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Fuzzing is a systematic large-scale search for software vulnerabilities achieved by feeding a
sequence of randomly mutated input files to the program of interest with the goal being to
induce a crash. The information about inputs, software execution traces, and induced call
stacks (crashes) can be used to pinpoint and fix errors in the code or exploited as a means
to damage an adversary’s computer software. In black box fuzzing, the primary unit of
information is the call stack: a list of nested function calls and line numbers that report what
the code was executing at the time it crashed. The source code is not always available in
practice, and in some situations even the function names are deliberately obfuscated
(i.e., removed or given generic names). We define a topological object called the call-stack
topology to capture the relationships between module names, function names and line
numbers in a set of call stacks obtained via black-box fuzzing. In a proof-of-concept study,
we show that structural properties of this object in combination with two elementary
heuristics allow us to build a logistic regression model to predict the locations of distinct
function names over a set of call stacks. We show that this model can extract function
name locations with around 80% precision in data obtained from fuzzing studies of various
linux programs. This has the potential to benefit software vulnerability experts by increasing
their ability to read and compare call stacks more efficiently.

Keywords: fuzzing, crash-triage, software vulnerability research, call-stack analysis, topology, TDA, specialization
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1 INTRODUCTION

A black-box fuzzing campaign is one conducted without explicit knowledge of the source code or its
intermediate representations. Generally, methods in this area require a brute-force generation of inputs.
This can lead tomasses of crashes wheremany are duplicates of one another. For practitioners, untangling
the output of a black-box fuzzing campaign is a time-consuming task. The goal of this article is to
investigate methods that alleviate the difficulty of comprehending such results.

1.1 Call Stacks
When a program crashes, the slew of error text it returns to the user is referred to as the call-stack
(Example in Figure 1). The call-stack is a record of the nested functions traced out by the program in
its final moments and is one of the few pieces of information available to us when analyzing black-
box fuzzing. The lines in the call-stack are called frames, and while contingent on the operating
system’s debugging syntax, decompose roughly into three columns: 1) the module (or filename), 2)
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the function and 3) the line number. We will refer to the set of all
constituent modules, functions and line numbers in a set of call-
stacks C as the terms in C.

Further complicating matters is that—depending on whether
the source code is available—call-stacks may have partial
information excluded. In particular, when fuzzing programs
without possession of source code or full knowledge of terms,
the partially obscured call-stack may be the only source of
information available.

1.2 Goals
The ANU researchers [1] provided to us a data set of call stacks
generated by fuzzing several Linux programs with the afl fuzzing
algorithm (See [2]). They were interested in answering two key
research questions:

1. Clustering and Deduplication: determining the extent to
which there are discernible clusters in the set of call-stacks.

2. Term Removal: quantifying how much information about
function terms can be recovered given they are obscured
(for example, as in Figure 1).

While the first question has been studied in a number of
contexts [3, 4], to the best of our knowledge no attempt has been
made at the second. In this paper, we show that once the data has
been suitably whitelisted, the set of crashes contain a high number
of exact duplicate call-stacks. This observation highlights a
fundamental lack of diversity in the data generated by fuzzing,
and alone is enough to answer the first question to a large extent.

To address the question of function term removal, we
introduce a model of call-stack information using finite
topological spaces, posets and the theory of [5]. This not only
helps to quantify the significance of removing function terms, but
is a useful object to capture the dependencies between terms in
the set of call-stacks.

2 DATA-SET OVERVIEW

Six common Linux programs were fuzzed using the program afl.
Key aspects of the program: the binary name, file extension, and

version are presented in Table 1. Call-stacks were generated
within the framework of the GDB debugger using the
AddressSanitizer (ASAN) [6] tool.

Upon recommendation by the ANU cyber-security
researchers, we performed several pre-processing whitelisting
steps to each call-stack text file. Firstly, frames appearing up to
and including the ASAN error frame were considered superfluous
and hence deleted. In crashes that did not call the ASAN module,
frames up to assert_fail were deleted. For every file, the two final
generic end-of-file frames were deleted. Finally, we extracted
three salient features from each frame: the module, the
function and intra-module line number, and discarded the
other information in the call-stack file.

Unlike the afl protocol–where crashes are de-duplicated based
on a hashing scheme–we labeled two call-stacks to be deplicates
whenever their text files were identical after the pre-processing
described above. A striking result of frequency analysis is that
there are dramatically fewer distinct crashes relative to total
crashes (see Figure 1). Further, the frequency of distinct
crashes is unevenly distributed. Across programs, the call-stack
data displayed largely the same pattern: most of the weight was
distributed among a few crashes, with the rest rarely occurring
(See Figure 2).

3 TOPOLOGICAL MODEL

In this section, we propose a model to frame the complex
dependency relationships between the terms T appearing
across a set of call-stacks C. Our model is inspired by the
work of [5] on finite topological spaces, where pre-orders,
equivalence classes and posets capture certain topological
interactions between points. Our applications will use
primarily the poset representation of the data, but we have
included the topological perspective which motivated the
original idea with the hope that future work may be able
to further incorpate the topological characteristics of
the model.

Recall that in any topological space X, the open neighborhood
N (x) of a point x ∈ X is the set of open sets containing x. A rough
intuition of point-set topologies over finite sets is that elements

FIGURE 1 | A simplified call-stack in our data-set with and without function terms.
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are considered close when they have similar open
neighbourhoods. Our goal is to create a topology over the set
of terms T where those that occur in a similar set of call-stacks
are close.

3.1 Call-Stack Topology
Given a set of call-stacks C comprised of terms T , we define the
call-stack topology T (C) on T to be that generated by treating
each call-stack c ∈ C as an open set of terms. The complete

TABLE 1 | The number of crashes generated by fuzzing each program, and the number of unique crashes after whitelisting and removed exact duplicates. Within the set of
call-stacks, some files were either blank or unable to be opened. We discarded such files, as appears in the second column from the right.

Binary Extension Version Call stacks Discarded (per 1,000) Distinct

SoX mp3 14.4.2 40,017 1 (0.02) 12
Librsvg Svg 2.40.20 6,276 94 (15) 68
Libtiff Tiff 4.0.9 5,486 2 (0.36) 9
Freetype Ttf 2.5.3 17,034 1 (0.06) 51
SoX Wav 14.4.2 30,856 1 (0.03) 11
Libxml2 Xml 2.9.0 240,821 7,467 (31) 3,175

FIGURE 2 | Frequency (logarithmic scale) distribution of crashes in each binary, where the crash ID is with respect to distinct call-stacks.
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collection of open sets in T (C) is then formed by taking all
possible intersections and unions of call-stacks from C.

Unlike many topologies we are familiar with, e.g., topologies
generated by open balls in a metric space, the call-stack topology
is seldom Hausdorff. In our context, the looser criterion of a T0

space is a more useful notion of point separation. Recall that a T0

space (X,N ) is one where points may be distinguished by their
open neighbourhoods; explicitly, for each pair of points x, y ∈ X
there exists either an open set in N containing x without y or y
without x.

Since distinct terms can appear in the same subset of call-
stacks, T (C) is not even T0. However, we can transform T (C)
into a T0 space by taking the Kolmogorov quotient (see [7]). The
Kolmogorov quotient ~X is obtained from (X,N ) by the
equivalence relation x ∼ y whenever they have the same open
neighborhoodN (x) � N (y). It is known that ~X and (X,N ) have
the same homotopy type. By taking the Kolmogorov quotient of
the call-stack topology, one reduces the object of study from a
potentially large set of terms T into a more manageable set of
equivalence classes of terms ~T .

The following simple lemma shows that one may characterize
equivalence classes in the Kolmogorov quotient of the call-stack
topology by examining the set of call-stacks directly rather than
the topology. For t ∈ T , we refer to the set of call-stacks in C
which contain t as the call-stack neighborhood, using the
notation C(t).

LEMMA 1. For a set of call-stacks C comprised of terms T , two
terms t1 ∼ t2 are equivalent if and only if C(t1) � C(t2).

PROOF. The definition of the equivalence relation is t1 ∼ t2
whenever N (x) � N (y) in the call-stack topology. Hence, we
need to show that open neighbourhoods N (x) � N (y) are
equal if and only if call-stack neighbourhoods C(t1) � C(t2)
are equal.

Suppose that C(t1)≠ C(t2). Without loss of generality, suppose
there exists c ∈ C such that t1 ∈ c and t2 ∉ c. By the definition of
call-stack topology, c is open and hence a member ofN (t1). Since
t2 ∉ c, it follows that N (t1)≠N (t2), proving one side of the
statement.

Conversely, suppose that C(t1) � C(t2), and further suppose
that U ∈ N (t1). All open sets in the topology generated by a set C
may be expressed in the form

U � ∪
j
∩
i
Ci,j (1)

where each Ci,j ∈ C is a generating set. The assumptionU ∈ N (t1)
implies that t1 ∈ U and further that there exists j such that t1 ∈ Ci,j
for all i. Since we have assumed that C(t1) � C(t2), t1 ∈ ∩iCi,j
implies that t2 ∈ ∩iCi,j4U as well. This implies that
N (t1)4N (t2). By the same argument N (t2)4N (t1), thus
N (t1) � N (t2), and finishing the proof.

According to the above lemma, equivalence classes in the
Kolmogorov quotient of the call-stack topology consist of terms
that occur in the same set of call-stacks. The intuition is that by
taking the Kolmogorov quotient, we only consider terms up to the
information of which call-stacks they appear in. The composition
of equivalence classes in such a quotient will be a key feature for
analysis in our application.

In theory, calculating such equivalence classes requires
knowledge of open neighbourhoods and, ergo, the entire
gamut of open sets in the call-stack topology. Aside from
providing useful intuition, the above lemma also ensures that
we can avoid this computationally expensive task, attaining
equivalence classes indirectly by comparing the call-stack
neighbourhoods of pairs of terms.

Example 1. In Figure 3, we depict a set of three call-stacks. In
the center of the Figure, the three circles each represent a
generating set for the call-stack topology T (C) over the
constituent terms T of C. The coloring of the terms represents
their partition into equivalence classes under the Kolmogorov
quotient operation. Following Lemma 1, equivalence classes
consist of terms sharing identical call-stack neighbourhoods.
This example also highlights that both the ordering of terms
in the call-stack and the frequency of each term within it are both
disregarded by the model.

3.2 Call-Stack Partial Order
In this section we equip the set of call-stack terms with the
additional structures of a pre-order and partial order. Our
approach in later sections is to use this structure to examine
relations between terms in different equivalence classes. For any
topological space, one may use the structure of the open sets to
define a pre-order over its points called the specialization pre-
order. This may be defined in the following equivalent
statements.

DEFINITION 1. For a topological space X, the specialization pre-
order (X,<�) over X is given by either

x ≤ y wheneverN (y)4N (x)
or equivalently

x ≤ y whenever y ∈ ∩
U ∈ N (x)

U

The specialization pre-order forms a partial order over X
precisely when X is a T0 space, with the T0 condition ensuring
that the order relation satisfies the anti-symmetry condition: x ≤ y
and y ≤ x implies x � y.

DEFINITION 2. The call-stack pre-order on a set of call-stacks
T ≤ (C) is the specialization pre-order over the call-stack
topology T (C).

DEFINITION 3. The call-stack poset on a set of call-stacks ~T ≤ (C)
is the specialization pre-order over the Kolmogorov quotient
~T(C) of the call-stack topology.

Unlike the call-stack topology T (C) in general, the
Kolmogorov quotient ~T(C) of the call-stack topology is
guaranteed to be T0 space (see [7] for a full survey of
Kolmogorov quotients). Note here that the call-stack poset is
defined over equivalence classes of terms within the call-stacks,
rather than the individual terms themselves. In moving to this
construction, we reduce the space of information we are working
with; order theoretic notions are considered between blocks of
terms rather than individual ones.

As is the case for equivalence classes, the call-stack partial
order can be computed without explicitly calculating the open
sets in the call-stack topology.
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LEMMA 2. Two classes of terms [t1], [t2] ∈ ~T(C) satisfy an order
relation [t1]≤ [t2] in the call-stack partial order if and only
if C(t2)4C(t1).

PROOF. Suppose first that C(t2)4C(t1). Let U ∈ N (t2) be an
open neighborhood of t2 in the call-stack topology. As in
Equation 1, U may be expressed in the form

U � ∪
j
∩
i
Ci,j

where there exists j such that t2 ∈ ∩iCi,j. Since C(t2)4C(t1), it
follows that t1 ∈ ∩iCi,j also, implying that U ∈ N (t1) and
N (t2)4N (t1). Thus, [t1]≤ [t2] as required.

In the other direction, suppose that C2 is not a subset of C1.
Then there exists c ∈ C(t2) such that c ∉ C(t1). Since c is open in

the call-stack topology, c ∈ N (t2) and c ∉ N (t2), implying that
N (t2)?N(t1) and thus [t1]≤ [t2].

The above lemma suggests how one should interpret the call-
stack partial order: two sets of terms [t1], [t2] ∈ [t1], [t2] ∈ ~T(C)
satisfy an order relation [t1]≤ [t2] when every call-stack
containing the [t2] terms also contains the [t1] terms. In this
sense, witnessing the terms in [t2] depends on witnessing the
terms in [t2] across the call-stacks in C.

Example 2. In Figure 4, we depict the call-stack poset
corresponding to the example call-stack topology provided in
Example 1. Each circle contains an equivalence class of terms that
have identical call-stack neighbourhoods. Lemma 2 tells us that an
order relation [t1]≤ [t2] between classes occurs when C(t2)4C(t1);
namely, when all call-stacks containing t2 also contain t1.

FIGURE 3 | Three call-stacks C and their corresponding generating sets over their constituent terms T .

FIGURE 4 | The call-stack poset corresponding to the call-stack topology defined in Example 1.
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3.3 Function Term Obfuscation
One of the key research questions is how much information can
be extracted from the call-stack when terms are removed. Let C be
a collection of call-stacks, tokenized into a set of terms T . To
consider the effect on the model of removing a single term t ∈ T ,
let T ’bT ∖{t} and

C’b{c∖(c∩{t})|c ∈ C}
be the set of call stacks with the term t removed. Note here that
each c ∈ C is a set of terms c4T , so the set notation c∖(c∩{ t })
makes sense. The following lemma describes the effect on the call-
stack poset when t is removed.

LEMMA 3. Suppose t1, t2 ∈ T . Then

1. [t1]≠ [t2] in ~T(C)if and only if[t1]≠ [t2]inT̃ ′(C′).
2. [t1]≤ [t2]in ~T ≤ (C)if and only if[t1]≤ [t2]in T̃ ′(C′).

PROOF. For (1), [t1]≠ [t2] in ~T(C) if and only if there exists
c ∈ C such that either t1 ∈ c and t2 ∉ c or t1 ∉ c and t2 ∈ c. This
occurs if and only if there exists C′ ∈ C such that either t1 ∈ C′ and
t2 ∉ C′ or t1 ∉ C′ and t2 ∈ C′, which is equivalent to [t1]≠ [t2] in
~T ′ ≤ (C). For (2), [t1]≤ [t2] in ~T ≤ (C) 5
C(t2)4C(t1)5C′(t2)4C′(t1)5[t1]≤ [t2] in ~T ′ ≤ (C′).

One can summarize the above result as the fact that ~T ′(C′) is
isomorphic to ~T (C) whenever the singleton {t} is not an
equivalence class. When it is an equivalence class, it is the
only difference between the two call-stack posets ~T ≤ (C) and
~T ′ ≤ (C′). By inductively removing all of the function terms,
F ⊂ T , and applying the lemma at each step, we attain the
following corollary.

COROLLARY 1. Let T̃″(C″) be the call-stack poset over
~T ″bT ∖F generated by

C″b{c∖(c∩F )|c ∈ C}
Then ~T ″ ≤ (C″) is the sub-poset of ~T(C) spanned by equivalence
classes

{[x] ∈ ~T(C)
∣∣∣∣∣∣[x]?F}

In other words, whenever we remove function terms from the
model, the structure of the call-stack poset is unchanged away
from classes comprised solely of function terms. When a
function term t shares an equivalence class with non-
function terms, these may be used to recover its structural
dependency information even when t is removed. The point of
the above theorems is to motivate the idea that many attributes
of the call-stack poset are retained in the case where some
terms are missing.

4 FUNCTION TERM RECONSTRUCTION

The goal of this paper is to reconstruct information about
function terms from call-stacks in which they are obscured. In
this section, we present a small-scale experiment on our linux
data set using features extracted from the call-stack
topology model.

Accordingly, we must first define what we mean by ‘function
information.’ When the function names are missing, it is not
possible to recover them explicitly from the call-stack data. The
next best data, and what we choose to focus on in this paper, is to
recover the set of positions within the call-stacks that share a
common function name. This notion is captured in the following
definition.

DEFINITION 4. For a term t ∈ T within a set of call stacks C,
define the frame trace FTC(t) of t to be the set of pairs

FTC(t)b{(c, n)|t ∈ c[n]}
where c[n] is the nth frame of call stack c.

If t appears in multiple frames c[n] and c[n′] within the same
crash c ∈ C, then both (c, n) and (c, n′) are elements of FTC(t).
For any pair of terms of the same type in a set of call stacks, their
frame traces must be disjoint. It is impossible to guess the explicit
names of obscured function terms. However, if one can recover
the frame traces of every function, then one can generate call
stacks that are equivalent up to re-naming function terms.

By performing logistic regression over features extracted from
the call-stack model, we will show that a surprising number of
function frame traces can be recovered without any explicit
knowledge of function names. This is particularly striking
given that the user also knows nothing about the internal
structure of the program. Additionally, we provide an
algorithm for generating fake function names based on the
guessed frame traces, making sets of call stacks more human-
readable in the setting where function names are missing.

4.1 Preliminary Analysis of Call-Stack
Equivalence Classes and Poset Structure
To motivate the use of our novel tools in the task of recovering
function frame traces, we first present a basic analysis of the data
through the lens of the call-stack topology and poset. In
particular, we study the characteristics of equivalence
classes—their size and the types of terms of which they
comprise—as well as the order relations and dependencies
they exhibit on one another.

4.1.1 Basic Statistics
Recall that the equivalence classes in the call-stack topology
consist of terms that occur in the same set of call stacks.
Table 2 shows the extent of reduction from the number of
terms to their equivalence classes under the quotient
operation.

Our primary interest is to understand the effect of obscuring
function terms. Corollary 1 states that removing the function
terms only alters the model’s structure at equivalence classes
consisting of function terms alone. Accordingly, we say a function
term f is retained under the quotient operation when it is
equivalent to a non-function term t. Notably, in the case
f ∈ F is retained, there exists a term t ∈ T ∖F with call-stack
set equivalent to f.

Table 2 shows that, on average, 86% of function terms are
retained. Extensive term equivalences in the call-stack topology
mean that a dramatic reduction in the available terms has little
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effect on the call-stack poset structure. The main takeaway from
this analysis is that function terms rarely occur in an equivalence
class on their own.

4.1.2 Patterns Relating Line Numbers and Function
Terms
When two terms are in the same equivalence class, they occur in
the same set of call-stacks. However, our topological model
encodes none of the information about which frame they
occur in. Our toy example (Example 1) suggested that line
numbers and functions in the same equivalence class tend to
occupy similar frames in the call-stack. In a thorough
examination of the data, we observed two patterns,
demonstrating each with the example call stacks in Figure 5.

• Pattern 1: When multiple line numbers belong to an
equivalence class, they are usually paired with functions
in the same frame except for the line number in the bottom
frame. The lowest line number appears to act as a switch
point between blocks of terms, instigating a run of function
calls that are either seen in only one call-stack or always
together. In Figure 5, this occurs in the brown and green
equivalence classes of the example on the left.

• Pattern 2: When a single line number is in an equivalence
class with a function, it is likely paired with a function one
frame above. In Figure 5, this occurs in the purple and
orange boxes of the left call-stack, and the purple, orange and
green boxes of the right.

It is important to state that neither pattern reflects an
underlying mathematical truth. Rather, they seem to be a
symptom of programming convention. Namely, as source code
tends to decompose into many different simple functions nested
within one another, runs of frames in the call-stack tend to cycle
through distinct function names. Further, these patterns only
apply in the case that a line number occurs in the same set of
crashes as a function, in which case we assume that they describe
how the frames of a function and line number are related.

4.2 Method
Our method for frame trace recovery is centered around
leveraging structure of the call-stack topology and poset. To
do so, we generate the call-stack equivalence classes T̃″(C)
and poset ~T″ ≤ (C) from the incomplete data T ″, i.e., the set
of terms with function names omitted. The intuition of Corollary
1 — as well as the empirical observations of Table 2 — suggest
that such objects should be relatively similar to their counterparts
~T (C), ~T≤ (C) generated from the full data that we aim to
partially reconstruct.

Once such objects are constructed, our approach consists of
the following two steps.

1. Classifying Equivalence Classes: Within the incomplete
data model, the terms of an equivalence class [t] ∈ T̃″(C)
consist only of line numbers and module names. However,
in the complete data model, there may exist function terms
that are also in the corresponding class. The first step of

TABLE 2 | Call-stack model and term statistics for each linux program.

SoX (m) Librsvg Libtiff Freetype SoX (w) Libxml Mean

Modules 15 15 8 23 14 17
Functions 36 92 17 48 34 151
Line num 43 99 21 81 40 361
Total terms 94 206 46 152 88 529
Classes 33 113 14 66 27 343
Reduction % 65% 45% 70% 56% 69% 35% 57%
Order relations 108 1,024 22 352 89 2,220
F-loss 4 32 0 6 2 29
F-retention % 89% 65% 100% 88% 94% 81% 86%

FIGURE 5 | Example call stacks from the Linux data exhibiting the behavior described by the two patterns. The left and right examples are taken from two separate
libraries, where each of the seven colors represents an equivalence class in the call-stack topology; that is, a set of terms which have identical call-stack neighbourhoods.
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our method is to estimate the likelihood that an
equivalence class [t] ∈ T̃″(C) in the incomplete data
corresponds to an equivalence class containing a
function term in the full data ~T(C).

2. Pairing Frame Traces: The second step of our method is to
apply our two observations above to obtain a heuristic for
predicting frame trace locations of function terms. This is
done by selecting line numbers within a given equivalence
class whose frame traces are likely to be paired with a function
term frame trace in the complete data. The frame traces of
these line numbers serve as our set of predictions for function
frame traces and enable us to partially reconstruct the data set.

4.2.1 Classifying Equivalence Classes Within Libxml
The first step in our method of frame trace recovery is learning to
detect when an equivalence class contains a function term. Before
tackling the task of classifying equivalence classes in the
incomplete data, we restrict our focus to a small study of
libxml, which offers the largest base of terms and equivalence
classes fromwhich to garner information.We outline our method
here to examine the relationship between the structure of an
equivalence class within the libxml call-stack poset and the types
of terms that it contains.

Consider the following three binary classification problems
over the equivalence classes ~T (C) in the call-stack topology.

1. Modules: each equivalence class [t] ∈ ~T(C) is labeled 1 if
there exists a module m ∈ M∩[t] and 0 otherwise.

2. Functions: each equivalence class [t] ∈ ~T (C) is labeled 1 if
there exists a function f ∈ F ∩[t] and 0 otherwise.

3. Line Numbers: each equivalence class [t] ∈ ~T(C) is labeled
1 if there exists a line number l ∈ L∩[t] and 0 otherwise.

We address each of the above by performing a simple logistic
regression based on four features in the call-stack model. For an
equivalence class [t] ∈ ~T(C), these are as follows.

1. The size |{t′ ∈ [t]}| of an equivalence class.
2. The frequency (number of call-stacks) of the class

|{C ∈ C|[t]4C}|.
3. The weighted in-degree

∑
[t′]

ϕ([t′]≤ [t])

of the class within the order graph of the call-graph poset ~C≤ (T).

4. The weighted out-degree

∑
[t′]

ϕ([t]≤ [t′])

of the class within the order graph of the call-graph poset
~C≤ ([T]).

The names given to features 3 and 4 reference the fact that a
poset p can be represented as a graph whose nodes are elements of
p and edges are order relations p≤ q. The in- and out-degree of [t]
are the number of equivalence classes that [t] depends on and
that depend on [t] respectively. To incorporate the magnitude of
such dependencies, the weight of an order relation is determined
by the function

ϕ([t]≤ [t′]) � |{C ∈ C|[t′]4C}|
|{C ∈ C|[t]4C}|

Lastly, for normalization each of the four variables is scaled by
minimum and maximum to lie within [0, 1], making the logistic
regression weights comparable across variables.

Since the classification labels are unbalanced, the classes were
re-weighted according to the to sci-kit learn class re-weighting
scheme. To prevent over-fitting, the data was randomly split into
an 80% training set and 20% testing set. To measure results, we
use the F1 score and Area Under (precision-recall) Curve, which
is suggested to be the most sensible measurements when
predicting heavily weighted classes in binary classification
(See [8]).

As a baseline to compare the statistical significance of our
method, we propose the following binary classification null-
model. Firstly, we empirically derive three probabilities from
the ratio of the number of equivalence classes containing each
term over the total number of equivalence classes. For each type
of term, the null-model randomly guesses whether each class
contains that particular term type with the empirically derived
probability

4.2.2 Classifying Incomplete-Data Equivalence
Classes
Once we have attained logistic regression weights for the libxml
data, we then apply them to other programs. An important point
of this stage is that, unlike the libxml program experiment, we
withhold the full-data with function names as a validation set.
This means that the call-stack topology and poset are generated
for each program from the call-stacks C″ with function terms
obscured T ″.

From each of these objects, we extract the same four features as
above, normalizing in the same way to ensure that the learned
libxml weights scale appropriately. The goal of this stage is to
predict whether an equivalence class in the incomplete data is
likely to contain a function in the full-data, thus predicting a set of
call-stacks which share a common missing function term.

4.2.3 Pairing Line Numbers With Function Frame
Traces
The outline of our approach to predicting function frame traces is
to 1) guess when a line number in the incomplete-data model was
likely to have been in an equivalence class with a function name
and 2) generating predicted frame traces for functions from line
number frame traces using our two heuristics. Algorithm LABEL:
predict_FTs ties these two steps together, taking in the set of
obscured call-stacks T ″(C″) and their frame traces FTC″ then
returning a set of predicted frame traces. The value p is a cut-off
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likelihood for using logistic regression weights to decide when a
pattern should be applied to predict a frame trace.
Algorithm 1PredictFTs(~T ″(C″),FTC″ , p).
CT
predicted fts � []
[t] ∈ ~T ’’(C’’)

P(∃f ∈ [t])≥ p
8|[t]∩L|> 1

8lines � ([t]∩L).drop bottom linenum( )
l ∈ lines

predicted fts � predicted fts + [FTC’’(l) for l ∈ lines]
|[t]∩L| � 1
8l � [t]∩L

predicted fts.append((c,min(n − 1, 0))|(c, n) ∈ FTC’’(l))
predicted fts

In our algorithm, the logistic regressionweights in Line 3 learned over
libxml serve as the basis for detecting whether there exists a function
in each line number’s equivalence class. Using only the libxmlweights
ensures that when we predict function frame traces, we require no
information about function names in other programs beforehand.

The logistic regression is learned over the full-term model of
libxml then performed over the call-stack topology models
generated without terms in other programs. There are two
significant obstacles that the model must overcome to be
successful. Firstly, the model must exhibit transference if the
regression weights from libxml are to work for other programs.
Secondly, the model must be robust to term removal given that it
classifies over amodel without function terms. On the second point,
Corollary 1 states that the call-stack model retains much of its
structure when function terms are removed, which suggests that the
logistic regression weights have a chance of still being applicable.

The role of the logistic regression model is primarily to act as a
gate-keeper, probabilistically determiningwhen a given line number
is not in the same class as any function. This prevents the model from
over-predicting instances where a function’s frame trace should be
paired to that of a line number. The method drop bottom lineum in
Line 5 removes the line number with the lowest average frame trace
from the set, which is necessary to apply pattern 1.

4.3 Results
4.3.1 Learning Libxml Logistic Regression Weights
In Table 3 we present the results of our binary classification
experiment within the libxml data described in Subsection 4.2.1.
The results show that the inclusion of call-stack topology features
significantly improves the quality of prediction across terms when
compared with the null model. To quantify the effect of each feature

in classification, we plot the logistic regression weights in Figure 6.
In all cases, the frequency of a term has little effect on classification.
For individual term types, there are several observations about the
model variables that detect its presence in an equivalence class.

• Modules are likely to be in smaller equivalence classes with
lower weighted in-degree and higher weighted out-degree. This
means more terms depend on them than they depend on.
• Functions are likely to be in large equivalence classes, with high
out-degree. This means many terms are likely to depend on them.
• Line Numbers are likely to be in larger equivalence classes,
with a low weighted out-degree. This means terms are unlikely
to depend on line numbers.

Each observation agrees with the structure of library dependencies,
where line numbers depend on functions, and functions depend on
modules. The logistic regressionmodel is notably adept at detecting
the presence of function terms within a given equivalence class.

4.3.2 Frame Trace Recovery
The PREDICTFTS algorithm is run over each Linux program. Since
the function term information in libxml was used to generate the
logistic regression weights, we exclude it from the analysis. To
measure the results, we compare the set of predicted function
frame traces generated by the algorithm against the set of actual
function frame traces in each set of call stacks.

Table 4 contains the results of each experiment with three
different cut-off probabilities 0.4, 0.5 and 0.6. Despite the heavy
reliance on fairly naïve heuristics, our model has a reasonable mean
precision of above 0.75 is each case. Notably, both precision and
recall of frame traces are relatively stable across each program. This
suggests that the libxml logistic regressionweights and the heuristics
both exhibit some degree of transference across programs.

In Figure 7, we analyze the effect of the cut-off probability
parameter in detail. When this parameter is high, the algorithm
requires a large degree of confidence that an equivalence class
contains a function term before predicting a frame trace. This is
reflected in an increasing precision and decreasing recall as the
cut-off probability increases.

The cut-off probability parameter indirectly allows the user to
dictate the importance of precision at the expense of recall. Given
that the purpose of our experiment is to reliably reconstruct what
function names we can, the importance of precision outweighs
that of recall. Indeed, there exist function names in the data that
could not possibly be recalled from the module and line number
information alone. For example, large swathes of function names
are hidden behind the repeated line number 0 in the librsvg data
(Figure 8), rendering their recall impossible by our method.

TABLE 3 | Proportion of equivalence classes containing each term type, and logistic regression F1 score and AUC improvements on the null-model for the libxml call-stacks.

Module Function Line number

% Equivalence Classes 4.76% 65.01% 88.06%
F1 0.40 0.89 0.92
Null model 0.00 0.40 0.90
AUC 0.20 0.94 0.97
Null model 0.04 0.43 0.93
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Example 3. To make call stacks without function terms more
readable we insert random words into each predicted frame trace.
Keeping with the afl theme, we sample random words from the
surnames of champion players from the Richmond Tigers
Australian Football League (AFL) team. These words are
consistent across the set of call stacks, making it easier for the
user to visually compare different call stacks.

Figure 9 demonstrates two reconstructed call stacks from the
SoX program. In the original call-stacks, the coloring represents

equivalence classes in the model. We color the reconstructed call-
stacks the same, noting that when we attempt to reconstruct we
do not know what equivalence classes will contain functions a
priori.

As is evident, words representing functions are consistent
across the set of call-stacks when frame traces are correctly
predicted. The ???? terms in the reconstructed call-stacks
represent function frame traces that the algorithm did not
attempt to predict.

FIGURE 6 | Logistic regression weights for libxml fitted to each term type.

TABLE 4 | Precision and recall of PREDICTFTS algorithm at cut-off probabilities 0.4, 0.5 and 0.6.

SoX (m) Librsvg Libtiff Freetype SoX (w) Mean Cut-off probability

Precision 0.71 0.57 1.0 0.78 0.67 0.75
Recall 0.47 0.29 0.71 0.6 0.47 0.50 0.4
Precision 0.71 0.71 1.0 0.76 0.66 0.77
Recall 0.47 0.22 0.71 0.52 0.47 0.48 0.5
Precision 0.73 0.89 1.0 0.86 0.74 0.84
Recall 0.44 0.18 0.53 0.52 0.41 0.42 0.6

FIGURE 7 | Precision and recall for the PredictFTs algorithm on each program indexed by the cut-off probability parameter.
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In Figure 10, we explain which fake function names were
paired with which line numbers. We describe how each fake
function name pairs with an original in the case that it was a
correct prediction, as well as which of the two heuristics were used

to pair it with the frame trace of a given line number. The only
incorrect prediction was the fake function name DELEDIO,
which erroneously predicted that the line number 219 was
paired with a function in the original call-stack set via heuristic 2.

FIGURE 8 | The top eight frames from an example librsvg call-stack.

FIGURE 9 | Two call stacks from the SoX data set, along with their reconstructions using the PredictFTs algorithm.
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5 RELATED WORK

There is a large collection of research centered on crash triage, in
particular in crash de-duplication. The most common tasks are
either 1) to automatically de-duplicate full bug-reports submitted
to open-source software or 2) to bucket crashes by dissimilarity.
In contrast to the setting considered in this paper, most research
concerns full bug reports where call-stacks are only a subset of the
entire information. In particular, the language in user-reported
comments is incorporated, and in some cases the central
object [9].

Some of the highest rates of an expert-validated crash
duplicate recall are attributed when program execution traces
are also recorded [10]. Including call stacks in bug report data has
been shown to increase de-duplication recall of full bug reports
significantly [11] validating that they are an important object of
study in crash triage. We refrained from using the common
methods outlined in the above research, showing that a
reasonable whitelisting and de-duplication was enough to
significantly reduce the number of call-stacks.

Other models of call-stacks exist, albeit with slightly different
machinery. For example, the crash-graph defined in [12] serves as
a way to graphically compare the similarity between call-stacks.
The use of such a model for function frame trace recovery could
be an avenue for future research.

6 LIMITATIONS

One of the main limitations of our work is that it is performed on
a relatively small data-set. Indeed there are less than 100 distinct
call-stacks in each Linux program we have tested, barring the
libxml data used to generate the logisitic regression weights.
When the set of call-stacks is not very diverse, there may be a
tendency to only see function terms with a single line number,
making them easier to recover using our method.

A second limitation of our model is that it relies on two fairly
naïve patterns. It is not clear if 1) such patterns yield similar
results on larger data-sets or 2) whether such patterns could be
improved upon or replaced with a more scientific approach. At

present, the heuristic method means that our model can only
predict function terms that are consistently associated with a
single line number across the call-stack set. Our hope is that more
sophisticated pattern recognition techniques applied to our
topological model could accommodate cases such as frames
that pair a particular function with various line numbers. In
particular, since the call-stack poset can be thought of as a graph,
we expect that more sophisticated techniques from the graph-
learning literature could be leveraged 1) in lieu of our logistic
regression model and 2) to derive better heuristics and push recall
beyond 40 − 50% while preserving precision.

7 CONCLUSION

In summary, our main contribution has been to present a novel
topological model to address the problem of function term
reconstruction in call-stack data. We performed a small-scale
experiment, providing an algorithm to predict the frame-traces of
function terms which have been obscured in the call-stack data.
Despite the limitations, the performance of the model is relatively
encouraging, showing that more information about obscured
function terms can be recovered than one may initially suspect.
In the future, we envision further research could be done within this
framework to improve the recall of the PREDICTFTS algorithm.

We also showed that there is a fundamental lack of diversity in
our call-stack data, and we hypothesize that the brute-force
nature of fuzzing means that this will probably occur in most
data-sets generated by a fuzzer. It is an open question whether our
method will work on larger, more diverse call-stack data-sets.
Given that some level of dependence between terms is required to
form equivalence classes, there is no guarantee that similar results
will be achieved.

Lastly, the topological model used here is an example of a
larger framework defined in [13]. The extended model is used to
tackle applications in gray-box fuzzing, with the goal being to
help guide fuzzing campaigns to generate more diverse call-stack
data. The use of these models of dependency relations may be
applicable in broader contexts outside of fuzzing, such as
analyzing dependencies between genes in medical data.

FIGURE 10 | The list of functions whose frame trace was recovered, and the fake function names and line numbers that were paired.
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