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Exciting recent developments in Topological Data Analysis have aimed at combining
homology-based invariants with Machine Learning. In this article, we use hierarchical
stabilization to bridge between persistence and kernel-based methods by introducing the
so-called stable rank kernels. A fundamental property of the stable rank kernels is that they
depend onmetrics to compare persistence modules. We illustrate their use on artificial and
real-world datasets and show that by varying the metric we can improve accuracy in
classification tasks.
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1 INTRODUCTION

Topological data analysis (TDA) is a framework for analyzing data which is mathematically well-
founded and with roots in algebraic topology. Through the use of persistent homology, TDA
proposes to analyze datasets, often being high-dimensional and unstructured, where each
observation is an object encoding some notion of a distance. An example of such an object is a
point cloud with Euclidean distance. A convenient way of encoding distance objects is via Vietoris-
Rips complexes [1]. Persistent homology transforms these complexes into so-called persistence
modules and diagrams [2, 3]. These modules and diagrams encode geometrical aspects of the
distance objects captured by homology. We thus regard the obtained persistence diagrams as
summaries encoding geometrical features of the considered distance objects. In recent applications,
and in such varied fields as bioinformatics [4] and finance [5], it has been shown that these
summaries encode valuable information which is often complementary to that derived from non-
topological methods.

The discriminative information contained in the persistent homology summaries makes them
interesting in the context of machine learning, for instance to serve as inputs in supervised learning
problems. The space of persistence diagrams lacks however the structure of a Euclidean, or more
generally Hilbert space, often required for the development of machine learning (ML) methods.
Furthermore, for inference purposes we also need to be able to consider probability distributions over
topological summaries. Since for persistence diagrams we only have Fréchet means at our disposal [6,
7] inference is difficult.

Our aim in this article is to present how persistent homology can be combined with machine
learning algorithms within a framework called hierarchical stabilization [8–10]. We will use
hierarchical stabilization to define new persistence-based kernels and illustrate them on artificial
and real-world datasets. This article is based in part on some of the results described in Jens
Agerberg’s thesis [11].

Comparing and interpreting summaries produced by persistent homology should not just depend
on their values but crucially also on the phenomena and the experiments that the considered datasets
describe. Different phenomena might require different comparison criteria. It may not be optimal to
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consider only Bottleneck or Wasserstein distances to compare
outcomes of persistent homology of diverse datasets obtained
from a variety of different experiments. The ability to choose
distances that fit particular experiments is required. We do not,
however, plan to use these distances to compare persistence
modules directly. Instead, quite essentially we use a chosen
distance to transform, via the hierarchical stabilization process,
the space of persistence modules into the space M of (Lebesgue)
measurable functions [0,∞)→ (−∞,∞) with the L2 distance.
Thus each distance d on persistence modules leads to a function
denoted by the symbol r̂ankd : Persistence modules→M called
the stable rank. With the L2 distance,M is a Hilbert space and its
scalar product provides an effective tool to study geometrical
aspects of the image of r̂ankd , particularly those captured by
measuring length, angles, and exploring orthogonality. Thus
kernel machine learning methods, which are based on scalar
products, are effective tools in exploring such geometrical
features. Illustrating the effectiveness of this strategy for
modeling with stable ranks is the aim of this paper.

Since the stable rank is stable with respect to d, the kernel
formed can be seen as a similarity measure associated to d, of
practical importance in several machine learning methods. In this
framework, supervised learning consists of identifying these
distances d for which structural properties of the training data
are reflected by the geometry of its image in M through the
function r̂ankd . The strategy of looking for appropriate distances
can only work if we are able to parametrize explicitly a rich
subspace of distances on persistence modules. The hierarchical
stabilization process builds on the discovery that such
parametrization is possible using positive (Lebesgue)
measurable functions [0,∞)→ (0,∞) called densities. An
organized search in the space of densities is beyond the scope
of this article. The intention of this paper is to illustrate that by
changing the density, the kernels can improve the accuracy in a
supervised learning task.

Our method fits within the family of persistence based kernels
[12], some of which also have parameters which can be optimized
to fit a particular learning task [13]. However, a characteristic of
our stable rank kernel is that it is defined on persistence modules
rather than on persistence diagrams. A bar decomposition of the
persistence modules is therefore useful but not essential for the
definition of our kernel, which is readily generalisable to multi-
parameter persistence.

2 MATERIALS AND METHODS

2.1 Homological Simplification: From Data
to Persistence Modules
Recall that a distance on a set X is a function d : X × X→ [0,∞)
which is symmetric d(x, y) � d(y, x) and reflexive d(x, x) � 0. It
is a pseudometric if in addition it satisfies the triangular inequality
d(x, y) + d(y, z)≥ d(x, z). For example, by restricting a distance
on the plane to a point cloud we obtain a finite distance space.

In this article we focus on data whose points are represented by
finite distance spaces. This type of data is often the result of
performing multiple measurements for each individual,

representing these measurements as vectors, choosing a
distance between the vectors, and representing each individual
by a distance space. Encoding data points in this way reflects
properties of the performed measurements accurately. That is an
advantage but also a disadvantage as a lot of the complexity of the
experiment is retained including possible noise, measurement
inaccuracies, effects of external factors that might be irrelevant for
the experiment but influence the measurements, etc. Because of
this overwhelming complexity, to extract relevant information we
need to simplify. Data analysis is a balancing act between
simplifying, which amounts to ignoring some or often most of
the information available, and retaining what might be
meaningful for the particular task. In this article we study
various simplifications based on homology.

The first step in extracting homology is to convert distance
information into spatial information. We do that using so-called
Vietoris-Rips complexes [1]. By definition the Vietoris-Rips
complex VRϵ(X, d), at scale ϵ in [0,∞), is a simplicial
complex whose simplices are given by the non-empty finite
subsets σ ⊂ X for which d(x, y)≤ ϵ for every x and y in σ.
Vietoris-Rips complexes form an increasing filtration as
VRϵ(X, d) ⊂ VRτ(X, d) when ϵ≤ τ. In the case X is finite,
there is a finite sequence of parameters 0≤ a0 ≤/≤ al such
that VRϵ(X, d) ⊂ VRτ(X, d) may fail to be the equality only if
ϵ< ai ≤ τ for some i, i.e., the jumps in the Vietoris-Rips filtration
can occur only when passing through some ai. Such filtrations are
called tame [8, 10].

The Vietoris-Rips filtration does not lose or add information
about the distance space. It retains all the complexity of d. Thus,
the purpose of this step is not to simplify, but rather to allow for
the extraction of homology (see for example [14]). In this article
we only consider reduced homology. The first step in extracting
homology is to choose a field; for example, F2 with two elements.
Homology in a given degree n, with coefficients in a chosen field
F, converts a simplicial complex X into an F vector space Hn(X).
Homology is a functor which means that it also converts maps of
simplicial complexes f : X→Y into linear functions Hn(f ) :
Hn(X)→Hn(Y) such that Hn(id) � id and Hn(gf ) �
Hn(g)Hn(f ) for any composable maps f and g. Homology
encodes certain geometric features of the simplicial complex,
for example the dimension of H0(X) is one less than the number
of connected components of X, as the considered homology is
reduced.

By applying homology to Vietoris-Rips complexes, we obtain a
vector space Hn(VRϵ(X, d)) for every ϵ in [0,∞). By applying
homology to the inclusions VRϵ(X, d) ⊂ VRτ(X, d), when ϵ≤ τ,
we obtain linear functions Hn(VRϵ(X, d))→Hn(VRτ(X, d))
(which may not be inclusions). These linear functions, for all
ϵ≤ τ, form what is also called a persistence module [15]. Tameness
of the Vietoris-Rips filtration implies tameness of the persistence
module: there is a finite sequence of parameters 0≤ a0 ≤/≤ al
such that Hn(VRϵ(X, d))→Hn(VRτ(X, d)) may fail to be an
isomorphism only if ϵ< ai ≤ τ for some i i.e., jumps occur only
when passing through some ai.

The described process of assigning a tame persistence module
to a distance space is a simplification. This is because of a
particularly simple structure theorem for tame persistence
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modules [15, 16], which states that every tame persistence module is
isomorphic to a direct sum of so-called bars. A bar, denoted by
b(s, e), is a tame persistencemodule determined by two real numbers
s< e in [0,∞), called the start and the end, such that: b(s, e)ϵ is one
dimensional in case s≤ ϵ< e and 0 dimensional otherwise, and the
linear function b(s, e)ϵ → b(s, e)τ is the identity for s≤ ϵ≤ τ < e.
Tame persistence modules can therefore be parametrized by finite
multisubsets [17] of Ω :� {(s, e) ∈ [0,∞)2 ∣∣∣∣ s< e}. Such
multisubsets are also called persistence diagrams. There exist
several software implementations that compute persistence
diagrams of distance spaces. Among them is Ripser [18] which
we use for the persistent homology calculations presented in
this paper.

In the rest of the article we explain and illustrate a framework
for analyzing outcomes of persistence called hierarchical
stabilization [8–10].

2.2 Hierarchical Stabilization: From
Persistence Modules to Measurable
Functions
The key ingredient in hierarchical stabilization is a choice of a
pseudometric on persistence modules. It turns out that a
pseudometric on persistence modules can be constructed for
every action of the additive monoid of non negative reals
[0,∞) on the poset of non negative reals [0,∞). Such an
action is a function C : [0,∞) × [0,∞)→ [0,∞) satisfying the
following conditions C(a, 0) � a, C(C(a, ϵ), τ) � C(a, ϵ + τ), and
C(a, ϵ)≤C(b, τ) if a≤ b and ϵ≤ τ. We refer to [8–10] for an
explanation of how an action leads to a pseudometric. Here we
recall how to construct a rich space of such actions.

We do that by associating actions to measurable functions
with positive values f : [0,∞)→ (0,∞) called densities.
According to [8], a density leads to the following actions. One
action Df : [0,∞) × [0,∞)→ [0,∞) is called of distance type
and assigns to (a, ϵ) the unique number Df (a, ϵ) for which
∫Df (a,ϵ)
a

f (x)dx � ϵ. Another action Sf : [0,∞) × [0,∞)→ [0,∞)
is called of shift type and is constructed as follows: choose y such
that a � ∫y

0
f (x)dx and define Sf (a, ϵ) :� ∫y+ϵ

0
f (x)dx. For

example, for the constant density with value 1, the two actions
D1 and S1 coincide with the standard action (a, ϵ)1a + ϵ. We use
the name the standard pseudometric to describe the
pseudometric on persistence modules associated to this
standard action. The standard pseudometric is equivalent to
the Bottleneck distance [19] (see [10]).

Since densities form a rich space, then so do the pseudometrics
on persistence modules they parametrize. By focusing on distance
type actions defined by densities, in this paper we take advantage of
the possibility of choosing a variety of pseudometrics on persistence
modules. As already mentioned in the introduction, we are not
going to use them to compare persistence modules directly. Instead
we are going to use them to transform persistence modules into
(Lebesgue) measurable functions [0,∞)→ (−∞,∞) called stable
ranks. By definition, the stable rank r̂ankd(X) of a persistence
module X, assigns to t in [0,∞) the following number:
r̂ankd(X)(t) :� min{rank(Y) | d(Y ,X)≤ t}, where rank(Y) is
the number of bars in a bar decomposition of Y. Thus

r̂ankd(X)(t) is the minimal rank of the persistence modules that
belong to the closed ball centered in X and of radius twith respect to
the chosen pseudometric d. We refer to the stable rank associated to
the standard pseudometric as standard stable rank. In the case the
pseudometric d on persistence modules is associated with an action
C : [0,∞) × [0,∞)→ [0,∞), the stable rank r̂ankd(X) can be
described directly in terms of C. Consider a bar decomposition
X ≃ ⊕n

i�0b(si, ei), then r̂ankd(X)(t) �
∣∣∣∣∣{i |C(si, t)< ei}

∣∣∣∣∣. Thus the
values of the stable rank r̂ankd(X) are certain bar counts
depending on C.

The key result states that the assignment X1r̂ankd(X) is a
continuous function (in fact satisfying a certain Lipschitz
condition [8]) with respect to the chosen pseudometric on
persistence modules and the Lp metric on the space M of
measurable functions [0,∞)→ (0,∞). In this way we obtain
a continuous function r̂ankd : Persistence modules→M into the
space M in which geometrical, probabilistic and statistical
methods are well developed. For example we can take averages
and expected values of stable ranks assigned to various collections
of persistence modules such as those given by homologies of
Vietoris-Rips complexes obtained from a collection of distance
spaces. In the case we choose the L2 metric onM, we can also use
the Hilbert space structure on M and use the stable rank to
construct a kernel on persistence modules. For persistence
modules X and Y the stable rank kernel with respect to a
pseudometric d is by definition given by
Kd (X,Y) :� ∫∞

0
̂rankd(X) ̂rankd(Y)dt. The stable rank of a

persistence module obtained as the reduced homology of
Vietoris-Rips complexes is square integrable. Thus, for such
persistence modules the stable rank kernel is finite.

In conjunction with various machine learning methods, the
stable rank kernels for various densities can be used for
classification purposes. Some of these possibilities are
illustrated in the second half of this article where we use the
stable rank kernels in conjunction with support vector
machines (SVM).

2.3 Modeling: Determining Appropriate
Distances on Persistence Modules
Supervised learning typically consists of fitting models to training
data, and validating them on an appropriate testing set. Here,
supervised persistence analysis takes the same form. We think
about the function r̂ankd : Persistence modules→M as a model
associated to a pseudometric d on persistence modules, for
example the pseudometric given by the distance type action
defined by a density. To fit such a model is to identify a
parameter given by a pseudometric d (or a density leading to
a pseudometric) for which structural properties of the data are
reflected by the geometry of its image inM through the function
r̂ankd . Some of the aspects of this geometry are effectively
encoded by the stable rank kernel.

There are two reasons why extracting information about
persistence modules by exploring their stable ranks r̂ankd over
varying pseudometrics d is effective. First, of practical importance
for using kernel methods, is the fact that the stable rank r̂ankd :
Persistence modules→M is not only a continuous function, it is
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also continuous with respect to the changes of the pseudometric d
or the density for which d is represented via either the action of
distance type or the shift type [8]. Second, persistence modules
are determined by their stable ranks: two tame persistence
modules X and Y are isomorphic if and only if, for every
density f, the functions r̂ankdf(X) and r̂ankdf(Y) coincide,
where df is the pseudometric associated to the action Df of
distance type.

In the analysis presented in the next section we are going to use
the following procedure for choosing a density. First we restrict
ourselves to a simple family of densities: piecewise constant
functions that are allowed to have at most four discontinuities,
and the ratio of the maximum value divided by the minimum
value is controlled. We sample 100 such densities and select the
density corresponding to the optimal pseudometric by a
procedure of cross-validation: first we split the dataset into a
training set (60%), a validation set (20%) and a test set (20%).
Next, new SVMs with the stable rank kernel corresponding to
each of the 100 densities are fitted to the training set. The density
leading to the best accuracy on the validation set is then selected.
Last, the accuracy on the test set using the optimum density from
the previous stage is evaluated and reported.

In our scheme to select an optimal density, we randomly
sample piecewise constant functions. Both the family of densities
on which the search is conducted and the search scheme can be
varied. For example one can consider family of Gaussians as
parametrized by their mean and standard deviation and proceed
with a grid search for selecting optimal parameters. In our
experience, in order to avoid overfitting, it is useful to restrict
to functions that are constrained in their behavior.

3 RESULTS

In this section, two examples of analysis based on stable rank
kernels are presented. In these examples, the objective is to
correctly classify according to the categories, or labels, of each
dataset. The focus of the first example is on certain finite subsets of
the plane which are called plane figures. The plane figures
considered have clear intuitive geometric meaning such as being
a circle, rectangle, a triangle or an open path. Our aim is two-fold.
First, we intend to illustrate that the stable rank kernel is applicable
to the problem of differentiating between these geometrical shapes.
Second, we will demonstrate how to enhance the discriminatory
power by varying densities or by taking samplings of the data and
averaging the associated stable ranks. We study the robustness of
our method by altering the geometrical shapes with the addition of
two types of noise and evaluating the accuracy of the stable rank
kernels on these noisy figures.

The second example is concerned with activity monitoring
data which is not simulated but consists of collected
measurements. In PAMAP2 [20], seven subjects were asked to
perform a number of physical activities (walking, ascending/
descending stairs, etc.) while wearing the following sensors: a
heart rate monitor and three units (placed on the arm, chest and
ankle) containing an accelerometer, a magnetometer and a
gyroscope. This resulted in a dataset of 28-dimensional time

series labeled with subject and activity. In this example, we
concentrate on distinguishing between data from ascending
and descending stairs of different individuals.

3.1 Plane Figures: Dataset Generation
We consider four subsets of the plane: a circle, a rectangle, a
triangle and an “M”-formed path: see the first row in Figure 1 for
the illustration. We refer to these subsets as shapes. The plane
figures dataset is generated in the following way: 100 points are
sampled uniformly from each of these subsets. Each point in this
sampling is then perturbed by adding Gaussian noise (i.e., it is
replaced by a point sampled from an isotropic Gaussian centered at
the point). This is repeated 500 times for each shape. In this way we
obtain 2000 subsets of 100 elements in the plane (500 for each
shape). By considering the Euclidean distance to compare points
on the plane, we can regard these subsets as finite distance spaces
and call them plane figures. The collection of these 2000 plane
figures of four classes is our first dataset. The elements in this
dataset are labeled by the shapes. The objective of our analysis is to
illustrate how to recover this labeling using the stable rank kernels.

3.2 Plane Figures: Analysis Based on
Zero-th Homology
As a first exploratory step, for each plane figure we compute the
Vietoris-Rips filtration, the corresponding 0-th homology persistence
module and its stable rank with respect to the standard pseudometric.
Figure 2 shows four plane figureswith different labels fromour dataset
(first row) and the corresponding stable ranks (second row). By
plotting the average of all stable ranks for plane figures
corresponding to each shape (Figure 3) we get an indication that
indeed the 0-th homology analysis may not be very effective at
distinguishing between plane figures labeled by different shapes. To
confirm this, we formulate our problem in machine learning terms as
classifying a given plane figure to the shape from which it was
generated. The dataset is split into a training set (70%) and a test
set (30%). A support vectormachine (SVM) is fitted on the training set
using the standard stable rank kernel and evaluated on the test set.We
take advantage of the fact that we can generate the data and repeat the
whole procedure 20 times. This results in a rather weak average
classification accuracy of 35.0%.We suspect that the poor classification
is due to the fact that the plane figures do not exhibit distinct clustering
patterns. The stable rank, with respect to the standard pseudometric, is
a fully discriminatory invariant of persistence modules resulting from
the 0-th homology of Vietoris-Rips filtrations (this is a consequence of
the fact that the stable rank is a certain bar count, see Hierarchical
Stabilization: From Persistence Modules to Measurable Functions).
Since this invariant completely describes our 0-th homology
persistence modules, we do not expect that the classification
accuracy can be noticeably improved by considering stable rank
kernels associated with different pseudometrics.

3.3 Plane Figures: Analysis Based on First
Homology
We repeat the same procedure for the 1-st homology persistence
modules of the Vietoris-Rips filtrations. An indication that these
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stable ranks may be more effective at distinguishing between shapes
is given by observing their average per shape, plotted in (Figure 4A)
together with the standard deviation. This intuition is confirmed
when considering the corresponding classification problem, in

which we now achieve 88.5% accuracy. Note that in comparison
to the stable ranks of the shapes (Figure 1, second row), adding noise
and averaging has the effect that the stable ranks of plane figures
(Figure 4A) are smoother, and decrease more gradually. When

FIGURE 1 | First row: a dense point cloud sampling without noise from each of the shapes. Second row: the corresponding standard stable ranks of the
persistence modules given by the 1-st homology of the Vietoris-Rips complexes of the distances given by the restriction of the Euclidean metric to the point clouds.

FIGURE 2 | First row: examples of point clouds representing four plane figures in the dataset, one for each of the four shapes. Second row: the corresponding
standard stable ranks of the persistence modules given by the 0-th homology of the Vietoris-Rips complexes of the plane figures.
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considering persistencemodules resulting from the 1-st homology of
Vietoris-Rips filtrations, the stable rank associated to the standard
pseudometric is no longer a fully discriminatory invariant.
Therefore, to improve accuracy it might be a viable strategy to
consider alternatives to the standard pseudometric. To generate
additional pseudometrics, we will use actions of distance type, which
we recall can be defined by means of densities (see Hierarchical
Stabilization: From PersistenceModules toMeasurable Functions). In
Figure 5, we illustrate the effect of changing densities.

As explained in Modeling: Determining Appropriate Distances
on Persistence Modules, our strategy to produce densities is to
restrict to a simple class of piecewise constant functions. We
randomly sample 100 such densities and select the density
corresponding to the optimal pseudometric using a cross-
validation procedure. The density leading to the best accuracy
on the validation set is kept and finally the accuracy on the test set
is evaluated and reported.

Again because the dataset is artificially generated we can repeat
the procedure many times to get robust results. It appears that

although sampling densities introduces another source of
randomness, restricting the densities to a simple family allows
the improvement to be consistent and outperform the standard
action every time. On average, we obtain an accuracy of 94.75%.
In Figures 4B,C, a density considered optimal during one run of
the procedure is shown, together with the stable ranks with
respect to that density.

In this case, a simple interpretation for why this density leads
to better accuracy might be found by inspecting the average 1-st
homology Betti curve per shape. We recall that the 1-st homology
Betti curve measures, for t in the filtration scale, the number of
bars in a bar decomposition of the 1-st homology persistence
module which contain t. Further, averages and standard
deviations can be computed per shape. As shown in Figure 6
it appears that the rectangle and the triangle (which are the
sources of confusion in the classification problem) are most easily
distinguished by the 1-st homology Betti curve approximately in
the interval [3, 4.5] of the filtration scale. Intuitively, the optimal
density emphasizes this interval, leading to better accuracy. In

FIGURE 3 | Average 0-th homology standard stable ranks for each shape.

FIGURE 4 | (A): Average 1-st homology standard stable ranks for each shape (shaded area: standard deviation). (B): Example of a density considered optimal
during one run of the procedure. (C): Average 1-st homology stable ranks with respect to the optimal pseudometric for each shape (shaded area: standard deviation).
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particular the density with value one in the interval [3, 4.5] and
value 0.05 elsewhere leads to comparable results as obtained by
using an optimal density found through the cross-validation
scheme.

3.4 Plane Figures: Analysis Based on
Subsampling, Averaging, and First
Homology
We now modify our dataset. To add ambient noise to the point
clouds we generate: 30% of the 100 points that constitute each
point cloud are now sampled uniformly from the [−5, 5] × [ −
5, 5] square. The remaining 70% of the points are sampled as
described before (see Plane Figures: Dataset Generation). In this
way we obtain a new dataset of 2000 distance spaces labeled again

by four shapes. Figure 7 shows four point clouds representing
four plane figures with different labels in this new dataset. This
figure also shows the corresponding standard stable ranks of the
persistence modules given by the 1-st homology of the Vietoris-
Rips complexes of the distances given by the restriction of the
Euclidean metric to the point clouds. The addition of ambient
noise has a substantial negative effect: patterns detected by
persistent homology such as formation of clusters and voids
are very sensitive to the insertion of even a small number of
uniformly distributed points. This negative effect is well
illustrated in Figure 8A where the average of 1-st homology
standard stable ranks appear less distinctive for different shapes.
However, a simple procedure of subsampling allows us to denoise
the data, leading to an invariant which again can discriminate
between the different shapes. For each point cloud, we now

FIGURE 5 | (A): Examples of five densities randomly sampled during cross-validation. (B): For plane figures in the dataset corresponding to the rectangle, stable
ranks are computed under the five different densities from the left plot. Average stable ranks are plotted with the same color as the density under which they were
computed.

FIGURE 6 | Average 1-st homology Betti curve for each shape (shaded area: standard deviation).
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subsample 20% of its points and generate the corresponding 1-st
homology standard stable rank. We repeat this 50 times and
compute the average of these 50 stable ranks. Repeating this for all
distance spaces in the dataset we obtain 2000 functions whose
averages per shape are illustrated in Figure 8B. Using the same
classification procedure as described in Plane Figures: Analysis
Based on First Homology, we obtain a much higher shape
detection accuracy of 86.25%.

Finally, instead of fixing the level of noise at 30% we now vary
it by considering noise levels 0%, 10%, 20%, . . . , 90%, 100%. For
each noise level the same process is repeated: generation of
figures, subsampling, generation of stable ranks, averaging, and

classification, resulting in an accuracy for each level. This
procedure was performed both with and without subsampling,
as shown in Figure 9. As expected, the results are similar in
accuracy when there is 0% noise and also when there is 100%
noise. However, in between the subsampling clearly leads to an
improvement.

3.5 Activity Monitoring
As a real world dataset, we consider activity monitoring data from
the PAMAP2 [20] dataset which consists of time series labeled
per activity and per indivdual. On average, each time series has
13,872 time steps. The data was preprocessed as in [8]. We select

FIGURE 7 | First row: examples of point clouds representing four plane figures in the dataset, one for each of the four shapes, with 30% ambient noise. Second
row: the corresponding standard stable ranks of the persistence modules given by the 1-st homology of the Vietoris-Rips complexes of the plane figures.

FIGURE 8 | Point clouds generated with ambient noise. (A): 1-st homology average standard stable ranks (shaded area: standard deviation). (B): plane figures are
represented by average 1-st homology standard stable ranks of subsamplings. Averages of these representations per shape are illustrated (shaded area: standard
deviation).
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two activities (ascending and descending stairs) and seven
individuals. By taking the Cartesian product of activities and
individuals we thus obtain 14 classes. For each class, which thus
represents temporal measurements of one activity performed by
one individual we remove the time steps that had no reported
heart rate. We also remove a number of columns suspected to
contain invalid information. That resulted in 28-dimensional
time series with 1,268 time steps on average per individual and
per activity. We then sample uniformly without replacement
100 time steps from each of these time series independently.
Using the Euclidean distance we obtain a metric space (of size
100) per individual and per activity. Computing 0-th-and 1-st
persistent homologies of the Vietoris-Rips filtrations of these
metric spaces results in persistence modules. By repeating this
procedure 100 times we obtain a dataset consisting of 1,400
observations (100 for each class) where each observation is a
pair of persistence modules. Stable ranks can then be computed,
first with respect to the standard action. In Figure 10 average
standard stable ranks per class are plotted, both for 0-th and 1-st
homologies. One can see that stable ranks allow to distinguish
between individuals but even more so between activities.

The problem is formulated as classifying an out-of-sample pair
of persistence modules within one of the 14 classes. In contrast
with [8] but similarly to the previous experiment, we use an SVM
classifier with the stable rank kernel. We construct two kernels,
corresponding to 0-th and 1-st homologies respectively, using
stable rank with respect to the standard action. For this
experiment, however, both kernels appear to be informative
and we wish to combine them to achieve better classification
accuracy. Since a sum of kernels is also a kernel, we train our SVM
with the sum of the kernels for the 0-th and 1-st homologies.
There are also other ways to combine multiple kernels into a new
one such as taking linear combinations or products [21], which
might be useful for other experiments. We use random
subsampling validation repeated 20 times with a 60/40
training/test set split. This results in a 68.2% accuracy,
demonstrating an improvement over [8] where 60% accuracy
was obtained.

Next we apply the same procedure of cross-validation as in the
previous experiment to attempt to find a better density and
corresponding pseudometric and kernel. We search for
alternative densities for the 1-st homology stable rank kernel
while keeping the standard action for 0-th homology. This leads
to an accuracy of 71.7%, thus somewhat higher than with the
standard action. We note that the densities found through this
method are similar to the one used in [8] which also led to an
improvement. The confusion matrix corresponding to this kernel
is shown in Figure 11.

4 DISCUSSION

A common pipeline when working with persistent homology is to
start with a unique distance on persistence modules (Bottleneck
or Wasserstein), then analyze persistence diagrams and finally
consider feature maps from persistence diagrams, in case
machine learning algorithms are to be applied. Our aim in
this article has been to illustrate an alternative pipeline, where
we instead start with a vast choice of distances on persistence
modules and then consider the induced stable rank which is a
continuous mapping with respect to the chosen distance. Our
approach is very flexible, distances can be derived from

FIGURE 9 | For each level of ambient noise, classification is performed with
standard stable ranks resulting from point clouds without subsampling (solid line)
and with subsampling (dashed line) and classification accuracies are reported.

FIGURE 10 | (A): 0-th homology average standard stable ranks per class. (B): 1-st average standard stable ranks per class.
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parametrisations (densities) which often have an intuitive
interpretation and can be found from simple search
procedures, as we wanted to illustrate in the experiments. We
believe that this simpler pipeline makes it natural to go between
data analysis and machine learning, as stable ranks are amenable
to both. For instance, we have presented how intuitions guided by
the average of stable ranks then corresponded to classification
accuracies through the stable rank kernel. Finally the simplicity of
stable ranks makes them computationally efficient, something
that is particularly useful for kernel methods.

A schematic situation where alternative distances can be
useful, is when the bar decomposition of the classes is as
follows. In the first, noisy, part of the filtration scale, bars are
distributed randomly following the same distribution for both
classes. In the second part of the filtration scale instead, bars are
distributed according to two distinct distributions, one for each of
the classes. Bottleneck distance is too sensitive to the noise, to
utilize the signal, for instance in a classification problem. A
distance defined by a density which has small values on the
first part of the filtration scale and high values on the second part
of the filtration scale, would instead extract the difference between

the classes and result in a better classification when encoded in
the stable rank kernel. In this case we could directly design a
density which improves accuracy in a classification task. In other
occasions, as we have shown for example in the plane figures
dataset, Betti curves can give an indication of how to design
appropriate densities. More generally, when the noise pattern
becomes more complicated, we have proposed to randomly
generate densities and then evaluate them in a cross-validation
procedure. This method was particularly useful for the activity
monitoring dataset, where given the difficulty of this classification
problem, it was not possible to manually construct densities
which improved classification. For the plane figure dataset
instead we could still construct densities which perform as
well if not slightly better than the optimal density among the
randomly generated ones.

Learning algorithms for density optimization are an
appealing alternative to this strategy, although we believe
conceptual and algorithmic challenges are inherent to this
problem. If for example density optimization is framed in
terms of metric learning, the most difficult part is to identify a
meaningful and well behaved objective function to optimize.

FIGURE 11 | Confusion matrix for the classification with the kernel based on the 0-th homology standard stable rank and the 1-st homology stable rank with
respect to the optimal density.
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Preliminary work by O. Gävfert [22], highlights that the choice
of basic objective functions do not lead to convex optimization
problems. Here we circumvent the question of identifying an
appropriate objective function by evaluating the performance
of a density through the accuracy of the associated kernel
in SVM.

To enhance analysis using our methods one should keep in
mind that in most cases it is convenient to consider several
distances at the same time. For example different degree
homologies (e.g., 0-th and 1-st homologies) could, and
possibly should, be treated independently. In other words,
distances that are suitable for the 0-th homology might not be
informative for the 1-st homology. Even for analysis involving
only one degree homology one should not look for just one
density and one kernel since stable ranks with respect to
different densities might show different geometrical aspects
of the data. In principle it is possible to fully recover
persistence modules, by using stable ranks (see Modeling:
Determining Appropriate Distances on Persistence Modules
and [8]), however in practice the whole information of the
persistence modules might be redundant, while with an
appropriate number and choice of densities, we believe, one
could be able to extract more valuable information for a
classification task.

While the examples in this article concern classification
problems based on one-dimensional persistence, a more
general treatment of the kernel would be interesting, both in
terms of multi-persistence (the stable rank kernel is a multi-
persistence kernel but the barcode decomposition in the one-
dimensional case allows to compute it very efficiently), and in
terms of utilizing the kernel in other contexts, such as for
statistical inference.
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