the direct method based on an
inverse quadratic (DIQ) interpolation, and the third one is a new method that combines the
matrix inversion lemma (MIL) with an approach to update associated matrices and vectors.
The MIL approach is applied to reduce the dimension of the original problem with n
variables to a new problem with m variables. Instead of directly using expensive matrix-
matrix and matrix-vector multiplications to solve the L-BFGS TRS, a more efficient
approach is employed to update matrices and vectors iteratively. The L-BFGS TRS
solver using the MIL method performs more efficiently than using the DNR method or
DIQ method. Testing on a representative suite of problems indicates that the new method
can converge to optimal solutions comparable to those obtained using the DNR or DIQ
method. Its computational cost represents only a modest overhead over the well-known
L-BFGS line-search method but delivers improved stability in the presence of inaccurate
gradients. When compared to the solver using the DNR or DIQ method, the new TRS
solver can reduce computational cost by a factor proportional to n2/m for large-scale
problems.

Keywords: limited-memory BFGSmethod, trust region search optimizationmethod, trust region subproblem, matrix
inversion lemma, low rank matrix update

Edited by:
Olwijn Leeuwenburgh,

Netherlands Organisation for Applied
Scientific Research, Netherlands

Reviewed by:
Andreas Størksen Stordal,

Norwegian Research Institute
(NORCE), Norway

Sarfraz Ahmad,
COMSATS University Islamabad,

Pakistan

*Correspondence:
Guohua Gao

guohua.gao@shell.com

Specialty section:
This article was submitted to

Optimization,
a section of the journal

Frontiers in Applied Mathematics and
Statistics

Received: 27 February 2021
Accepted: 29 April 2021
Published: 24 May 2021

Citation:
Gao G, Florez H, Vink JC, Wells TJ,

Saaf F and Blom CPA (2021)
Performance Analysis of Trust Region

Subproblem Solvers for Limited-
Memory Distributed BFGS

Optimization Method.
Front. Appl. Math. Stat. 7:673412.
doi: 10.3389/fams.2021.673412

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734121

ORIGINAL RESEARCH
published: 24 May 2021

doi: 10.3389/fams.2021.673412

http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2021.673412&domain=pdf&date_stamp=2021-05-24
https://www.frontiersin.org/articles/10.3389/fams.2021.673412/full
https://www.frontiersin.org/articles/10.3389/fams.2021.673412/full
https://www.frontiersin.org/articles/10.3389/fams.2021.673412/full
https://www.frontiersin.org/articles/10.3389/fams.2021.673412/full
http://creativecommons.org/licenses/by/4.0/
mailto:guohua.gao@shell.com
https://doi.org/10.3389/fams.2021.673412
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2021.673412

INTRODUCTION

Decision-making tools based on optimization procedures have
been successfully applied to solve practical problems in a wide
range of areas. An optimization problem is generally defined as
minimizing (or maximizing) an objective function f (x) within a
user defined search domain x ∈ Ω, and subject to some linear or
nonlinear constraints, where x is an n-dimensional vector that
contains all controllable variables.

In the oil and gas industry, an optimal business development
plan requires robust production optimization because of the
considerable uncertainty of subsurface reservoir properties and
volatile oil prices. Many papers have been published on the topic
of robust optimization and their applications to cyclic CO2

flooding through the Gas-Assisted Gravity Drainage process
[1], well placement optimization in geologically complex
reservoirs [2], optimal production schedules of smart wells for
water flooding [3] and in naturally fractured reservoirs [4], just
mentioning a few of them as examples.

Some researchers formulated the optimization problem under
uncertainty as a single objective optimization problem, e.g., only
maximizing the mean of net present value (NPV) for simplicity
by neglecting the associated risk. However, it is recommended to
formulate robust optimization as a bi-objective optimization
problem for consistency and completeness. A bi-objective
optimization problem is generally defined as minimizing (or
maximizing) two different objective functions, f 1(x) and
f 2(x), within a user-defined search domain x ∈ Ω, and subject
to some linear or nonlinear constraints. For example, we may
maximize the mean value, denoted by f 1(x), and minimize the
standard deviation, denoted by f 2(x), of NPV. For a bi-objective
optimization problem, the optimal solutions are defined as the
Pareto optimal solutions (or Pareto front). It is a very challenging
task to find multiple optimal solutions on the Pareto front [5, 6].

It is also a very challenging task to properly characterize the
uncertainty of reservoir properties (e.g., porosity and
permeability in each grid-block) and reliably quantify the
ensuing uncertainty of production forecasts (e.g., production
rates of oil, gas, and water phases) by conditioning to
historical production data and 4D seismic data [7, 8], which
requires generating multiple conditional realizations by
minimizing a properly defined objective function, e.g., using
the randomized maximum likelihood (RML) method [9].

When an adjoint-based gradient of the objective function is
available [10–12], we may apply a gradient-based optimization
method, e.g., the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
optimization method [13, 14]. However, the adjoint-based
gradient is not available for many commercial simulators and
not available for integer type or discrete variables (e.g., well
locations defined by grid-block indices). In such a case, we
must apply a derivative-free optimization (DFO) method
[15–18]. For problems with smooth objective functions and
continuous variables, model-based DFO methods using either
radial-basis function [19] or quadratic model [16, 20, 21]
performs more efficiently than other DFO methods such as
direct pattern search methods [22] and stochastic search
methods [23].

Traditional optimization methods only locate a single optimal
solution, and they are referred to as single-thread optimization
methods in this paper. It is unacceptably expensive to use a single-
thread optimization method to locate multiple optimal solutions
on the Pareto front or generate multiple RML samples [24]. To
overcome the limitations of single-thread optimization methods,
Gao et al. [17] developed a local-search distributed Gauss-
Newton (DGN) DFO method to find multiple best matches
concurrently. Later, Chen et al. [25] modified the local-search
DGN optimization method and generalized the DGN optimizer
for global search. They also integrated the global-search DGN
optimization method with the RML method to generate multiple
RML samples in parallel.

Because multiple search points are generated in each iteration,
finally, multiple optimal solutions can be found in parallel. These
distributed optimization methods are referred to as multiple-
thread optimization methods. Both the local- and global-search
DGN optimization methods are only applicable to a specific
optimization problem, i.e., history matching problem or least-
squares optimization problem, of which the objective function
can be expressed as a form of least-squares,
f (x) � 1

2 αx
Tx + 1

2y
T(x)y(x), but they cannot be applied to

other type or generic optimization problems where the
objective function cannot be expressed as a form of least-
squares. Furthermore, the DGN optimization methods may
become less efficient for history matching problems when both
the number of variables (n) and the number of observed data (m)
are large (e.g., in the order of thousands or more).

Recently, Gao et al. [18] developed a well-paralleled
distributed quasi-Newton (DQN) DFO method for generic
optimization problems by introducing a generalized form of
the objective function, F(x, y) � f (x). Here, x represents the
vector of controllable variables or model parameters to be
optimized (explicit variables) and y(x) denotes the vector of
simulated responses (implicit variables) of a reservoir using
explicit variables x. Using the generalized form of the objective
function, the gradient of the objective function can be evaluated
analytically by,

g(x) � ∇xF(x, y) + JT(x)∇yF(x, y) (1)

In Eq. 1, JT(x) � ∇xyT(x) is the transpose of the sensitivity
matrix. Using the generalized expression of the objective function
F(x, y), different objective functions can be evaluated using the
same y(x) that is simulated from the same reservoir model, e.g.,
for multi-objective optimization problems. A specific case of the
generalized expression is F(x, y) � y � f (x), where the transpose
of the sensitivity matrix becomes the gradient of the objective
function.

The DQN optimization algorithm runs Ne optimization
threads in parallel. In the k-th iteration, there are N(k)

LC ≤Ne

non-converged threads. The DQN optimizer generates a new
search points x(i,k)T � x(i,k) + s(i,k) for each non-converged thread,
where the search step s(i,k) is solved from a trust region
subproblem (TRS). The N(k)

LC simulation cases are submitted to
a high-performance computing (HPC) cluster in parallel, to
generate corresponding simulated responses y(i,k)T � y(x(i,k)T).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734122

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Then, we evaluate the objective function f (i,k)T � F(x(i,k)T , y(i,k)T)
and its associated partial derivatives ∇xF(i,k) and ∇yF(i,k). If the
new search point x(i,k)T improves the objective function,
i.e., f (i,k)T < f (i,k) � f (x(i,k)), then we update x(i,k+1) � x(i,k)T and
f (i,k+1) � f (i,k)T .

All simulation results generated by all DQN optimization
threads in previous and current iterations are recorded in a
training data set, and they are shared among all DQN
optimization threads. The sensitivity matrix J(i,k+1) � J(x(i,k+1))
is approximated using a modified QR-method proposed by Gao,
et al. [18] by linear interpolation of training data points that are
closest to x(i,k+1). Then, we approximate the gradient g(i,k+1) �
g(x(i,k+1)) using Eq. 1. Finally, the HessianH(i,k+1) for each thread
is updated using either the BFGSmethod or the symmetric rank-1
(SR1) method [14]. For simplicity, we will drop the superscript “i”
(the optimization thread index) in the following discussions.

Both DGN and DQN optimization methods approximate the
objective function by a quadratic model, and they are designed for
problems with smooth objective function and continuous
variables. Although their convergence is not guaranteed for
problems with integer type variables (e.g., well location
optimization), if those integers can be treated as truncated
continuous variables, our numerical tests indicate that these
distributed optimization methods can improve the objective
function significantly and locate multiple suboptimal solutions
for problems with integer type variables in only a few iterations.

The number of variables for real-world problemsmay vary from
a few to thousands or even more, depending on the problem and
the parameterization techniques employed. For example, the
number of variables could be in the order of millions if we do
not apply any parameter reduction techniques to reduce the
dimension of some history matching problems (e.g., to tune
permeability and porosity in each grid block). Because reservoir
properties are generally correlated with each other with long
correlation lengths, we may reduce the number of variables to
be tuned to only a few hundred, e.g., using the principal component
analysis (PCA) or other parameter reduction techniques [26].

In this paper, our focus is on performance analysis of different
methods to solve the TRS formulated with the limited-memory
BFGS (L-BFGS) Hessian updating method for unconstrained
optimization problems. In the future, we will further integrate
the new TRS solver with our newly proposed limited-memory
distributed BFGS (L-DBFGS) optimization algorithm and then
apply the new optimizer to some realistic oil/gas field
optimization cases and benchmark its overall performance
against other distributed optimization methods such as those
only using the gradient [27]. We will also continue our
investigation in the future for constrained optimization
problems (e.g., variables with lower- and/or upper-bounds and
problems with nonlinear constraints). Gao et al. [18] applied the
popular Newton-Raphson method [28] to directly solve the TRS
using matrix factorization, the DNR method in short. The DNR
method is quite expensive when it is applied to solveNe TRSs of a
distributed optimization method, especially for large-scale
problems with thousands or more variables [29]. This paper
follows the ideas and concepts presented in the book “Matrix
Computation” [30]. Flops are used to quantify the volume of

work associated with a computation, a count for floating-point
operations of add, subtract, multiply, or divide. Computational
cost (flops) of some commonly used algebraic operations and
numerical methods are summarized in Table 1 for reference.

For completeness, we discuss the compact representation of
the L-BFGS Hessian updating formulation [31] and the algorithm
to directly update the Hessian in the next section directly. In the
third section, we present three different methods to solve the
L-BFGS TRS: the DNR method, the direct method using inverse
quadratic (DIQ) interpolation approach proposed by Gao et al.
[32], and the technique using matrix inversion lemma (MIL)
together with an efficient matrix updating algorithm. Some
numerical tests and performance comparisons are discussed in
the fourth section. We finally draw some conclusions in the last
section.

THE LIMITED-MEMORY HESSIAN
UPDATING FORMULATION

Let x(k) be the best solution obtained in the current (k-th)
iteration, and f (k), g(k), and H(k), respectively, the objective
function, its gradient and Hessian evaluated at x(k). The
HessianH(k+1) is updated using the BFGS formulation as follows,

H(k+1) � H(k) + z(k)[z(k)]T
[z(k)]Ts(k) −

H(k)s(k)[s(k)]TH(k)

[s(k)]TH(k)s(k)
(2)

In Eq. 2, s(k) � x(k+1) − x(k) and z(k) � g(k+1) − g(k). The Hessian
H(k+1) updated using Eq. 2 is guaranteed positive definite if the
condition ε(k) � [z(k)]Ts(k) > c3z(k)s(k) is satisfied where c3>0 is a
small positive number.

Compact Representation
To save memory usage and computational cost, the L-BFGS
Hessian updating method limits the maximum history size or
the maximum number of pairs (s(k), z(k)) used for the BFGS
Hessian updating to LM > 1. The recommended value of LM
ranges from 5 to 20, using smaller number for problems with
more variables.

Let 1 ≤ lk ≤ LM denote the number of pairs of variable shift
vectors and gradient change vectors, (s(j), z(j)) for j � 1,2,...lk, used
to update the Hessian using the L-BFGS method in the k-th
iteration. Let S(k) � [s(1), s(2), . . . s(lk)] be the n × lk variable shift
matrix and Z(k) � [z(1), z(2), . . . z(lk)] the n × lk gradient change
matrix. Both matrices S(k) and Z(k) are updated iteration by
iteration. Let m�2lk and V(k) � [S(k),Z(k)] is an n × m matrix.
Let A(k) � [S(k)]TS(k) and B(k) � [S(k)]TZ(k). We decompose B(k)

into three parts: the strictly lower triangular part L(k), the strictly
upper triangular partU(k), and the diagonal part E(k) that contains
the main diagonals of B(k), i.e.,

B(k) � L(k) + E(k) + U(k) (3)

The Hessian can be updated using the compact form of the
L-BFGS Hessian updating formulation [31, 33–35] as follows,

H(k+1) � α(k)In − V(k)W(k)[V(k)]T (4)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734123

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

In Eq. 4, In is an n × n identity matrix and W(k) is an m×m
symmetric matrix defined as,

[W(k)]− 1 � 1
α(k) { A(k) L(k)

[L(k)]T − α(k)E(k) } (5)

In Eq. 4 and Eq. 5, α(k) �

z(lk)

2

[z(lk)]T s(lk) is a scaling factor. It is required
that a(k) > acr > 0 using Eq. 4 and Eq. 5 to update the Hessian,
where acr is a small positive number.

The Algorithm to Directly Update the
Hessian Using the L-BFGS Compact
Representation
Given LM ≥ 1, k ≥ 1, lk−1 ≥ 1, the thresholds c3 > 0 and acr > 0,
search step s � x(k+1) − x(k) and gradient change z � g(k+1) − g(k),
the two n × lk−1 matrices, S(k−1) and Z(k−1), we can update S(k), Z(k)

and directly compute the Hessian H(k+1) using the compact
representation of the L-BFGS Hessian updating Eq. 4, as
summarized in Algorithm-1.

Algorithm-1: Updating the Hessian directly using the L-BFGS
compact representation

1. Compute ||s||, ||z||, ε(k) � zTs and α(k) � ‖z2‖
ε(k) if ε

(k) > c3

s

z

;

2. If ε(k) ≤ c3

s

z

 or α(k) ≤ αcr , set lk � lk−1, S(k) � S(k−1),

Z(k) � Z(k−1), and goto step 4;
3. Otherwise,

a. Set lk � LM and remove the first column from S(k−1) and
Z(k−1)if lk−1 � LM ; else set lk � lk−1 + 1;

b. Update S(k) � [S(k−1) s] and Z(k) � [Z(k−1) z];
4. Form V(k) � [S(k) Z(k)];
5. Compute A(k) � [S(k)]TS(k) and B(k) � [S(k)]TZ(k);
6. Form the matrix W(k)

I � [W(k)]− 1 using Eq. 5;
7. Compute W(k) � [W(k)

I]− 1
using Cholesky factorization;

8. Compute U(k) � W(k)[V(k)]T ;
9. Compute T(k) � V(k)U(k);

10. Update H(k+1) � α(k)In − T(k).
11. Stop.

The computational cost to directly update the Hessian using
the L-BFGS method as described in Algorithm-1 mainly depends
on the number of variables (n) and the number of vectors used to

update the Hessian (m � 2lk). We should reemphasize that m is
updated iteratively but limited to m ≤ 2Lk. The computational
cost is c1 � 2mn2 + (7 + 3m2)n + O(m3) (flops), which includes
the following seven operations: 1) computing ‖s‖, ‖z‖, and ε(k) �
zTs in step 1 (6n flops); 2) computing A(k) and B(k) in step 5 (m2n
flops); 3) forming the matrix W(k)

I in step 6 (m2
flops); 4)

computing W(k) in step 7 (O(m3) flops); 5) compute U(k) in
step 8 (2m2n flops); 6) compute T(k) in step 9 (2mn2 flops); and 7)
updating H(k+1) in step 10 (n flops).

SOLVING THE L-BFGS TRUST REGION
SUBPROBLEM

The Trust Region Subproblem
In the neighborhood of the best solution x(k), the objective
function f(x) can be approximated by a quadratic function
of s � x − x(k),

q(k)(s) � f (k) + [g(k)]Ts + 1
2
sTH(k)s (6)

If the Hessian H(k) is positive definite, then q(k)(s) has a unique
minimum s* (k), which is the solution of H(k)s � −g(k),

s*(k) � −[H(k)]− 1
g(k) (7)

When a line search strategy is applied, we accept the full search
step s*(k) by setting x(k+1) � x(k) + s*(k) if it improves the objective
function sufficiently (e.g., satisfying the two Wolfe conditions).
Otherwise, we can find a better search step size 0< γ(k) ≤ 1 such
that x(k+1) � x(k) + γ(k)s*(k) improves the objective function
sufficiently. If the gradient g(k) can be accurately evaluated, it
has theoretically proved that a line search strategy can converge
[14]. However, for most real-world optimization problems, the
gradient cannot be accurately evaluated, and as discussed by Gao
et al. [16], a trust region search strategy performs more robustly
and more efficiently than a line search strategy.

The trust region search step s*(k) for the next iteration is the
global minimum of the quadratic model q(k)(s) within a ball-
shaped trust region with radius Δ(k) ≥Δmin > 0 which is solved
from the following trust region subproblem (TRS) [28],

min
s

q(k)(s) � f (k) +[g(k)]Ts+1
2
sTH(k)ssubject to ||s||2≤Δ(k) (8)

If the solution s*(k) given by Eq. 7 satisfies

s*(k)

2 ≤Δ(k), then s*(k)

is the solution of the TRS defined in Eq. 8. Otherwise, the solution

TABLE 1 | A summary of computational costs of commonly used algebraic operations.

Operation Dimension Computational cost (flops)

a = xTy x, yϵRn 2n
y = y + axy aϵR; x, yϵRn 2n
y = y + Ax AϵRm×n; xϵRn; yϵRm 2mn
A = A + yxT AϵRm×n; xϵRn; yϵRm 2mn
C = C + AB AϵRm×r; BϵRr×n; CϵRm×n 2mnr
A = LLT Symmetric AϵRn×n; LϵRn×n n3/3
Solve x from Lx�y Lower triangle LϵRn×n; xϵRn; yϵRn n2

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734124

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

of the TRS must lie on the boundary of

s

2 � Δ(k), and we should

solve the Lagrange multiplier λ*(k) together with the search step
s*(k) from the following nonlinear TRS equations,

[H(k) + λIn]s(λ) � −g(k) (9)

π(λ) � [s(λ)]Ts(λ) � [Δ(k)]2 (10)

For the trivial case with H(k) � αIn, we have s(λ) � −g(k)
α+λ and

π(λ) � ‖g(k)‖2
(α+λ)2 . The solution of the TRS defined in Eq. 8 is λ* � 0

and s*(k) � −g(k)/α if

g(k)

2 ≤ αΔ(k) or λ* � ‖g(k)‖2

Δ(k) − α and s*(k) �
−g(k) Δ(k)

‖g(k)‖2 otherwise.
We may apply the popular DNR method to solve the TRS

when H(k) is a dense matrix. However, the DNR method is quite
expensive for large-scale problems and we should seek and apply
a more efficient method to solve the TRS.

Solving the L-BFGS TRS Directly Using the
Newton-Raphson Method
The DNR method solves the TRS defined in Eq. 8 using the
Cholesky decomposition. It applies the Newton-Raphson method
to directly solve the nonlinear TRS equation [28],
ϕ(λ) � 1

s(λ) − 1
Δ � 0, iteratively, which requires computing the

first order derivative ϕ′(λ) � −v(λ)2
s(λ)3 where v is solved from LTv �

s together with the Cholesky factorization of D � H(k) + λIn �
LLT or LU-decomposition.

Given the trust region size Δ � Δ(k) > 0, threshold of
convergence δcr > 0, maximum number of iterations allowed
NTRS,max > 0, Hessian H � H(k) and gradient g � g(k) evaluated
at the current best solution x(k), both the Lagrangemultiplier λ*and the
trust region search step s* � s(λ*) can be solved from the TRS defined
in Eq. 8, using the DNR method as summarized in Algorithm-2.

Algorithm-2: Solving the L-BFGS TRS Using the DNR
Method

1. Initialize l � 0, λ0 � 0;
2. Compute D � H + λ0In and Cholesky

decomposition D � LLT ;
3. Solve u* from Lu � −g , s* from LTs � u*, and v*

from LTv � s*;
4. Compute

s*

 and

v*

;

5. If

s*

≤Δ, then accept λ* � λ0 and go to step 8;

6. Set δ �
∣∣∣∣∣∣∣∣1 − ‖s*‖

Δ

∣∣∣∣∣∣∣∣;
7. Repeat steps (a) through (f) below, until convergence

(δ ≤ δcr or l >NTRS,max):

a. Update λl+1 � λl + (‖s*‖‖v*‖)
2‖s*‖−Δ

Δ ;

b. Compute D � H + λl+1In and Cholesky
decomposition D � LLT ;

c. Solve u* from Lu � −g , s* from LTs � u*, and v*

from LTv � s*;
d. Compute

s*

 and

v*

;

e. Update δ �
∣∣∣∣∣∣∣∣1 − ‖s*‖

Δ

∣∣∣∣∣∣∣∣ ;
f. Set l � l + 1.

8. Stop.

Let NDNR denote the number of iterations required for the
DNR TRS solver to converge. The total computational cost (flops)
to solve the TRS using Algorithm-2 is,

c2 � (5n + 3n2 + n3
3)(NDNR + 1), including the following three

operations: (1) computing D � H + λk+1In and Cholesky
decomposition D � LLT in step 2 and step 7(b) (n + n3

3 flops);
(2) solving u* from Lu � −g , s* from LTs � u*, and v* from LTv �
s* in step 3 and step 7(c) (3n2 flops); (3) computing

s*

 and

v*

in step 4 and step 7(d) (4n flops).

The total computational cost (flops) used to solve the L-BFGS
TRS using the DNR method (Algorithm-2) together with the
L-BFGS Hessian updating method (Algorithm-1) is,

cDNR � c1 + c2 � 2mn2 + (7 + 3m2)n
+(5n + 3n2 + n3

3
)(NDNR + 1) +O(m3) (11)

Our numerical results indicate that the DNR TRS solver may fail
when tested on the well-known Rosenbrock function, especially
for problems with large n. The root cause for failure of
convergence using the DNR method is the same as in the
GNTRS solver using the traditional Newton-Raphson method
as discussed by Gao et al. [36]. Very small value of

∣∣∣∣ϕ′(λ)∣∣∣∣ may
result in a very large search step and thus result in failure of
converging. Gao et al. [36] proposed integrating the DNRmethod
with a bisection line search to overcome this issue.

The Inverse Quadratic Model Interpolation
Method to Directly Solve the L-BFGS TRS
Instead of applying the Newton-Raphson method which requires
evaluating ϕ′(λ), Gao et al. [32] proposed a method to directly
solve the TRS using inverse quadratic model interpolation (called
the DIQ method), i.e., approximating π(λ) � [s(λ)]Ts(λ) by the
following inverse quadratic function,

qINV(λ) �
b

(λ + a)2 (12)

Both coefficients of a and b in Eq. 12 can be determined by
interpolating the values of π(λ) evaluated at two different points
π1 � π(λ1) and π2 � π(λ2) with 0≤ λ1 < λ2.

In the first iteration, we set λ1 � λmin � 0 and accept λmin � 0
as the solution if π1 ≤Δ2. Otherwise, π1 >Δ2 holds and we set

λ2 � λmax � max[0, ‖g(k)‖
Δ − α] and π2 <Δ2 holds if it is not

accepted as the solution. In the following iteration, either λ1
or λ2 will be updated accordingly such that the two conditions
π1 >Δ2 and π2 <Δ2 always hold.

Let ρ �
��
π1

√��
π1

√ − ��
π2

√ ≥ 1 and the following solution of qINV(λ) � Δ2

will be used as the trial search point for the next iteration,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734125

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

λ* � λ2 − ρ(1 − ��
π2

√
Δ

)(λ2 − λ1) (13)

We either update λ1 � λ* if π(λ*)>Δ2 or update λ2 � λ* if
π(λ*)<Δ2 iteratively until convergence. We accept λ* as the
desired solution and terminate the iterative process either when∣∣∣∣∣∣∣∣∣∣∣∣

����
π(λ*)

√
Δ − 1

∣∣∣∣∣∣∣∣∣∣∣∣< δcr , the tolerance for convergence, or when the

number of iterations used to solve the TRS (NDIQ) reaches the

user specified maximum iteration number (NTRS,max), i.e.,

NDIQ ≥NTRS,max .
Given the scaling factor α> 0, trust region size Δ> 0, threshold

of convergence δcr > 0, maximum number of iterations allowed
NTRS,max > 0, Hessian H and gradient g , both the Lagrange
multiplier λ*and the trust region search step s* � s(λ*) can be
solved from the TRS defined in Eq. 8, using the DIQ method as
summarized in Algorithm-3.

Algorithm-3: Solving the L-BFGS TRSUsing the DIQMethod

(1) Compute ‖g‖;
(2) Calculate λmax � max{0, ‖gΔ‖ − α};
(3) Initialize k � 0, λ1 � λmin � 0 and λ2 � λmax ;
(4) Compute D � H + λ1In and Cholesky

decomposition D � LLT ;
(5) Solve u1 from Lu � −g and s1 from LTs � u1;
(6) Compute π1 � π(λ1) � sT1 s1;
(7) If π1 ≤Δ2, then accept λ* � λ1 and go to step 12;
(8) If π1 >Δ2, then

a. Compute D � H + λ2In and Cholesky
decomposition D � LLT ;

b. Solve u2 from Lu � −g and s2 from LTs � u2;

c. Compute π2 � π(λ2) � sT2 s2;

(9) If
∣∣∣∣∣∣∣1 − ��

π1
√
Δ

∣∣∣∣∣∣∣<
∣∣∣∣∣∣∣1 − ��

π2
√
Δ

∣∣∣∣∣∣∣, then δ �
∣∣∣∣∣∣∣1 − ��

π1
√
Δ

∣∣∣∣∣∣∣, λ* � λ1;

(10) Otherwise, δ �
∣∣∣∣∣∣∣1 − ��

π2
√
Δ

∣∣∣∣∣∣∣, λ* � λ2;

(11) Repeat steps (a) through (i) below, until convergence
(δ ≤ δcr or k >NTRS,max):

a. Calculate ρ �
��
π1

√��
π1

√ − ��
π2

√ ;

b. Calculate λ* � λ2 − ρ(1 − ��
π2

√
Δ)(λ2 − λ1);

c. Compute D � H + λ*Inand Cholesky
decomposition D � LLT ;

d. Solve u* from Lu � −g and s* from LTs � u*;

e. Compute π* � π(λ*) � [s*]Ts*;
f. Update δ �

∣∣∣∣∣∣∣∣1 − ��
π*

√
Δ

∣∣∣∣∣∣∣∣ ;
g. If

���
π*

√
>Δ, update λ1 � λ* and π1 � π*;

h. Otherwise, update λ2 � λ* and π2 � π*;

i. k ← k + 1
(12) Stop.

Let NDIQ denote the number of iterations required for the
DIQ TRS solver to converge. The total computational cost to
solve the L-BFGS TRS using Algorithm-3 together with
Algorithm-1 is,

cIQ � 2mn2 + (7 + 3m2)n + (5n + 2n2 + n3

3
)(NDIQ + 1)

+ O(m3) (14)

Generally, the DIQ method converges faster than the DNR
method and it performs more efficiently and robustly than the
DNR method, especially for large scale problems. Both the DNR
method and the DIQ method become quite expensive for large-
scale problems.

Using Matrix Inversion Lemma (MIL) to
Solve the L-BFGS TRS
To save both memory usage and computational cost, Gao, et al.
[32, 36, 37] proposed an efficient algorithm to solve the Gauss-
Newton TRS (GNTRS) for large-scale history matching problems
using the matrix inversion lemma (or the Woodbury matrix
identity). With appropriate normalization of both parameters
and residuals, the Hessian of the objective function for a history
matching problem can be approximated by the well-known
Gauss-Newton equation as follows,

H(k+1) � αIn + V(k)[V(k)]T (15)

In Eq. 15,V(k) � [J(k+1)]T is an n ×mmatrix, the transpose of the
sensitivity matrix J(k+1) that is evaluated at the current best
solution x(k+1). Here, m denotes the number of observed data
to be matched and it is not the same m as used in the L-BFGS
Hessian updating Eq. 4.

The GNTRS solver proposed by Gao, et al. [32, 36, 37] using
the matrix inversion lemma (MIL) has been implemented and
integrated with the distributed Gauss-Newton (DGN) optimizer.
Because the compact representation of the L-BFGS Hessian
updating formula Eq. 4 is similar to Eq. 15, we follow the
similar idea as proposed by Gao, et al. [32, 36, 37] to compute
[H(k+1) + λIn]− 1 by applying the matrix inversion lemma and
then solve the L-BFGS trust region search step s(λ).

[H(k+1) + λIn]− 1 � 1
α(k) + λ

In

− 1

[α(k) + λ]2V
(k){ 1

α(k) + λ
[V(k)]TV(k) − [W(k)]− 1}− 1[V(k)]T

(16)

Let P(k) � [V(k)]TV(k) and u(k) � [V(k)]Tg(k). We first solve v(λ)
from,

{ 1
α(k) + λ

P(k) − [W(k)]− 1}v(λ) � u(k). (17)

Then, we compute the trust region search step s(λ) and π(λ) �

s(λ)

 2 as,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734126

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

s(λ) � −[H(k+1) + λIn]− 1g(k)
� − 1

α(k) + λ
g(k) + 1

[α(k) + λ]2V
(k)v(λ), (18)

π(λ) �

g(k)

2

[α(k) + λ]2 +
[v(λ)]TP(k)v(λ)

[α(k) + λ]4 − 2[u(k)]Tv(λ)
[α(k) + λ]3 . (19)

From Eq. 15, we have P(k)v(λ) � [α(k) + λ]{u(k) + [W(k)]−1v(λ)}
and Eq. 19 can be rewritten as,

π(λ) �

g(k)

2

[α(k) + λ]2 +
[v(λ)]T[W(k)]− 1

v(λ) − [u(k)]Tv(λ)
[α(k) + λ]3 . (20)

We first try λ � λmin � 0. If π(0)≤Δ2 holds, we accept λ* � 0 and
s* � s(0) as the solution of the TRS defined in Eq. 8. Otherwise,
the solution is on the boundary defined in Eq. 10, which can be
solved by the Newton-Raphson (NR) method iteratively.

Let ϕ(λ) � 1���
π(λ)

√ − 1
Δ and we have ϕ′(λ) � −1

2
π′(λ)

[π(λ)]3/2 where

π′(λ) is computed by,

π′(λ) �

g(k)

2

[α(k) + λ]3 −
3π(λ)
α(k) + λ

+ 2[v(λ)]T[W(k)]− 1w(λ) − [u(k)]Tw(λ)
[α(k) + λ]3 . (21)

In Eq. 21, w(λ) � v′(λ) is solved from,

{ 1
α(k) + λ

P(k) − [W(k)]− 1}w(λ) � 1

[α(k) + λ]2P
(k)v(λ). (22)

Because { 1
α(k)+λP

(k) − [W(k)]− 1} is an m ×m symmetric and

positive definite matrix, it only requires. m3

3 + 6m2
flops to

solve v(λ) and w(λ) from Eq. 17 and Eq. 22 using the

Cholesky factorization.
Given the n × lk variable shift matrix S(k) and gradient change

matrix Z(k), we may directly compute the following three lk × lk
matrices, A(k) � [S(k)]TS(k), B(k) � [S(k)]TZ(k) and
C(k) � [Z(k)]TZ(k), and then form the m ×m matrix P(k) �
[V(k)]TV(k) as,

P(k) � { A(k) B(k)

[B(k)]T C(k) } (23)

Directly computing the three lk × lk matrices, A(k), B(k) and C(k),
requires 6l2kn � 1.5m2n flops. We also need to compute the vector
u(k) � [V(k)]Tg(k) (2mn flops) and

g(k)

2 (2n flops). To further
reduce the computational cost, the three matrices A(k), B(k) and
C(k) and the vector u(k) should be updated iteratively instead.

Updating Matrices and Vectors Used for
Solving the L-BFGS TRS
We first initialize k � 0 and H(0) � In. If the trial search point
x(0)T � x(0) + s*(0) does not improve the objective function,
i.e., f (x(0)T)≥ f (x(0)), we set x(k+1) � x(0) and H(k+1) � H(0),
recompute the sensitivity matrix J(k+1) � J(x(0)) and the
gradient g(k+1) � g(x(0)) when needed (e.g., using updated

training data points), and shrink the trust region size Δ(k+1) �
γdΔ(k) with 0< γd < 1. We repeatedly generate trial search point
x(k)T � x(k) + s*(k) until x(k)T improves the objective function,
i.e., f (x(k)T)< f (x(0)).

If f (x(k)T)< f (x(0)), we set lk � 1, x(k+1) � x(k)T , evaluate
g(k+1) � g(x(k+1)), and compute s � x(k+1) − x(k) and
z � g(k+1) − g(k). In the following iterations, we update lk ≥ 1
and associated matrices and vectors used for solving the
L-BFGS TRS for different cases accordingly. We use Sflag(k)
to indicate whether the new search point x(k)T improves the
objective function (Sflag(k) � }True}) or
not (Sflag(k) � }False}).

The L-BFGS Hessian updating formulation of Eq. 4 requires
ε(k) � zTs> c3

z

s

 and α(k) � zTz
zT s > αcr > 0 where c3 and αcr are

small positive numbers. If ε(k) ≤ c3

z

s

 or α(k) ≤ αcr , we simply

set lk � lk−1, s(lk) � s(lk−1), z(lk) � z(lk−1), α(k) � α(k−1), S(k) � S(k−1),
Z(k) � Z(k−1), A(k) � A(k−1), B(k) � B(k−1), C(k) � C(k−1), and
P(k) � P(k−1), with no updating. However, we need to compute
u(k) � [S(k), Z(k)]Tg(k+1) using the new gradient g(k+1). In the
following cases, we assume that both conditions ε(k) > c3

z

s

and α(k) > αcr are satisfied.

Case-1: Sflag(k) � “False”
Although the best solution x(k+1) does not change when
Sflag(k) � “False”, the sensitivity matrix J(k+1) and thus the
gradient of the objective function g(k+1) evaluated at x(k+1)
using simulation results and training data points updated in
the k + 1 (current) iteration may be different from those
evaluated at the same point but using simulation results and
training data points obtained in the k (previous) iteration. To use
the right gradient, we should replace the last column in Z(k)
with z.

Let ~Z
(k− 1)

be the submatrix of Z(k−1) by removing its last
column ~z(lk− 1), ~B(k− 1) � [S(k−1)]T ~Z(k− 1)

the submatrix of B(k−1) �
[S(k−1)]TZ(k−1) by removing its last column, and ~C

(k− 1) �
[~Z(k− 1)]T ~Z(k− 1)

the submatrix of C(k−1) � [Z(k−1)]TZ(k−1) by
removing its last row and last column. We first compute the

following two vectors p(k)2 � [S(k−1)]Tz and ~p(k)4 � [~Z(k)]Tz and

two scalars μ(k) � zTz and τ(k) � zTg(k+1) − [~z(lk− 1)]Tg(k), with
computational cost 2mn flops.

We set lk � lk−1, s(lk) � s(lk−1), z(lk) � z, S(k) � S(k−1), and
A(k) � A(k−1), and Update Z(k) as,

Z(k) � [~Z(k− 1)
z]. (24)

It is straightforward to derive the following equations to update
B(k) and C(k) accordingly,

B(k) � [S(k−1)]T[~Z(k− 1)
z] � [~B(k−1)

p(k)2], (25)

C(k) � {[~Z(k− 1)]T
zT

}[~Z(k−1)
z] � { ~C

(k−1)
~p(k)4[~p(k)4]T μ(k)

}. (26)

By definition,

u(k−1) � [S(k−1), Z(k−1)]Tg(k) � [S(k−1), ~Z
(k− 1)

, ~z(lk− 1)]Tg(k)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734127

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

u(k) � [S(k), Z(k)]g(k+1) � [S(k−1), ~Z
(k− 1)

, z]Tg(k+1)
Thus, we have,

u(k) � u(k−1) + { [S(k−1), ~Z
(k)]Tz

zTg(k+1) − [~z(lk− 1)]Tg(k) } � u(k−1) + ⎡⎢⎢⎢⎢⎢⎢⎢⎣ p
(k)
2

~p(k)4

τ(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦.
(27)

Case-2: Sflag(k) � “True” and lk−1 < LM
We set lk � lk−1 + 1 and s(lk) � s and z(lk) � z, compute four
lk−1-dimensional vectors p(k)1 � [S(k−1)]Ts and p(k)2 � [S(k−1)]Tz
and [p(k)3]T � sTZ(k−1) and p(k)4 � [Z(k−1)]Tz and five scalars,
β(k) � sTs and ε(k) � sTz and μ(k) � zTz and γ(k)s � sTg(k+1)
and γ(k)z � zTg(k+1), with computational cost 4mn flops. Both
S(k) and Z(k) are updated by,

S(k) � [S(k−1) s] (28)

Z(k) � [Z(k−1) z] (29)

It is straightforward to derive the following equations to update
A(k), B(k), and C(k),

A(k) � [S(k−1) s]T[S(k−1) s] � { A(k− 1) p(k)1[p(k)1]T β(k) } (30)

B(k) � [S(k−1) s]T[Z(k−1) z] � { B(k− 1) p(k)2[p(k)3]T ε(k)
} (31)

C(k) � [Z(k−1) Z]T[Z(k−1) z] � {C(k− 1) p(k)4[p(k)4]T μ(k)
} (32)

We first split the 2lk−1-dimensional vector u(k−1) into two
lk−1-dimensional sub-vectors u(k−1)S and u(k−1)Z , i.e.,

u(k−1) � [S(k−1), Z(k−1)]Tg(k) � [u(k−1)
S

u(k−1)
Z

].
whereu(k−1)S � [S(k−1)]Tg(k) is composedof thefirst lk−1 rows inu(k−1)
and u(k−1)Z � [Z(k−1)]Tg(k) is composed of the last lk−1 rows in u(k−1).

Because u(k) � [S(k), Z(k)]g(k+1) �
[S(k−1), s Z(k−1), z]Tg(k+1) and g(k+1) � g(k) + z, thus we have,

u(k) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u(k−1)
S + p(k)2

γ(k)s

u(k−1)
Z + p(k)4

γ(k)z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (33)

Case-3: Sflag(k) � “True” and lk−1 � LM
We set lk � lk−1 � LM . Let Ŝ

(k− 1)
and Ẑ

(k− 1)
denote the

submatrices of S(k−1) and Z(k−1) by removing the first column
s(1) and z(1) from S(k−1) and Z(k−1), respectively. Let Â(k− 1)

and
B̂
(k− 1)

and Ĉ
(k− 1)

denote the submatrices of A(k), B(k), and C(k) by
removing their first row and first column.

We apply Eq. 28 through Eq. 32 to update S(k), Z(k),A(k), B(k), and

C(k) by simply replacing S(k−1), Z(k−1), A(k−1), B(k−1), and C(k−1) with
Ŝ
(k− 1)

and Ẑ
(k− 1)

and Â
(k− 1)

and B̂
(k− 1)

and Ĉ
(k− 1)

, respectively.

We can also apply Eq. 33 to update u(k) by replacing u(k−1)S with

û(k−1)S � [Ŝ(k− 1)]Tg(k) that is composed of the second row through

the lk−1-th rows in u(k−1) and replacing u(k−1)Z with û(k−1)Z �
[Ẑ(k− 1)]Tg(k) that is composed of the last lk−1 − 1 rows in u(k−1).

The Algorithm to Update Matrices and
Vectors Used for Solving the L-BFGS TRS
Given LM ≥ 1, k > 1, lk−1 ≥ 1, the thresholds c3 > 0 and acr > 0,
n-dimensional vectors g(k+1), s and z, lk−1-dimensional
vector u(k−1), n × lk−1 matrices S(k−1) and Z(k−1), lk−1 × lk−
1 matrices A(k−1), B(k−1) and C(k−1), 2lk−1 × 2lk−1 matrices
P(k−1) and W(k−1)

I � [W(k−1)]− 1, we can update lk and the
lk-dimensional vector u(k), n × lk matrices S(k) and Z(k), lk ×
lk matrices A(k), B(k), and C(k), and 2lk × 2lk matrices P(k) and
W(k)

I � [W(k)]− 1, using the algorithm as summarized in
Algorithm-4.

Algorithm-4: Updating Matrices and Vectors Used for
Solving the L-BFGS TRS

1. Compute ε(k) � zTs, μ(k) � zTz, β(k) � sTs;
2. Compute the scaling factor α(k) � μ(k)/ε(k) if

ε(k) > c3
�������
β(k)μ(k)

√
, or set α(k) � 0 otherwise;

3. If α(k) ≤ αcr or ε(k) ≤ c3
�������
β(k)μ(k)

√
, then

a. Set α(k) � α(k−1) and lk � lk−1;
b. Update S(k) � S(k−1) and Z(k) � Z(k−1);
c. Update A(k) � A(k−1), B(k) � B(k−1), and C(k) � C(k−1);
d. Update P(k) � P(k−1) and WI(k) � WI(k−1);
e. Compute u(k) � [S(k), Z(k)]Tg(k+1);
f. Goto step 10.

4. Else if Sflag(k) � }False} (for Case-1), then

a. Set lk � lk−1;
b. Update S(k) � S(k−1);
c. Set ~z(lk− 1) to the last column of Z(k−1);
d. Set ~Z

(k)
by removing the last column ~z(lk− 1)from Z(k−1);

e. Update Z(k) � [~Z(k)
z];

f. Compute τ(k) � zTg(k+1) − [~z(lk− 1)]Tg(k);
g. Compute p(k)2 � [S(k−1)]Tz and ~p(k)4 � [~Z(k)]Tz;
h. Compute u(k)using Eq. 27;
i. Update A(k) � A(k−1);
j. Set ~B

(k− 1)
by removing the first column from B(k−1);

k. Set ~C
(k− 1)

by removing the first row and the first column
from C(k−1);

l. Update B(k)and C(k) using Eq. 25 and Eq. 26;
5. Else if lk−1 < LM (for Case-2), then

a. Set lk � lk−1 + 1;

b. Compute p(k)1 � [S(k−1)]Ts, p(k)2 � [S(k−1)]Tz,
p(k)3 � [Z(k−1)]Ts, and p(k)4 � [Z(k−1)]Tz;

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734128

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

c. Compute γs � sTg(k+1) and γz � zTg(k+1);
d. Update S(k), Z(k), A(k), B(k), and C(k) using Eq. 28

through Eq. 32, respectively;

e. Set u(k−1)S to the first lk−1 rows in u(k−1) and u(k−1)Z to the
last lk−1 rows in u(k−1);

f. Update u(k) using Eq. 31.
6. Else (for Case-3)

a. Set lk � LM ;

b. Remove the first column from S(k−1)and Z(k−1);
c. Remove the first row and first column from A(k−1),

B(k−1), and C(k−1);
d. Compute p(k)1 � [S(k−1)]Ts, p(k)2 � [S(k−1)]Tz,

p(k)3 � [Z(k−1)]Ts, and p(k)4 � [Z(k−1)]Tz;
e. Compute γs � sTg(k+1) and γz � zTg(k+1);
f. Update S(k), Z(k), A(k), B(k), and C(k) using Eq. 28

through Eq. 32 present, respectively;

g. Set u(k−1)S to the second row through the lk−1-th rows
in u(k−1);

h. Set u(k−1)Z to the last lk−1 − 1 rows in u(k−1);
i. Update u(k) using Eq. 33.

7. Form the matrix P(k) using Eq. 23;
8. Decompose B(k) � L(k) + E(k) + U(k);
9. Form the matrix W(k)

I using Eq. 5;
10. End

The computational cost to update matrices and vectors used
for solving the L-BFGS TRS as described in Algorithm-4 is at
most c4 � 2n + 4mn (taking Case-2 in step 5 as an example),
including the following 4 operations: (1) computing ε(k) � zTs,
μ(k) � zTz, and β(k) � sTs in step 1 (6n flops); (2) computing
p(k)1 � [S(k−1)]Ts, p(k)2 � [S(k−1)]Tz, p(k)3 � [Z(k−1)]Ts, and p(k)4 �
[Z(k−1)]Tz in step 5(b) (8lk−1n � 4mn − 8n flops),; (3)
computing γs � sTg(k+1) and γz � zTg(k+1)in step 5(c) (4n
flops).

In this paper, we apply the same idea of reducing the dimension
from n to m using the matrix inversion lemma as presented in the
three papers [32, 36, 37]. However, the implementation is quite
different. For the DGN optimizationmethod, the n ×mmatrixV(k)
(or the transpose of the sensitivity matrix) in Eq. 15 is directly
computed. Its dimensions (both the number of variables n and the
number of observed datam) are fixed, i.e., they remain the same for
all iterations. Therefore, we have to directly compute the m ×m
matrix P(k) � [V(k)]TV(k) and the m-dimensional vector
u(k) � [V(k)]Tg(k), with the computational cost 2m2n + 2mn
flops. Using the algorithm as summarized in Algorithm-4, the
computational cost can be further reduced to 2n + 4mn, by a
factor of lk � m/2, 5 to 20 roughly.

The Algorithm to Solve the L-BFGS TRS Using the
Matrix Inversion Lemma
Given the trust region size Δ � Δ(k) > 0, threshold of convergence
δcr > 0, maximum number of iterations allowed NTRS,max > 0, the

scaling factor α> αcr > 0, m≥ 0, n ×m matrix V � [S(k),Z(k)],
m ×m matrices P � P(k) and WI � [W(k)]− 1, m-dimensional

vector u � u(k) and n-dimensional gradient vector g � g(k)

evaluated at the current best solution x(k), both the Lagrange

multiplier λ*and the trust region search step s* � s(λ*) can be

solved from the TRS defined in Eq. 8 using the matrix inversion

lemma (MIL) as summarized in Algorithm-5.
Algorithm-5: Solving the L-BFGS TRS Using the Matrix

Inversion Lemma

1. Compute

g

;

2. Initialize l � 0, λ0 � 0;
3. If m � 0, then

a. Set λ* � 0 and sp � −g/α if

g

≤ αΔ;

b. Set λ* � ‖g‖
Δ − α and sp � −g Δ‖g‖ if

g

> αΔ;
c. Goto step 11.

4. Compute D � 1
α+λ0 P −WI and Cholesky

decomposition D � LLT ;
5. Solve p* from Lp � u and v* from LTv � p*;
6. Compute uTv*, p � WIv*, pTv*, and π0 � π(λ0) using

Eq. 20;
7. If π0 ≤Δ2, then accept λ* � λ0 and goto step 10;

8. Set δ �
∣∣∣∣∣∣∣1 − ��

π0
√
Δ

∣∣∣∣∣∣∣;
9. Repeat steps (a) through (j) below, until convergence

(δ ≤ δcr or l >NTRS,max):

a. Compute q � 1
(α+λl)2 Pv

* ;

b. Solve p* from Lp � q and w* from LTw � p*;

c. Compute uTw*, p � WIw*, pTv*, and π′
l � π′(λl) using

Eq. 21;

d. Compute ϕl � 1��
πl

√ − 1
Δ and ϕ′l � −1

2
π′
l

(πl)3/2;
e. Update λl+1 � λl − ϕl

ϕ’l
;

f. Set l � l + 1;

g. Compute D � 1
α+λl P −WI and Cholesky

decomposition D � LLT ;

h. Solve p* from Lp � u and v* from LTv � p*;

i. Compute uTv*, p � WIv*, pTv*, and πl � π(λl) using
Eq. 20;

j. Set δ �
∣∣∣∣∣∣∣1 − ��

πl
√
Δ

∣∣∣∣∣∣∣.
10. Compute p* � Vv* and s* � − 1

α+λ* g + 1
(α+λ*)2p

*;
11. End

Let NMIL denote the number of iterations required for the
L-BFGS TRS solver to converge. The total computational cost
(flops) to solve the L-BFGS TRS using Algorithm-5 is,

c5 � 4n + 2mn + (9m + 12m2 + m3

3)(NMIL + 1), including the

following eight operations: (1) computing

g

 in step 1 (2n

flops); (2) computing D � 1
α+λl P −WI and Cholesky

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6734129

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

decompositionD � LLT in step 4 or step 9(g) (2m2 + m3

3 flops); (3)

solving p* from Lp � u, and v* from LTv � p* in step 5 or step

9(h) (2m2
flops); (4) computing uTv*, p � WIv* and pTv* in step

6 or step 9(i) (4m + 2m2
flops); (5) computing q � 1

(α+λl)2 Pv
* in

step 9(a) (m + 2m2
flops); (6) Solving p* from Lp � q andw* from

LTw � p* in step 9(b) (2m2
flops); and (7) computing uTw*,

p � WIw*, and pTv* in step 9(c) (4m + 2m2
flops); and (8)

computing p* � Vz* and s* � − 1
α+λ* g + 1

(α+λ*)2p
* in step

10 (2mn + 2n).
The total computational cost (flops) used to solve the L-BFGS

TRS using Algorithm-5 together with Algorithm-4 is,

cMIL � c4 + c5 � 6n + 6mn + (9m + 12m2 +m3

3
)(NMIL + 1)

(34)

It is straightforward to compute the normalized computational
cost, or the ratio of computational cost of the DNR method
(Algorithm-2) or the DIQ method (Algorithm-3) together with
the algorithm that directly updates Hessian (Algorithm-1) over
the MIL TRS solver using the matrix inversion lemma
(Algorithm-5) and the efficient matrix updating algorithm
(Algorithm-4),

β � cDIQ
cMIL

� 2mn2 + (7 + 3m2)n + (5n + 2n2 + n3

3)(NDIQ + 1) +O(m3)
6n + 6mn + (9m + 12m2 + m3

3)(NMIL + 1)
(35)

Because n≫m for large-scale problems, Eq. 35 can be further
simplified as,

β � cDIQ
cMIL

≈
NDIQ + 1

18
n2

m
(36)

For some problems the solution s* � s(0) is accepted with
NDIQ � NMIL � 0. For other problems, it takes roughly
NDIQ ≈ NMIL � 5 ∼ 15 iterations for a TRS solver to converge.
Figure 1A,B illustrate the plots of β vs. n2/m for different m by
fixing NDIQ � NMIL � 0 and NDIQ � NMIL � 10, respectively. As
shown in both Figure 1A and Figure 1B, theMIL TRS solver may
reduce the computational cost by a factor β � 10 ∼ 105 for n2

m �
100 ∼ 106.

NUMERICAL VALIDATION

We benchmarked the MIL TRS solver against the DNR (or DIQ)
TRS solver on two well-known analytic optimization problems
using analytical gradients: the Rosenbrock function and the
Sphere function defined as follows,

f (x)Rosenbrock � ∑n−1
i�1

[100(xi+1 − x2i)2 + (1 − xi)2] , (37)

f (x)Sphere � ∑n
i�1

x2i (38)

The Rosenbrock function defined in Eq. 37 has one local
minimum located at x1 � −1 and xi � 1 for i � 2, 3, . . . n with
the objective function being 4 (approximately), and one global
minimum located at xi � 1 for i � 1, 2, . . . n with the objective
function being 0. Occasionally, a local-search optimizer may
converge to the local minimum.

We implemented different algorithms described in this paper
in our in-house C++ optimization library (OptLib). We employ
“Armadillo” as our foundational template-based C++ library for
linear algebra (http://arma.sourceforge.net/). We ran all test
cases reported on Tables 2–5 on a virtual machine computer
equipped with an Intel Xeon Platinum Processor at 2.60 MHz
and 16.0 GB of RAM. We varied the number of parameters, n as
powers of two and fixed twice the maximum number of
snapshots, M � 2LM � 10. Tables 2–5 summarize the
preliminary numerical results, including the value of the
objective function, the gradient norm, the number of
iterations, and the elapsed CPU time (s). The last column
displays the resulting speedup, namely, the ratio of CPU
times using the DNR (or DIQ) method over the MIL
method. We prescribe the tolerance to stop the L-BFGS TRS
solver for all the numerical experiments in this subsection as

FIGURE 1 | Plots of the ratio of computational cost β vs. n2/m,
computed using Eq. 35 by fixing NDIQ � NMIL � 0 in (A) and NDIQ � NMIL �
10 in (B).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 67341210

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

http://arma.sourceforge.net/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

δcr � 10− 4 and the maximum number of iterations as
NTRS,max � 16. We set the initial trust region size at Δ � 0.5.

We noticed that the matrix Dmay become ill-conditioned for
a few cases. Indeed, we could observe that the first entries on the
diagonal are nearly zero. The same situation occurs for different
optimization steps where m grows from 0, 2, 4, 6, up to ten. The
Cholesky decomposition of such a matrix will fail, i.e., Armadillo
throws an exception. We advise replacing the former with an LU-

decomposition to handle the pivots, namely, entries on the
diagonal of the lower triangular matrix, to be nearly zero. The
rest of the algorithm remains the same.

Table 2 compares performance of the DNR method vs. the
MIL methods for the Rosenbrock problem encompassing 8,
16, 32, and 48 parameters, respectively. Beyond those
problem sizes, the DNR method could not converge to the
solution. Indeed, the DNR method becomes relatively slow,

TABLE 2 | Performance comparison of DNR vs. MIL methods testing on Rosenbrock function.

DNR MIL

n f(k) g(k) Iters. CPU f(k) g(k) Iters. CPU Speedup

8 4.4E-09 2.9E-05 41 2.9E-02 3.4E-09 2.5E-05 41 1.6E-02 1.8
16 1.7E-09 1.0E-05 62 3.8E-02 1.5E-09 1.9E-05 61 4.2E-02 0.9
32 1.3E-09 1.1E-05 75 4.6E-02 3.2E-09 2.2E-05 75 4.8E-02 1.0
48 1.3E-08 2.6E-05 72 9.3E-02 4.4E-09 2.0E-05 72 4.0E-02 2.3

TABLE 3 | Performance comparison of DIQ vs. MIL methods testing on Rosenbrock function.

DIQ MIL

n f(k) g(k) Iters. CPU f(k) g(k) Iters. CPU Speedup

16 1.2E-09 2.2E-05 51 2.4E-02 1.5E-09 1.9E-05 61 3.2E-02 0.8
32 1.0E-09 2.4E-05 61 4.3E-02 3.2E-09 2.2E-05 75 3.2E-02 1.4
64 8.0E-10 2.4E-05 75 1.3E-01 7.8E-09 2.9E-05 79 3.6E-02 3.5
128 4.5E-10 1.8E-05 82 3.0E-01 4.6E-09 2.8E-05 73 3.8E-02 7.9
256 2.2E-10 1.3E-05 87 1.0E+00 5.0E-09 3.0E-05 78 7.2E-02 13.9
512 4.0E+00 1.5E-05 84 5.5E+00 3.1E-10 9.6E-06 90 1.4E-01 39.2
1024 1.5E-09 2.8E-05 98 3.9E+01 7.5E-09 2.7E-05 94 4.2E-01 90.9

TABLE 4 | Performance comparison of DNR vs. MIL methods testing on Sphere function.

DNR MIL

n f(k) g(k) Iters. CPU f(k) g(k) Iters. CPU Speedup

16 5.4E-64 1.8E-33 39 2.2E-02 3.3E-65 3.1E-34 56 3.8E-02 0.6
32 1.1E-63 1.5E-33 66 4.0E-02 1.3E-65 1.6E-34 67 3.7E-02 1.1
64 4.4E-63 2.1E-33 92 1.4E-01 4.0E-67 2.2E-35 86 5.2E-02 2.8
128 8.4E-63 2.1E-33 128 7.3E-01 9.2E-66 6.5E-35 135 6.3E-02 11.6
256 1.4E-62 1.8E-33 188 2.8E+00 9.7E-63 1.5E-33 185 7.0E-02 39.1
512 9.6E-64 3.3E-34 265 1.9E+01 5.7E-64 2.7E-34 256 5.6E-01 32.9
1024 3.6E-62 1.4E-33 383 1.4E+02 1.8E-64 1.0E-34 371 2.7E+00 52.4
2048 2.1E-60 7.8E-33 525 8.4E+02 2.2E-66 7.8E-36 534 1.7E+01 50.2

TABLE 5 | Performance comparison of DIQ vs. MIL methods testing on Sphere function.

DIQ MIL

n f(k) g(k) Iters. CPU f(k) g(k) Iters. CPU Speedup

16 3.6E-67 4.6E-35 39 3.8E-02 1.6E-65 2.1E-34 56 4.0E-02 1.0
32 2.1E-68 6.5E-36 66 3.8E-02 7.4E-64 1.2E-33 67 4.4E-02 0.9
64 2.0E-65 1.4E-34 92 1.0E-01 5.3E-65 2.5E-34 86 4.8E-02 2.1
128 2.0E-65 9.9E-35 128 3.0E-01 4.4E-64 4.5E-34 135 5.8E-02 5.1
256 2.7E-65 8.0E-35 188 1.6E+00 2.6E-64 2.5E-34 185 8.8E-02 18.3
512 1.5E-67 4.2E-36 265 1.3E+01 7.9E-65 9.9E-35 256 6.5E-01 19.7
1024 4.4E-66 1.6E-35 383 6.5E+01 4.3E-65 5.0E-35 371 3.1E+00 21.1
2048 1.4E-65 2.0E-35 525 4.6E+02 1.6E-66 6.6E-36 534 1.7E+01 27.4

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 67341211

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

i.e., renders very large lambda values that imply tiny shifts.
Often, after 2,048 iterations, the objective function is still
greater than one. It seems that the DNR method is not robust
enough to tackle the Rosenbrock function with more than 48
parameters. It appears that the MIL method slightly
outperforms the DNR method for problems with fewer
parameters.

Table 3 compares performance of the DIQmethod vs. theMIL
method. These numerical results confirm that the MIL method
outperforms the DIQmethod. As expected, the speedup improves
with the increase of the problem size n.

Table 4 shows similar results for the Sphere function problem.
We could benchmark the DNR method against the MIL
method with ranks up to 2,048 parameters. Again, the
speedup increases with problem size. Finally, Table 5
benchmarks the DIQ method against the MIL method
testing on the Sphere function. The speedup reduces when
compared to Table 4 for the same ranks, but we still clearly
see that the performance of the MIL solver exceeds its DIQ
counterpart. Results shown in Table 4 and Table 5 also
confirm that the DIQ method performs better than the
DNR method. We believe that the DIQ TRS solver
converges faster with smaller number of iterations than
the DNR TRS solver (i.e., NDIQ <NDNR).

The computational costs (in terms of CPU time)
summarized in Tables 2–5 are the overall costs for all
iterations, including the cost of computing both value and
gradient of the objective function in addition to the cost of
solving the L-BFGS TRS. In contrast, the theoretical analysis
results of computational cost for β in Eq. 35 only count for
the cost of solving the L-BFGS TRS in just one iteration.
Therefore, numerical results listed in Tables 2–5 are not
quantitatively in agreement with the theoretically derived β.

CONCLUSION

We can draw the following conclusions based on theoretical
analysis and numerical tests:

1) Using the compact representation of the L-BFGS
formulation in Eq. 4, the updated Hessian H(k+1) is
composed of a diagonal matrix λIn and a matrix
V(k)W(k)[V(k)]T with low rank when m < n.

2) Using the matrix inversion lemma, we are able to reduce the
cost of solving the L-BFGS TRS by transforming the original
equation with n variables to a new equation withm variables,
by taking advantage of the low rank matrix updating feature.

3) Further reduction in computational cost is achieved by
updating the vector u(k) and matrices such as S(k) and Z(k),
A(k), B(k), and C(k), P(k), and [W(k)]− 1 iteratively, which
effectively avoids expensive operations such as matrix-
matrix and matrix-vector multiplications.

4) Through seamless integration of matrix inversion lemma
with the iterative matrix and vector updating approach,
the newly proposed TRS solver for the limited-memory
distributed BFGS optimization method performs much
more efficiently than the DNR TRS solver.

5) The MIL TRS solver can obtain the right solution with
acceptable accuracy, without increasing memory usage
but reducing the computational cost significantly, as
confirmed by numerical results on the Rosenbrock
function and Sphere function.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

GG, HF, and JV contributed to conception and algorithmic
analysis of the study. HF, TW, FS, and CB contributed to
design and numerical validations. GG and FH wrote the first
draft of the article. All authors contributed to article revision,
read, and approved the submitted version.

REFERENCES

1. Ai-Mudhafar WJ, Rao DN, and Srinivasan S. Robust Optimization of Cyclic
CO2 Flooding through the Gas-Assisted Gravity Drainage Process under
Geological Uncertainties. J Pet Sci Eng (2018). 166:490–509. doi:10.1016/j.
petrol.2018.03.044

2. Alpak FO, Jin L, and Ramirez BA. Robust Optimization of Well Placement in
Geologically Complex Reservoirs. in: Paper SPE-175106-MS Presented at the
SPE Annual Technical Conference and Exhibition; September28–30 2015;
Houston, TX (2015).

3. van Essen GM, Zandvliet MJ, Den Hof PMJ, Bosgra OH, Jansen JD, et al.
Robust Optimization of Oil Reservoir Flooding. in: Paper Presented at the
IEEE International Conference on Control Applications; Oct 4-6 2006;
Munich, Germany (2006). p. 4–6.

4. Liu Z, and Forouzanfar F. Ensemble Clustering for Efficient Robust
Optimization of Naturally Fractured Reservoirs. Comput Geosci (2018). 22:
283–96. doi:10.1007/s10596-017-9689-1

5. Liu X, and Reynolds AC. Augmented Lagrangian Method for Maximizing
Expectation and Minimizing Risk for Optimal Well-Control Problems with
Nonlinear Constraints. SPE J (2016). 21(5). doi:10.1007/s10596-017-9689-1

6. Liu X, and Reynolds AC. Gradient-based Multi-Objective Optimization with
Applications to Waterflooding Optimization. Comput Geosci (2016). 20:
677–93. doi:10.1007/s10596-015-9523-6

7. Oliver DS, Reynolds AC, and Liu N. Inverse Theory for Petroleum Reservoir
Characterization and History Matching. Cambridge, United Kingdom:
Cambridge University Press (2008). doi:10.1017/cbo9780511535642

8. Tarantola A. Inverse Problem Theory and Methods for Model Parameter
Estimation. Philadelphia, PA: SIAM (2005). doi:10.1137/1.9780898717921

9. Oliver DS. On Conditional Simulation to Inaccurate Data. Math Geol (1996).
28:811–7. doi:10.1007/bf02066348

10. Jansen JD. Adjoint-based Optimization of Multi-phase Flow through Porous
Media - A Review. Comput Fluids (2011). 46(1):40–51. doi:10.1016/j.
compfluid.2010.09.039

11. Li R, Reynolds AC, and Oliver DS. History Matching of Three-phase Flow
Production Data. SPE J (2003). 8(4):328–40. doi:10.2118/87336-pa

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 67341212

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://doi.org/10.1016/j.petrol.2018.03.044
https://doi.org/10.1016/j.petrol.2018.03.044
https://doi.org/10.1007/s10596-017-9689-1
https://doi.org/10.1007/s10596-017-9689-1
https://doi.org/10.1007/s10596-015-9523-6
https://doi.org/10.1017/cbo9780511535642
https://doi.org/10.1137/1.9780898717921
https://doi.org/10.1007/bf02066348
https://doi.org/10.1016/j.compfluid.2010.09.039
https://doi.org/10.1016/j.compfluid.2010.09.039
https://doi.org/10.2118/87336-pa
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

12. Sarma P, Durlofsky L, and Aziz K. Implementation of Adjoint Solution for
Optimal Control of Smart Wells. in: Paper SPE 92864 Presented at the SPE
Reservoir Simulation Symposium Held in the Woodlands; Jan.-2 Feb;
Woodlands, TX (2005). p. 31.

13. Gao G, and Reynolds AC. An Improved Implementation of the LBFGS
Algorithm for Automatic History Matching. SPE J (2006). 11(1):5–17.
doi:10.2118/90058-pa

14. Nocedal J, and Wright SJ. Numerical Optimization. New York City: Springer
(1999).

15. Chen C, et al. Assisted History Matching Using Three Derivative-free
Optimization Algorithms. in: Paper SPE-154112-MS Presented at the SPE
Europec/EAGE Annual Conference Held in Copenhagen; June 4–7 2012;
Copenhagen, Denmark (2012). p. 4–7.

16. Gao G, Vink JC, Chen C, Alpak FO, and Du K. A Parallelized and Hybrid Data-
Integration Algorithm for History Matching of Geologically Complex Reservoirs.
SPE J (2016). 21(6):2155–74. doi:10.2118/175039-pa

17. Gao G, Vink JC, Chen C, El Khamra Y, Tarrahi M, et al. Distributed Gauss-
Newton Optimization Method for History Matching Problems with Multiple
Best Matches. Comput Geosciences (2017). 21(5-6):1325–42. doi:10.1007/
s10596-017-9657-9

18. Gao G, Wang Y, Vink J, Wells T, Saaf F, et al. Distributed Quasi-Newton
Derivative-free Optimization Method for Optimization Problems with Multiple
Local Optima. in: 17th European Conference on theMathematics of Oil Recovery
ECMOR XVII; September 2020; Edinburgh, United Kingdom (2020). p. 14–7.

19. Wild SM. Derivative Free Optimization Algorithms for Computationally Expensive
Functions. [PhD thesis]. Ithaca (new york): Cornell University (2009).

20. Powell MJD. Least Frobenius NormUpdating of Quadratic Models that Satisfy
Interpolation Conditions.Math Programming (2004). 100(1):183–215. doi:10.
1007/s10107-003-0490-7

21. Zhao H, Li G, Reynolds AC, and Yao J. Large-scale History Matching with
Quadratic Interpolation Models. Comput Geosci (2012). 17:117–38. doi:10.
1007/s10596-012-9320-4

22. Audet C, andDennis JE, Jr.MeshAdaptiveDirect SearchAlgorithms for Constrained
Optimization. SIAM J Optim (2006). 17:188–217. doi:10.1137/040603371

23. Spall JC. Introduction to Stochastic Search and Optimization. Hoboken, NJ:
John Wiley & Sons (2003). doi:10.1002/0471722138

24. Chen C, et al. EUR Assessment of Unconventional Assets Using Parallelized
History Matching Workflow Together with RMLMethod. In: Paper Presented
the 2016 Unconventional Resources Technology Conference; August 1–3
2016; San Antonio, TX(2016).

25. Chen C, Gao G, Li R, Cao R, Chen T, Vink JC, et al. Global-Search Distributed-
Gauss-Newton Optimization Method and its Integration with the Randomized-
Maximum-Likelihood Method for Uncertainty Quantification of Reservoir
Performance. SPE J (2018). 23(05):1496–517. doi:10.2118/182639-pa

26. Chen C, Gao G, Ramirez BA, Vink JC, and Girardi AM. Assisted History
Matching of Channelized Models by Use of Pluri-Principal-Component
Analysis. SPE J (2016). 21(05):1793–812. doi:10.2118/173192-pa

27. Armacki A, Jakovetic D, Krejic N, Krklec Jerinkic N, et al. Distributed Trust-
Region Method with First Order Models. in Paper Presented at the IEEE
EUROCON-2019, 18th International Conference on Smart Technologies July
1–14 2019 Novi Sad, Serbia (2019). p. 1–4.

28. Moré JJ, and Sorensen DC. Computing a Trust Region Step. SIAM J Sci Stat
Comput (1983). 4(3):553–72. doi:10.1137/0904038

29. Mohamed AW. Solving Large-Scale Global Optimization Problems Using
Enhanced Adaptive Differential Evolution Algorithm. Complex Intell Syst
(2017). 3:205–31. doi:10.1007/s40747-017-0041-0

30. Golub GH, and Van Loan CF. Matrix Computations. 4th ed. The Johns
Hopkins University Press (2013).

31. Brust JJ, Leyffer S, and Petra CG. Compact Representations of BFGS Matrices.
Preprint ANL/MCS-P9279-0120. Lemont, IL: ARGONNE NATIONAL
LABORATORY (2020).

32. Gao G, Jiang H, Vink JC, van Hagen PPH, Wells TJ, et al. Performance
Enhancement of Gauss-Newton Trust-Region Solver for Distributed
Gauss-Newton Optimization Method. Comput Geosci (2020). 24(2):
837–52. doi:10.1007/s10596-019-09830-x

33. Burdakov O, Gong L, Zikrin S, and Yuan Y. On Efficiently Combining
Limited-Memory and Trust-Region Techniques. Math Prog Comp (2017).
9:101–34. doi:10.1007/s12532-016-0109-7

34. Burke JV, Wiegmann A, and Xu L. Limited Memory BFGS Updating in a
Trust-Region framework Tech. Rep. Seattle, WA: University of
Washington (2008).

35. Byrd RH, Nocedal J, and Schnabel RB. Representations of Quasi-Newton
Matrices and Their Use in Limited Memory Methods. Math Programming
(1994). 63:129–56. doi:10.1007/bf01582063

36. Gao G, Jiang H, van Hagen P, Vink JC, and Wells T. A Gauss-Newton Trust
Region Solver for Large Scale History Matching Problems. SPE J (2017b).
22(6):1999–2011. doi:10.2118/182602-pa

37. Gao G, Saaf F, Vink J, Krymskaya M, Wells T, et al. Gauss-Newton Trust
Region Search Optimization Method for Ill-Conditioned Least Squares
Problem. in: ECMOR XVII 17th European Conference on the
Mathematics of Oil Recovery; 14 September 2020; Edinburgh, UK
(2020). p. 14–17.

Conflict of Interest: Authors GG, HF, and FS were employed by Shell Global
Solutions (United States) Inc. Authors JV, TW and CB were employed by Shell
Global Solutions International B.V.

Copyright © 2021 Gao, Florez, Vink, Wells, Saaf and Blom. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 67341213

Gao et al. Performance Analysis of L-DBFGS-TRS Solvers

https://doi.org/10.2118/90058-pa
https://doi.org/10.2118/175039-pa
https://doi.org/10.1007/s10596-017-9657-9
https://doi.org/10.1007/s10596-017-9657-9
https://doi.org/10.1007/s10107-003-0490-7
https://doi.org/10.1007/s10107-003-0490-7
https://doi.org/10.1007/s10596-012-9320-4
https://doi.org/10.1007/s10596-012-9320-4
https://doi.org/10.1137/040603371
https://doi.org/10.1002/0471722138
https://doi.org/10.2118/182639-pa
https://doi.org/10.2118/173192-pa
https://doi.org/10.1137/0904038
https://doi.org/10.1007/s40747-017-0041-0
https://doi.org/10.1007/s10596-019-09830-x
https://doi.org/10.1007/s12532-016-0109-7
https://doi.org/10.1007/bf01582063
https://doi.org/10.2118/182602-pa
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Performance Analysis of Trust Region Subproblem Solvers for Limited-Memory Distributed BFGS Optimization Method
	Introduction
	The Limited-Memory Hessian Updating Formulation
	Compact Representation
	The Algorithm to Directly Update the Hessian Using the L-BFGS Compact Representation

	Solving the L-BFGS Trust Region Subproblem
	The Trust Region Subproblem
	Solving the L-BFGS TRS Directly Using the Newton-Raphson Method
	The Inverse Quadratic Model Interpolation Method to Directly Solve the L-BFGS TRS
	Using Matrix Inversion Lemma (MIL) to Solve the L-BFGS TRS
	Updating Matrices and Vectors Used for Solving the L-BFGS TRS
	Case-1: Sflag(k) = “False”
	Case-2: Sflag(k) = “True” and lk−1 < LM
	Case-3: Sflag(k) = “True” and lk−1 = LM

	The Algorithm to Update Matrices and Vectors Used for Solving the L-BFGS TRS
	The Algorithm to Solve the L-BFGS TRS Using the Matrix Inversion Lemma

	Numerical Validation
	Conclusion
	Data Availability Statement
	Author Contributions
	References

