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Data-driven methods have been revolutionizing the way physicists and engineers handle
complex and challenging problems even when the physics is not fully understood.
However, these models very often lack interpretability. Physics-aware machine learning
(ML) techniques have been used to endow proxy models with features closely related to
the ones encountered in nature; examples span from material balance to conservation
laws. In this study, we proposed a hybrid-based approach that incorporates physical
constraints (physics-based) and yet is driven by input/output data (data-driven), leading to
fast, reliable, and interpretable reservoir simulation models. To this end, we built on a
recently developed deep learning–based reduced-order modeling framework by adding a
new step related to information on the input–output behavior (e.g., well rates) of the
reservoir and not only the states (e.g., pressure and saturation) matching. A deep-neural
network (DNN) architecture is used to predict the state variables evolution after training an
autoencoder coupled with a control system approach (Embed to Control—E2C) along
with the addition of some physical components (loss functions) to the neural network
training procedure. Here, we extend this idea by adding the simulation model output, for
example, well bottom-hole pressure and well flow rates, as data to be used in the training
procedure. Additionally, we introduce a new architecture to the E2C transition model by
adding a new neural network component to handle the connections between state
variables and model outputs. By doing this, it is possible to estimate the evolution in
time of both the state and output variables simultaneously. Such a non-intrusive data-
driven method does not need to have access to the reservoir simulation internal structure,
so it can be easily applied to commercial reservoir simulators. The proposed method is
applied to an oil–water model with heterogeneous permeability, including four injectors and
five producer wells. We used 300 sampled well control sets to train the autoencoder and
another set to validate the obtained autoencoder parameters. We show our proxy’s
accuracy and robustness by running two different neural network architectures
(propositions 2 and 3), and we compare our results with the original E2C framework
developed for reservoir simulation.
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1 INTRODUCTION

In this study, we build upon a recent study on embedding physical
constraints to machine learning architectures to efficiently and
accurately solve large-scale reservoir simulation problems [1, 2].
Scientific Machine Learning (SciML) is a rapidly developing area
in reservoir simulation. SciML introduces regularizing physics
constraints, allowing predicting future performance of complex
multiscale, multiphysics systems using sparse, low-fidelity, and
heterogeneous data. Here, we address the problem of creating
consistent input–output relations for a reservoir run, taking into
account physical constraints such as mass conservation,
multiphase flow flux matching, and well outputs (rates)
derived directly from data.

Simulation of complex problems can usually be performed by
recasting the underlying partial differential equations into a (non-
linear) dynamical system state-space representation. This
approach has been explored in numerical petroleum reservoir
simulation, and several techniques were developed or applied to
handle the intrinsic nonlinearities of this problem [3]. The main
idea is to extract information from states, which are usually given
by phase pressures and saturations—as in multiphase flow in
porous media with no coupling with additional phenomena, such
as geomechanics. Although state-space models can be easily
manipulated, the transformation of the reservoir simulation
equations induces systems with a very large number of states.
In this case, model reductionmethods [4, 5] can be used to reduce
the complexity of the problem andmitigate the large computation
cost associate with the solution under consideration.

The area of model order reduction (MOR) for reservoir
simulation has been very active in the past decade and goes
beyond recent projection-based MOR developments. Methods
such as upscaling, proxy and surrogate modeling, and
parameterization have always found their ways in reservoir
simulation. It is not the intention here to give a
comprehensive historical account of MOR, but two methods
have emerged as good candidates for projection-based MOR:
POD-TPWL [5–7] and POD-DEIM [8–10]. Each of these
methods has its advantages and drawbacks, which have been
discussed in many published articles [9, 11]. The unifying
framework in these methods is projection; that is, we project
the original large state-space model into a much smaller space of
(almost) non-physical significance. The recovery of physical
meaning is usually attained by proper training and storage of
the states of the system. Although very efficient algorithms can be
used for improving state selection through clustering and
adaptation, the lack of physical meaning can hinder the
application of complex phenomena simulations. This is to say
that the reduced-order model’s output, that is, well rates and
bottom-hole pressures, can sometimes differ significantly from
the original fine-scale simulation.

Data-drivenmodeling in reservoir engineering is not new [12].
Many data-analytics and statistical multi-variable regression have
been applied in reservoir simulation to obtain fast proxy models
[13, 14]. Recently there has been an explosion of methods
associated at large with machine learning algorithms [15–17].
It is our view, however, that the machinery developed with

physics-based model reduction, especially the strategies derived
from state-space identification, can be enhanced with machine
learning algorithms. System identification can lead to parametric
models where the structure of the model is predefined (see
Figure 1, for instance, for the state-space representation),
whereas machine learning methods lead to non-parametric
models and depend largely on the number of training points
[18, 19].

A combination of data-driven model reduction strategies and
machine learning (deep-neural networks–DNN) will be used here
to achieve state and input–output matching simultaneously. In
[2], the authors use a DNN architecture to predict the state
variables evolution after training an autoencoder coupled with a
control system approach (Embed to Control—E2C) and adding
some physical components (Loss functions) to the neural
network training procedure. The idea was to use the
framework of the POD-TPWL as a way to recast the reservoir
simulator from a system perspective and obtain reduced-order
states out of the encoding blocks. Physical constraints were
handled by employing particular loss functions related to mass
conservation.

In this study, we extend this idea by adding the simulation
model output, for example, well bottom-hole pressure and well
flow rates, as data to be used in the training procedure. The
contributions here are twofold: first, we have extended the E2C to
the E2CO (E2C and Observe) form, which allows a generalization
of the method to any type of well model. By doing this, it is
possible to estimate the evolution in time of both the state
variables as well as the output variables simultaneously.
Second, our new formulation provides a fast and reliable
proxy for the simulation outputs that can be coupled with
other components in reservoir management workflows—for
instance, well-control optimization workflows such a non-
intrusive method, like data-driven models, does not need to
have access to reservoir simulation internal structure so that it
can be easily applied to commercial reservoir simulations. We
view this as an analogous step to system identification whereby
mappings related to state dynamics, inputs (controls), and
measurements (output) are obtained.

This study is organized as follows. We start by giving a brief
overview of numerical reservoir simulation, focusing on the
aspects that will be used to develop the ideas presented here,
such as identifying states. Next, we revisit the model order
reduction (MOR) framework and the methods used here, such
as the trajectory piecewise linearization—TPWL and proper
orthogonal decomposition—POD. Then, we describe the
machine learning architecture E2C and revisit the
methodology used as a basis for our study. This leads to the
introduction of our main contribution and new propositions to
handle the reservoir outputs. Finally, we give details of our

FIGURE 1 | System representation.
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implementation and a description of the training set’s data. We
show the results comparing the propositions, and we draw some
conclusions in the end.

1.1 Numerical Petroleum Reservoir
Simulation
Widely used in all phases of development of an oil field, reservoir
simulations are applied to model flow dynamics and predict
reservoir performance from preliminary exploration until the
full development stage of petroleum production. A deep
understanding of the model, discretization, and solution
methods can be found in [20, 21].

A reservoir simulator is a combination of rock and geological
structure properties, fluid properties, and a mathematical
representation of the subsurface flow dynamics. A two-phase
(oil and water) two-dimensional reservoir simulator is based on
flow equations represented in Eq. 1.

∇⎡⎢⎢⎢⎣ k→→kr,j(Sj)
μj

ρj∇Pj
⎤⎥⎥⎥⎦ + qj − z

zt
(ϕSjρj) � 0, (1)

where the subscript j represents the phase oil or water, k is the
absolute permeability, kr is the relative permeability, µ is the
viscosity, ρ is the fluid density, and ϕ is porosity. The solution we
seek here is Pj, Sj.

It is possible to identify three terms on Eq. 1: the first one is
the flux term, followed by the source/sink term, and the last one
is the accumulation term. Although we only describe a two-
phase flow system, these equations can easily generalize for
multiphase flow simulations. As stated before, the reservoir
simulation equations can be recast in a systems framework,
where the nonlinear equations can be linearized into a time-
varying state-space model as depicted in Figure 1. Note that
while the controls u are imposed on the wells, the state x
evolution is calculated based on the discretized partial
differential equation (Eq. 1), and the output y is observed on
the wells.

In general, the wells can be controlled by flow rates or
bottom-hole pressure (BHP). Here we will assume that the
producer wells are controlled by BHP and injector wells
are controlled by injection rate (qinj). So, we can define a
control vector composed of the controls for all wells at a
timestep t as:

ut � [BHPt

qtinj
],

where BHPt � [BHPt1 . . . BHPtp]
T
, qtinj � [qtinj,1 . . . qtinj,i]

T
,

p is the number of producers, and i the number of injectors.
The state dynamical evolution will be solved for each timestep

t. The state is represented as:

xt � [Pt

St
],

where Pt � [Pt
1 . . . Pt

n]
T , St � [St1 . . . Stn]

T , and n is the
number of gridblocks.

The output for the producers is the oil flow rate (qo) and the
water flow rate (qw) and for the injectors is the bottom hole
pressure (BHP). Thus, the output vector can be defined as:

yt � ⎡⎢⎢⎢⎢⎢⎣ qto
qtw

BHPt

⎤⎥⎥⎥⎥⎥⎦, (2)

where qto � [qto,1 . . . qto,p]
T
, qtw � [qtw,1 . . . qtw,p]

T
, BHPt �

[BHPt1 . . . BHPti ]
T . These values are calculated using the

Peaceman equation [22]. For example, for a producer well, the
flow rate of phase j can be calculated as:

qj � kr,j
Bjμj

WI(Pj − BHP), (3)

where WI is the well index and can be calculated as:

WI � 2παkh

ln(rorw) + SKIN
,

where α is a unit conversion factor, h is the height of the reservoir
gridblock, ro is the grid block dimension equivalent radius, rw is
the wellbore radius, and SKIN is the skin factor.

Following the assumptions as in [3] and the application of
fully implicit discretization it is possible to write the residual form
of Eq. 1 as:

g(xt+1, ut+1) � F(xt+1) + Acc(xt+1, xt) + Q(xt+1, ut+1) � 0, (4)

where we can identify the flux term F(xt+1), the accumulation
term Acc(xt+1, xt), and the source and sink term Q(xt+1, ut+1).

This equation can be solved by the Newton’s method by
defining the Jacobian matrix J � zg

zx. So, the state evolution can
be calculated as:

xt+1 � xt − (Jt+1)−1[F(xt+1) + Acc(xt+1, xt) +Q(xt+1, ut+1)]. (5)

To apply reduced-order modeling techniques to reservoir
simulation efficiently, one can linearize the residual Eq. 4 (or
Eq. 5). In Ref. [23], the authors presented the linearization for
a single-phase 2D reservoir based on the simulator’s Jacobian
matrix. Van Doren et al. [24] and Heijn et al. [25] developed
similar approaches for a two-phase reservoir. These
linearization methods were developed aligned to a control
system approach, and the reader can find a comprehensive
review of the control system applied to reservoir simulation in
[3]. Committing with the control system approach, a state-
space representation of a linear system can be written as Eq. 6.
The authors cited in this paragraph manipulated equations
similar to Eq. 4 or Eq. 5 to linearize them and write as a linear
system.

{ _x � Acx + Bcu
y � Ccx +Dcu

, (6)

where x represents the state, _x the state time derivative (dxdt), and u
the inputs (controls) and y the system output. Ac is called state
matrix, Bc input matrix, Cc output matrix, and Dc is the feed-
through matrix. The subscript c stands for continuous time. It is
worth mentioning that on Eq. 6 we are presenting the state
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evolution equation (first one) and the output equation (second
one), but the focus of linearization method is to be applied on the
state evolution equation.

In general, it is necessary to choose a linearization point in
time and use the Jacobian matrix at this time to calculate
previously presented matrices. If the system dynamic strongly
changes over time, the choice of a fixed linearization time can lead
to large estimation errors. Techniques like TPWL (trajectory
piecewise linearization) have been used to overcome these
difficulties, where it is possible to approximate matrices A, B,
C, and D at each interest time.

In the next section, we will present the linearization method
TPWL that, combined with a model order reduction technique
called proper orthogonal decomposition (POD), has been
successfully applied to reservoir simulation [6].

1.2 Trajectory Piecewise Linearization
(TPWL)
Trajectory piecewise linearization is a method composed of two
main steps. The first step is a training procedure (offline
processing) that aims to capture state snapshots of a high-
fidelity solution for the system to be linearized. These state
snapshots are stored along with the Jacobian matrix of each
timestep.

The purpose of the second step (online processing) is to
predict the state on the next timestep xt+1 based on the
current state xt and the control state ut . The idea here is to
use the stored states on the training step in order to predict the
new state. First, in the group of the stored state snapshots, we
identified the snapshot xi closest to xt . Then, we use the stored
state and the Jacobian matrix for i and i + 1 to calculate the state
xt+1 using the following equation:

xt+1 � xi+1 − (Ji+1)−1[Fi+1 + Acci+1 + zAcci+1

zxi
(xt − xi)

+Q(xi+1, ut+1)]. (7)

Previously, we wrote the state evolution equation of the reservoir
simulation solution (Eq. 5) as a linearized system (Eq. 6). Using
similar approach, we can rewrite the TPWL equation (Eq. 7) as a
linearized system:

{ xt+1 � Aixt + Biut

yt+1 � Cixt+1 +Diut , (8)

where A, B, C, and D are the time discretized version of the
continuous matrices, and the superscript i represents the
linearized matrices using information from the snapshot i.

To solve Eq. 7 and to compute matrices Ai, Bi, Ci, andDi it is
necessary to calculate the inverse of the Jacobian matrix , which
is computationally costly. Furthermore, storing a full state and a
full Jacobian matrix for each timestep on the training runs
requires a huge memory amount. The next section will show
how to use a model order reduced method to solve these
problems.

1.3 Proper Orthogonal Decomposition
(POD)
The states stored on the training step of the TPWL can be
arranged on:

X � [x1 x2 . . . xn].
It is possible to take the singular value decomposition (SVD) ofX.
Based on some criteria, one can choose to keep only the l largest
singular values. The POD basisΦ is defined as the l right singular
vectors, and the reduced/latent state space z is then defined as a
projection of the original space x based on the POD basis:

z � ΦTx. (9)

Using the relation x ≈ Φz we can rewrite Eq. 7 as:

Ji+1Φ(zt+1 − zi+1) � −[Fi+1 + Acci+1 + zAcci+1

zxi
Φ(zt − zi)

+Q(xi+1, ut+1)], (10)

and multiplying both sides of the above equation by ΦT :

ΦTJi+1Φ(zt+1 − zi+1) � −ΦT[Fi+1 + Acci+1 + zAcci+1

zxi
Φ(zt − zi)

+Q(xi+1, ut+1)]. (11)

Now, defining the reduced Jacobian matrix as Ji+1r � ΦTJi+1Φ and
the other reduced terms as Fi+1r � ΦTFi+1, Acci+1r � ΦTAcci+1,
(zAcci+1/zxi)r � ΦT (zAcci+1/zxi)Φ, and Qr � ΦTQ, we can
rewrite Eq. 11 as the POD-TPWL equation:

zt+1 � zi+1 − (Ji+1r )−1[Fi+1
r + Acci+1r + (zAcci+1

zxi
)

r

(zt − zi)
+Qr(xi+1, ut+1)]. (12)

By truncating the latent space, we deal with smaller dimension
matrices when compared with the TPWL equation presented
previously.

One can rewrite Eq. 12 as a linear time variant system:

{ zt+1 � Ai
rz

t + Bi
ru

t

yt+1 � Ci
rz

t+1 +Di
ru

t , (13)

where Ai
r , B

i
r , C

i
r , and Di

r are the reduced version of the ones
presented on Eq. 8.

The complexity of calculating matrices Ai
r , B

i
r , C

i
r , and Di

r (or
its equivalents on Eqs. 6 and 8) can increase in more realistic
cases (black-oil or compositional simulators). Another
drawback of these methods is the mandatory access to the
reservoir simulator code to extract the Jacobian matrix and
other data structures from the simulator, which may turn
impractical the use of these methods with commercial
reservoir simulators.

In [1], the authors develop a method to calculate matrices At
r

and Bt
r based on deep learning, using state snapshots as training

data. Ref. [2] extended this idea by adding a physical loss function
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related to reservoir simulation. Here we expand on this and
demonstrate the feasibility of extracting not only states but
outputs.

2 METHODS

In this section, we built upon a previously developed
alternative to predict the state time evolution applied to
numerical petroleum reservoir simulation based on deep
learning, where a direct semi-empirical relation between the
state and the output was used to calculate the well data. We will
propose an improvement of well data estimation, first, by
considering this data on the training process, and second,
by building a specific network to estimate the output from the
latent space that does not rely on the direct relation between
the full state and the output.

2.1 Embed to Control (E2C)
This method was proposed in [1] for model learning and control
of a nonlinear dynamical system using raw pixel images as input.
It uses a convolutional autoencoder coupled with a control linear
system approach to predict the time evolution of the system state.

In Figure 2, we present a schematic diagram showing the main
elements for training this model. The inputs used on the training
procedure are the elements shaded in gray (xt , xt+1, ut , and Δtt).
The variables with a hat (̂·) are the estimated values. The paths
presented with continuous arrows are used in both training and
prediction steps, and those with dashed arrows are only used on
the training procedures.

The autoencoder is composed of an encoder that aims to
transform the state in the original dimension space (xt) to a
reduced (latent) space (zt), and a decoder that works as an
inverted encoder to project back the reduced space state to the
original space. One can relate the encoder with the POD
projection (Eq. 9) since both have the ability to transform the
original state x on the latent space state z.

The transition element uses the state in latent space to generate
the matrices At

r and Bt
r . These matrices are used to handle the

dynamical system evolution using a linear control system
approach, as in Eq. 14. Since this equation operates on the
latent space, we can relate At

r and Bt
r with their reduced

version used on Eq. 13.

ẑt+1 � At
rz

t + Bt
ru

t . (14)

It should be pointed out that matrices At
r and Bt

r change for each
different input state xt , like in other linearization procedures
applied to reduced-order models techniques (e.g.,
TPWL—trajectory piecewise linearization).

Other important elements on this method are the 3 loss
functions (L) that will be used during the training procedure.
The reconstruction loss function Lrec is introduced to
guarantee the autoencoder (encoder and decoder)
capability to reconstruct x̂t as close as possible to xt . x̂t is
calculated using:

x̂t � Decoder(Encoder(xt)). (15)

The reconstruction loss function is defined as:

(Lrec)i � {����xt − x̂t
����22}i, (16)

where i represents the sample index.
Minimizing the prediction loss guarantees the accuracy of the

time evolution of the dynamical system. In this case, we define the
prediction loss function as:

x̂t+1 � Decoder(Transition(Encoder(xt))), (17)

where, x̂t+1 is the prediction of the state variables at t + 1, and
then is possible to calculate the prediction loss:

(Lpred)i � {∣∣∣∣∣∣∣∣xt+1 − x̂t+1
∣∣∣∣∣∣∣∣22}i. (18)

The third loss function of the E2C model is the transition loss
function, which tries to guarantee the model competence to
evolve the reduced state z in time. This mimics the MOR idea
of developing a projection framework in which the reduced state
can evolve in time based on the reduced Jacobian matrix. First, we
need to calculate:

ẑt+1 � Transition(Encoder(xt)),
and then:

zt+1 � Encoder(xt+1),
and with these two equations it is possible to calculate the
transition loss (Eq. 19):

(Ltrans)i � {����zt+1 − ẑt+1
����22}i. (19)

Here, we briefly described the main elements of the E2Cmodel. In
the next section, we will show an improvement of this model,

FIGURE 2 | Diagram for training the E2C—Embed to control model.
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adding a physical loss function specifically designed to reservoir
simulation problems.

2.2 Embed to Control with Physical Loss
Function for PetroleumReservoir Numerical
Simulation
Inspired by the E2C model, Jin et al. [2] proposed an
improvement on this model by adding a physical loss function
to it. The model proposed by them focuses on the problem of
building a proxy for a petroleum numerical reservoir simulator to
be used on a well control optimization process. In Eq. 28 of [2],
the authors introduced a physical loss function, reproduced
below:

(Lp)i � {
�����k · [(∇pt − ∇p̂t)recon + (∇pt+1 − ∇p̂t+1)pred]�����2

2
}
i
+

+ c{����(qw,t − q̂w,t)recon + (qw,t+1 − q̂w,t+1)recon����}i.
(20)

This physical loss function is composed of two parts. The first one
contains the mismatch between the predicted pressure gradient
between adjacent grid blocks and the input pressure gradient
multiplied by the permeability. This part of the proposed loss
function intends to assure that the fluid flow between adjacent
grid blocks in the predicted model is as close as possible to the
input/true model. Simply put, this is basically a mass conservative
requirement. Here, this first part of the physical loss function will
be named the flux loss function.

The second part of the physical loss function deals with a
mismatch in the producer wells’ flow rate. In fact, as described by
the authors, it tries to guarantee that the producers’ grid block
pressure in the predicted and reconstructed states are as close as
possible to its equivalent on the input/true model. Instead of
adding physics to the neural network, this second part adds more
weight to the producers’ grid block pressure during the training
procedure. In fact the authors in [2] did not use the flow rate on
their physical loss function; instead, they used only the producers’
well grid block pressure. Since we will propose a new way to
handle well data, we will omit this second part of the study’s
proposed physical loss function. Even though we are omitting this
part of the physical loss function, we will have it in our
implementation of the method proposed by [2], for
comparison purposes. Our implementation of their loss
function (Eq. 28 of [2]) is presented here on Eq. 35.

We present in Figure 3 a diagram of the autoencoder with the
flux loss function terms calculation. Comparing this figure with
Figure 2, it is possible to notice the addition of the gradient
calculation on both sides of the chart and also the calculation of
the flux loss functions both in the reconstruction and prediction
parts, which can be expressed as:

(Lflux,rec)i � k {����∇pt − ∇p̂t
����22}i, (21)

and

(Lflux,pred)i � k {����∇pt+1 − ∇p̂t+1
����22}i, (22)

where k is the permeability.
The flux loss function can be defined as:

(Lflux)i � (Lflux,rec)i + (Lflux,pred)i. (23)

In addition to the flux loss function, on the top right of Figure 3, it
is possible to see the calculation of the output ŷt+1. The model
outputs are well bottom hole pressure for the injector wells, and
water and oil flow rates for the producer wells, in the case
presented here. The calculation of these quantities from the
state variables (pressures and saturations) is made by applying
the Peaceman equation ([22]). This way to estimate the well data
is here denoted by proposition 1. Note, that this is the actual
proposed method in [2], implemented here for comparison
purposes. In the following sections, we will propose and
compare two other ways of estimating well data using E2C
like models.

2.3 Embed to Control with Well Data Loss
Functions for Petroleum Reservoir
Numerical Simulation
Since we are building a proxy model for a petroleum reservoir
numerical simulator to be applied in a well control optimization
framework, we would like to emphasize the well data prediction
(BHP and flow rates), not only on the state (pressure and
saturation) calculation; or, in other words, we want to
reconstruct the output and not only the states. To achieve this,
we propose a well data loss function named Lwell data2 as a
reference to proposition 2. We present the diagram for
proposition 2 in Figure 4, where it is possible to see the
addition of the well data loss function on the right upper
corner. This loss function will make the well data predicted by

FIGURE 3 | Diagram for training the E2C with flux loss.
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the model ŷt+1 as close as possible to the true value yt+1. Note that
both y and ŷ are composed by oil and water flow rates and bottom
hole pressures, as defined in Eq. 2. The input used to train the
model is the well data calculated by a reservoir simulation.
Proposition 2 well data loss function is defined as:

(Lwell data2)i � {����yt+1 − ŷt+1
����22}i. (24)

To get a more reliable state prediction and, as consequence, a
better well data estimation, we introduce a two-phase flux loss
function (Eq. 25) for a two-phase simulator.

(Lflux2Ph)i � (Lflux2Ph,rec)i + (Lflux2Ph,pred)i, (25)

where its terms are defined in Eqs 26, 27:

(Lflux2Ph,rec)i � k{�����kr,o(Stw)∇pt − kr,o(Ŝtw)∇p̂t�����2
2

+
�����kr,w(Stw)∇pt − kr,w(Ŝtw)∇p̂t�����22}i

, (26)

and

(Lflux2Ph,pred)i � k{������kr,o(St+1w )∇pt+1 − kr,o(Ŝt+1w )∇p̂t+1������2
2

+
������kr,w(St+1w )∇pt+1 − kr,w(Ŝt+1w )∇p̂t+1������2

2
}

i

, (27)

where k is the permeability, kr,j is the relative permeability to the
phase j, and Sw is the water saturation.

The addition of proposition 2 loss function Lwell data2 to the
training process is a simple step but can improve the model’s
ability to estimate well data. Although the model’s structure is
very similar to proposition 1 (Figure 3), we expect to have more
reliable well data estimation because we are adding this
information to the training procedure. On proposition 1, the
well data was not part of the training procedure. It was calculated
on the validation/test steps based on the states.

2.4 Embed to Control and Observe with Flux
Loss Function for Petroleum Reservoir
Numerical Simulation
Inspired by the E2C model, we extend its idea to the output data
and named it as Embed to Control and Observe (E2CO). On the
original E2C model, a transition network receiving as input the

state in the reduced space was employed to generate matrix At
r

and Bt
r , which was used to evolve the state in the latent space

based on Eq. 14. We introduce another transition network,
namely, the transition output. This network will receive
information from the state on latent space zt to generate
matrix Ct

r and Dt
r in order to be able to estimate well data ŷt+1

as in .

ŷt+1 � Ct
r ẑ

t+1 +Dt
ru

t . (28)

The E2CO diagram is presented in Figure 5, where it is possible
to see the new transition output network. We also create a loss
functions Lwell data3 (as reference to proposition 3) that
provides information to train the neural network transition
output parameters. This loss function has the same structure as
Eq. 24.

One of the main advantages of E2CO, when compared to
propositions 1 and 2, is that here we do not rely on the state
variables in the original space to predict well data. Instead of this,
E2CO uses the state on the reduced space to create matrices Ct

r
andDt

r and uses a control system approach to estimate the output
data. This resembles the case of system identification as in the
control system community.

2.5 Training Versus Prediction
The diagrams presented in Figures 2–5 are used to train each
proposed method’s networks. In these diagrams, the loss
functions have an important role in the training procedure.
They are defined to provide information about the system
dynamics and honor the physics presented in the reservoir
simulation process.

When the training procedure is finished, and the neural
network parameters (weights, bias, and filters) are optimally
found, it is time to use them to predict the system behavior.
The prediction diagrams are significantly simpler than the
training ones. The prediction diagram for propositions 1 and
2 is presented in Figure 6. In this figure, the time evolution
happens in the latent space (z), potentially reducing the
computational cost of the prediction step. However, to
predict well data using propositions 1 and 2, it is necessary
to have the state on the original space (x) at each desired time
step to predict the well data at that time. That being said, one
can note that it is necessary to pass ẑt+1 through the decoder to
calculate x̂t+1 and further apply the Peaceman equation to

FIGURE 4 | Training diagram to E2C with 2 phase flux and well data loss functions (proposition 2).
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calculate well data ŷt+1 on each time step. The application of
the decoder to predict the well data can lead to a
computational cost increase.

For proposition 3, there is no need to decode the latent space
since the well data is generated on that latent space using a
specific network for this purpose (Transition Output). Figure 7
shows that both the state time evolution and the well data
estimation happen in latent space. On proposition 3, the
decoder’s use is limited to the cases where one would like to
estimate the state on the original space (x).

2.6 Neural Networks Structure
In the following sections, we describe the networks used in each
part of the proposed models. The structure of the networks used

here is very similar to the ones used in [2]. The three proposed
ways of calculating well data use the same elements described in
this section. Although the elements are the same, each proposed
method’s parameters will differ due to the different model/
network structure and different loss functions used in the
training procedure.

2.6.1 Encoder
The encoder is built with a series of encoding blocks followed by
residual convolutional blocks and a dense (fully connected layer),
as depicted in Figure 8 (top).

Themain idea of the encoder structure is to transform the state
variables on the original space x to the latent space z. The
dimension of the latent space lz is smaller than the dimension
of the original space lx . To keep things in perspective the
numerical model we will present next has lx � 60 × 60 ×
2 � 7200 states and lz � 50.

Each encoding block comprises a convolutional 2D layer,
followed by batch normalization and a ReLU (Rectified Linear
Unit) activation function, as presented in Figure 9 (top).
Although the structure of each encoding block is the same, the
dimension of each block will change to be able to reduce the
dimension of the encoder input. This dimension reduction is
pictorially presented in Figure 8. The dimensions of each
component used in this work will be presented later.

The residual convolutional blocks also have a convolutional 2D
layer, followed by batch normalization and a ReLU, adding another
convolutional 2D layer and batch normalization, as presented in
Figure 9. It is possible to observe a link between the input and the

FIGURE 5 | Training diagram for E2CO with flux and well data loss functions (proposition 3).

FIGURE 6 | E2C prediction diagram (propositions 1 and 2).

FIGURE 7 | E2CO prediction diagram (proposition 3).
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FIGURE 9 | From top to bottom: Encoding block (top), Residual block, Decoding block, and Transformation block (bottom) (Adapted from [2]).

FIGURE 10 | Transition network (left) (Adapted from [2]) and Transition
Output network (right).

FIGURE 8 | Encoder structure (top) and Decoder structure (bottom) (both adapted from [2]).

TABLE 1 | Encoder architecture.

Layer # Filters Filter size Stride Padding Output size

Input (Nx ,Ny , 2)
Encoding block 16 3 × 3 2 × 2 Same (Nx/2,Ny /2,16)
Encoding block 32 3 × 3 1 × 1 Same (Nx/2,Ny /2,32)
Encoding block 64 3 × 3 2 × 2 Same (Nx/4,Ny /4,64)
Encoding block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
ResConv block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
ResConv block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
ResConv block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
Dense (lz , 1)
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output of the residual convolutional blocks. This is the
characteristic of a residual block. It is built in this way mainly
to avoid gradient vanishing during the training procedure.

2.6.2 Decoder
The decoder will work as an inverted encoder, where its main
purpose is to transform the state variables in latent space z into
the original space x. Its structure is composed of a dense (fully
connected) layer, followed by three residual convolutional blocks,
four decoding blocks, and a convolutional 2D layer, as presented
in Figure 8 (bottom).

The residual convolutional block used in the decoder has the
same structure as the used on the encoder. The decoding block
(Figure 9) comprises a transpose convolutional 2D layer, batch
normalization, and ReLU. In [2], the decoding block has a
sequence of unpooling, padding, and convolution layers; here
we replace this with a transpose convolutional layer.

2.6.3 Transition
The transition network is composed of two transformation
blocks, followed by two dense layers directly connected to the
output of the last transformation block. The output of these dense
layers is reshaped to create the matrices At

r and B
t
r . The transition

network is presented in Figure 10 (left).
Although the authors in [2] used three transformation blocks,

we will use two as proposed on one example from the original
E2C model [1]. The transformation block (Figure 9 (bottom)) is
composed of a dense layer with batch normalization followed by a
ReLU activation layer.

2.6.4 Transition Output
The transition output network (Figure 10 (right)), used on our
proposition 3, has a very similar structure compared with the

transition network. The dimension of the dense layer in the
transformation blocks will differ between these two networks.
This will be detailed in the following section. Still, it is intuitive to
think that the transition output network may require layers with
smaller dimensions than the transition network. The transition
network output is the matrices At

r and Bt
r , which have sizes

defined by the system input/state. On the other hand, the sizes of
Ct
r and Dt

r depend on the dimensions of system input/output,
which usually has lower dimensions when compared to the input/
state.

2.7 Neural Networks Implementation
We implemented all the methods proposed here using Python
3.7.4 [26] and the framework TensorFlow 2.3.1 [27] with Keras
API [28]. The dimensions of layers, number and size of filters, and
output size of each block on the encoder and decoder used are
presented in Tables 1 and 2.

The transformation block has dimension of nTrans � 200 for
the transition network, and the last dense layers before the matrices
calculations have dimensions of l2z for At

r and lz(ni + np) for Bt
r ,

where ni and np are, respectively, the number of injector and
producer wells. The output of these dense layers is then reshaped to
match each matrix dimension. For the transition output network
we are using nTrans WD � 20 for the transformation block
dimension, and the last dense layers have dimensions of
lz(ni + 2np) for Ct

r and (ni + np)(ni + 2np) for Dt
r .

We used the Adam optimization algorithm with a learning
rate of 1 × 10−4 during the training procedure with a batch size of
4. The sample is randomly selected to compose the training batch.
We run the training procedure for 100 epochs.

We initially trained our models on CPUs. However, we change
to GPUs since the speed up is expressive. We provide in Table 3 a
non-rigorous estimation of the training time, where it is possible to
see the differences between training on CPU andGPU.More details
on the GPUs NVIDIA Tesla used can be found on www.hprc.
tamu.edu.

2.7.1 Non-determinism
During the initial implementation of the methods proposed
here, we noticed that if we repeat the same training procedure
twice in the same machine with the same input and
parameters, we will end up with different networks, and
this will lead to different predictions and different error
estimations. Although this can be understood as a native
characteristic of the neural network training procedure, this
can increase the complexity of comparing different methods

TABLE 2 | Decoder architecture.

Layer #
Filter

Filter
size

Stride Padding Output size

Input (lz , 1)
Dense (Nx/4 × Ny /4 × 128,1)
ResConv block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
ResConv block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
ResConv block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
Decoding block 128 3 × 3 1 × 1 Same (Nx/4,Ny /4,128)
Decoding block 64 3 × 3 2 × 2 Same (Nx/2,Ny /2,64)
Decoding block 32 3 × 3 1 × 1 Same (Nx/2,Ny /2,32)
Decoding block 16 3 × 3 2 × 2 Same (Nx ,Ny , 16)
Conv2D 2 3 × 3 1 × 1 Same (Nx ,Ny , 2)

TABLE 3 | Proposition 3 training time comparison for different hardware (CPUs and GPUs).

Processor # Of cores Memory (GB) 100 epochs (min)

1 CPU Intel Xeon CPU E4-1660 v3 @ 3.00 GHz 8 64 448
1 GPU NVIDIA GeForce GTX 1050 640 Cuda 2 238
2 GPUs NVIDIA Tesla K80 (TAMU HPRC Terra) 4,992 Cuda 24 163
2 GPUs NVIDIA V100 (TAMU HPRC Ada) 10,240 Cuda 32 46
2 GPUs RTX 6000 (TAMU HPRC Grace) 9,216 Cuda 24 54
4 GPUs NVIDIA T4 (TAMU HPRC Grace) 10,240 Cuda 16 65
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since each method’s results can change based on an
uncontrollable variable.

Some of the non-determinism sources are layers weight
initialization, kernel weights initialization, and the order of
models to be part of the training batch. When training on
GPU, some other sources can happen when using
convolutional, pooling, and upsampling layers. All these
sources are discussed in [29], which provides a solution for
most of these sources of non-determinism. Here we used this
method provided, and we can reproduce the training results for
the same input and parameters.

2.7.2 Normalization
We used normalization to treat our input data from the state and
the well data and also during the loss functions calculations. For
each quantity, normalization parameters (min and max) are
defined and used on this quantity over the training and
prediction procedures. The normalization used here is:

QNORM � Q −Qmin

Qmax −Qmin
, (29)

where Q is the quantity to be normalized.

The minimum and maximum values for each quantity were
selected from the input state (quantities: pressures and
saturations), from the well data (quantities: well bottom hole
pressure, the oil flow rate, and the water flow rate), and from the
well controls (quantities: the water injection rate and well bottom
hole pressure).

We also normalized values for the loss functions calculation.
When applying Eqs 18 and 16, we use normalized values of state
pressures and saturations. The same is valid for Eq. 24 where we
used normalized values for well bottom hole pressure, the oil rate,
and the water rate.

Here, we introduce the use of a normalized flux loss function.
We first calculate the minimum and maximum flux from the
input state and use them to normalize the flux loss function. This
is valid for the single-phase loss function (Eqs. 21 and 22) and the
two-phase (Eqs. 26 and 27), where we calculate maximum and
minimum values for oil and water flux. By doing this, we expect
not to need to use weight terms on these loss functions, like the
ones used in [2]. This can potentially reduce the number of
hyperparameters to be chosen on the training procedures.

3 DATA GENERATION AND ASSESSMENT

In this section, the simulation model used to generate state and
well data is described, followed by the details on the training and
validation data sets’ generation. We then show how we evaluate
each trained model’s quality using the validation set by
calculating the relative error.

3.1 Numerical Simulation
We utilized a commercial numerical reservoir simulator (IMEX
from [30]) to generate the data employed on the training and
validation steps of our propositions. However, any commercial
off-the-shelf reservoir simulator can be used to train our model. A
Cartesian grid with 60 × 60 × 1 gridblocks and an oil–water fluid
model were used. A fixed permeability field was generated and is
presented in Figure 11 (left). The relative permeability curves
used in the simulation model are shown in Figure 11 (right).

The model has five producers and four injector wells. The
producer wells are controlled by bottom hole pressure (BHP), and

TABLE 4 | Reservoir simulation model properties.

Property Value Unit

Gridblock dimension 50 × 50 × 10 M
Rock Compressibility 1E − 6 (kgf/cm2)
Oil Formation Volume Factor 1.0 res-m3/std-m3

Water Formation Volume Factor 1.0 res-m3/std-m3

Oil Viscosity 0.91 cP
Water Viscosity 0.31 cP
Oil Density 800 kg/m3

Water Density 1,000 kg/m3

Property Value Unit
Porosity 0.2
Initial Pressure 325 kgf/cm2

Initial Water Saturation 0.1
Connate Water Saturation (Swc) 0.1
Residual Oil Saturation (Sor ) 0.3
krw (1 − Sor ) 0.7
kro (Swc ) 1.0

FIGURE 11 | Permeability map (mD) (left) and Relative permeability curves (right).
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the injectors are controlled by the water injection rate. This model
runs through 2,000 days, changing controls every 100 days. Some
properties used in the simulation model are presented in Table 4.

3.2 Data Sets
The objective of constructing a fast proxy model is to eventually
connect it to control optimization frameworks whereby
multiple calls of the surrogate model are used to determine a
control set that optimizes an objective function (e.g., Net
Present Value and sweep efficiency). In this case, we expect

that our proxy might have the competence to predict well data
under different sets of controls, which is usually unknown
before the optimization is complete. To mimic the behavior
of a varying input setting, we will use 300 simulations to train
the proposed models, and each simulation will run through
20 time periods.

For the producers, the bottom-hole pressure was sampled over a
uniform distribution U(260, 275) kgf/cm2. To avoid having the
same volume ofwater injected in all control sets, we used a different
approach to create the injectors controls. For each control set i,

FIGURE 13 | Producers BHP controls examples for wells P1 (first row) and P5 (second row) where each column represents a control set.

FIGURE 12 | Injection water flowrate controls examples for wells I2 (first row) and I4 (second row) where each column represents a control set.
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we sampled a base injection rate qinj base,i ∼ U(300, 950) m3/day,
and for each time period t, we sampled a perturbation
qinj pert,i,t ∼ U(−80, 90) m3/day. The injection flow rate is then
calculated as qinj(i, t) � qinj base,i + qtinj pert,i.

In Figure 12 we present an example of the injectors controls
where readers can confirm the injection rate variability. The
variability in the producer’s controls can be observed in Figure 13.

Using each one of the 300 control sets generated, we run the
reservoir simulator and store the state (pressure and water
saturation) at each one of the 20 time periods. The training
set will be composed by 6,000 samples, each one containing:

• xt → state on timestep t
• xt+1 → state on timestep t + 1
• ut → controls on timestep t
• Δtt → duration of timestep t
• yt+1 → well data on timestep t + 1

In the case presented here, t � 0, 1, . . . , 19, where t � 0
represents the initial state that also needs to be stored as the
first snapshot of the state (x0). The validation set contains 100
control sets that will create 2,000 samples. The validation set
generation follows a similar approach but with a different random
number generator seed. This is to enforce that training and
validation are performed using different control inputs.

3.3 Model Evaluation
Each proposition (propositions 1 to 3, as constructed before) was
trained as described in Section 2.7 using the training data set. We
then used the models (networks) trained for each proposition on the
prediction architecture, as shown in Figures 6, 7, and evaluated each
model’s quality on the validation set. We also used this validation set
to choose the better hyperparameters for eachmodel. This is a tedious
but necessary step in looking for a low prediction error model.

3.3.1 Error Definition
In this section, we present the definitions of relative error used to
evaluate our model’s accuracy. Most of these definitions are
similar to the ones defined in [2]. For a single producer wells
(p), the relative error in the water and oil rates is defined as epw and
epo that in a general way can be written as:

epj �
∫T
0

∣∣∣∣q̂j,p(t) − qj,pHFS(t)
∣∣∣∣dt

∫T
0

∣∣∣∣qj,pHFS(t)
∣∣∣∣dt .

The error for all producer wells can be defined as:

Eo � 1
np
∑
p�1

np

epo, (30)

Ew � 1
np
∑
p�1

np

epw, (31)

where j � o,w stands for the oil and water phases, respectively, and
HFS stands for high-fidelity solution (numerical reservoir simulation
run). The upper hat (̂ ) stands for estimated and is related to the
output of the 3 propositions on how to estimate well data.

A similar equation can be built for the bottom hole pressure of
an injector well (i), as given below:

eiBHP �
∫T
0

∣∣∣∣p̂i(t) − piHFS(t)
∣∣∣∣dt

∫T
0

∣∣∣∣piHFS(t)
∣∣∣∣dt .

The error for all injector wells can be calculated as:

EBHP � 1
ni
∑ni
i�1

eiBHP, (32)

where ni is the number of injector wells. We defined a relative
error for the cumulative flowrates as:

epcum,j �
∣∣∣∣Q̂j,p − Qj,p

HFS

∣∣∣∣∣∣∣∣Qj,p
HFS

∣∣∣∣ ,

where j � o,w and Q is the cumulative rate, and for all the
producer we define:

Ecum,j � 1
np
∑
p�1

np

epcum,j (33)

We also define a relative error in terms of the primary variables
(pressures and water saturations) as:

Ev �
∑nb

k�1 ∫T0 ∣∣∣∣v̂k(t) − vkHFS(t)
∣∣∣∣dt

∑nb
k�1 ∫T0 ∣∣∣∣vkHFS(t)

∣∣∣∣dt , (34)

where vk denotes the state variable at grid block k (pressure pk or
water saturation Sk), and nb is the number of grid blocks in the
numerical reservoir simulation grid.

3.3.2 Hyper-Parameters Tuning
The process of obtaining predictive neural networks with
architecture like those used on the proposed methods is not
straightforward. There are no mysteries in the training procedure
itself. However, several hyper-parameters need to be selected before
training, for example, the training batch size, number of epochs, and
the learning rate. The choice of the best set of hyper-parameters is
challenging, and the authors could not find a well-defined procedure
on how to do it. To better choose the hyper-parameters, we have to
proceed with full training and then using the validation data set,
predict the outputs of this trained network to analyze the error of this
choice.We should now repeat this process with another set of hyper-
parameters to find the one that provides a smaller prediction error.

Looking for isolating each parameter’s influence, we run
isolated tuning, where each tuning run will consist of trying
some values of a hyper-parameter and fixing the others. For
example, trying to find the best learning rate (for ADAM’s
algorithm) we run the training and prediction for the values
1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, and 1 × 10−1. The lowest
error in estimating the well data was obtained with 1 × 10−4. Now,
this value will be fixed on the other tuning runs. We understand
that this might not be the optimal approach. However, using a
grid search-like method is not feasible since to span the hyper-
parameters space would be high computationally costly.

Using a batch size of four is a significantly better choice than
using 20 or 100. Larger batch sizes reduce the training process’s
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duration; however, it increases the prediction error in our case. The
samples were shuffled to build the batch. This approach worked
better than building the batch following the time sequence.

The number of epochs used on the training runs was not
considered as a hyper-parameter. We run all our training
processes for 100 epochs, saving the network at every 10
epochs. In some cases, we observed that the network that
produces the lowest prediction well data error is not obtained
after epoch 100, as we expected. This was observed during
some hyper-parameters tuning runs. However, when the best
hyper-parameter set was found on the specific tuning run, it
was always on the last epoch. This might be interpreted as
when we are far from the best hyper-parameter, the training
procedure presents some instability. It is noteworthy that
along the training process, the total loss function keeps
decreasing at each epoch. However, the error we are
analyzing here is the prediction error defined in a previous
section, which is not directly related to the total loss function
used on the training procedure.

We tried to find the dimension of the latent space lz that
produces the lowest well data prediction error by changing
lz � 10, 20, 50, and 100, and the smallest error was obtained by
using lz � 50. The dimension of the dense layer on the
transformation blocks was changed between values
50, 100, 200, and 500, and the lowest error was found when

the dimension was 200. For the E2CO, the dense layer’s
dimension on the transformation blocks in the transition
output network was varied between 10, 20, 100, and 200, and
the best value was 20.

The most challenging tuning was on weights applied to the loss
functions. Our training procedure relies on the combination of
loss functions, and how these functions are optimally weighted
to build the total loss function is not an easy task. Here was
mentioned that we used normalization of inputs, outputs, and
components of loss functions to avoid the need to tune the loss
function weights. We initially tried to train our models with the
loss functions not weighted to compose the total loss function,
but after some tests, we realize that there was room for
improvement in weighing them.

For proposition 1, we can define the total loss function as:

Lprop1 � Lrec + Lpred + Ltrans + cfluxLflux + cp presLp pres, (35)

where cflux is the weight applied to the flux loss function (Eq. 23)
and cp pres, is the weight applied to the loss function of pressure in
the producers well gridblocks. This resembles the way the authors
in [2] defined the loss function. The values that produces a
smaller prediction error are cflux � 5 and cp pres � 0. We tried
several values for cp pres, but the best results where obtained with
zero for this weight.

FIGURE 15 | Validation set error on the 3 propositions for oil rate (left plot), water rate (middle plot) and BHP (right plot).

FIGURE 14 | Validation set error for different training set sizes.
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FIGURE 16 | Well data prediction for validation sample 6.
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For proposition 2, we need to add the well data loss function
(Lwell data2), so the total loss function will become:

Lprop2 � Lrec + Lpred + Ltrans + cflux2PhLflux2Ph + cwell data2Lwell data2,

(36)

where cflux2Ph is the weight applied to the two phase flux loss
function and cwell data2 represents the weight applied to the well
data loss function.

For the E2CO (proposition 3) we can define the total loss
function as:

LE2CO � Lrec + Lpred + Ltrans + cfluxLflux + cwell data3Lwell data3.

(37)

We tried variations of propositions 2 and 3 total loss functions using
different flux loss functions: one-phase, two-phase, and no flux loss.
We also tried to give more weight to the state variables (pressure and
saturation) on the well grid blocks. This analysis was applied to the
injectors and producers’ well gridblocks. We tested several
combinations of different weights for a loss function that looks at
the mismatch between the predicted and the true values of the wells
gridblock state variables. These loss functions can be identified as
Lp pres, Lp sat, Li pres, and Li sat, and there respective weights are
cp pres, cp sat, ci pres, and ci sat. We expected that this would
improve the model’s ability to predict well data, but this was not
true for all cases.

For proposition 2, the best results were obtained using
cflux2Ph � 1.0, cwell data2 � 1.0, and cp pres � cp sat � ci pres � ci sat � 0 .

For E2CO (proposition 3), the best results were obtained using
single phase loss function, cflux1Ph � 0.1, cwell data3 � 1.0,
cp pres � 0.01, and cp sat � ci pres � ci sat � 0.

The choice of best hyperparameters set for each proposition
was defined by analyzing the validation set’s total prediction
error. We used the summation of the median of the errors defined
by Eqs 30–34, here defined as total prediction error, to choose the
best hyperparameters set.

3.3.3 Training Size Sensibility
We are interested in understanding the performance of the two
proposed methods when less data is available for training or the
resources available for the training are limited. Using the best set
of hyperparameters described in the previous session, 3 training
procedures were conducted varying the training set size for each
model. The original training set size was 6,000 samples, and we
also trained with 4,000 samples and 2,000 samples (each one
corresponding to 300, 200, and 100 controls sets). Figure 14
shows the relative error median over the validation set for the oil
rate, the water rate, and BHP for each proposedmethod. A similar
trend for all the curves can be observed, and as expected, when the
number of training samples is reduced, the estimation error on
the validation set increases. Important to note that for the oil rate
and BHP, the E2CO method presents lower values for relative
error when reducing the training set size. Proposition 1 provides
slightly better results only for the water rate with the lowest
numbers of training samples.

4 RESULTS

This section will present a validation set error comparison
between the best hyperparameters set for each of the
propositions. We finish this section by comparing the methods
by showing well data and states outputs of a specific control
combination from the validation set.

We defined the best hyperparameters set based on the total
error median over the validation set for all the three proposed
models on the hyperparameters tuning procedure. We can now
analyze the performance of these three models by comparing the
error for each item analyzed. In Figure 15 we present the error for
well data, where this box plot represents the distribution of the
relative error on the validation set. The bottom and top limits of
each box represent 25th, and 75th percentile errors, the orange line
inside the box is the median of the distribution.

FIGURE 17 | Validation set error for cumulative oil (left plot) and cumulative water (right plot) production.
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FIGURE 19 | Validation set error on the 3 propositions for pressure (left plot) and saturation (right plot).

FIGURE 18 | Cumulative oil (left plot) and water (right plot) production.

FIGURE 20 | Pressure map for the last predicted time step of validation sample 3.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 65117817

Coutinho et al. Deep-Learning-Based Proxy Reservoir Simulation Model

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Analyzing oil rate relative error in Figure 15, it is possible to
conclude that E2CO overcome propositions 1 and 2. For the
water rate and bottom hole pressure, we obtained a smaller error
for both E2CO and proposition 2 than proposition 1. However,
the E2CO estimation errors for the water rate are higher than
proposition 2. We impute this pour performance to failure on
estimating water rate before water breakthrough. We present and
discuss this problem better in Figure 16.

A similar analysis can be built for cumulative flow rates, as in
Figure 17. It is possible to observe that proposition 2 and E2CO
overcome the cumulative water flow rates prediction ability of
proposition 1. The same figure shows that the cumulative oil rate is
better predicted by proposition 1.We can also visualize the cumulative
errors in a scatter plot of cumulative flow rate plots (Figure 18), where
it is possible to confirm the previous figure’s analysis.

The error on the state variables is presented in Figure 19. We
can observe that both E2CO and proposition 2 overcome the state
estimation ability of proposition 1. During the development of both
E2CO and proposition 2, we aimed on getting accurate well data
estimation; however, these results show that we are also able to
predict states. Proposition 2 has a lower estimation error, which
can be assigned as a benefit of using the 2 phase flux loss function
proposed in this research.

We now present in Figure 16 the predicted well data of one
validation sample for all the three models. It is noteworthy that
E2CO has some problems with water flowrate estimation, mainly
before the water breakthrough. This could be addressed by
narrowing its values to only positive values, which is an easy
procedure. One can check the saturation on the well gridblock,
and if saturation is not higher than the connate water saturation, set
its value to zero. This will compel the need to rebuild the full state.
Here, we did not implement any of these procedures, and the results
presented are exactly the ones generated by the E2CO method.

The pressure and water saturationmaps for the last predicted time
step using one validation sample in Figures 20, 21. The maps did not
show significant differences; however, the error map for pressure
shows lower values for proposition 2 and E2CO. For saturation error
map, proposition 2 shows higher errors in a southern area.

5 CONCLUSION

This work presents a new framework to develop proxy models for
reservoir simulation. Our method is based on a deep
convolutional autoencoder and control system approach. Our
development was inspired by the E2C-ROM method (named
proposition 1) proposed by [2]. In this study, we leverage its
capability of state reconstruction by adding to it a well data
(output) loss function on the training procedure (proposition 2).
Additionally, we introduce E2CO—Embed to Control and
Observe (proposition 3)—as an alternative approach to
calculate the model output by having a specific neural network
to capture the relation between reduced state, controls, and
outputs. The methods developed here can be related to the
reduced-order modeling technique POD-TPWL.

We applied our proposed new architecture on a two-phase 2D
synthetic reservoir simulation model running on a commercial
reservoir simulation. The results of proposition 2 and E2CO
applications in our synthetic case presented improvements
when compared with E2C-ROM. The well data estimation
errors on the validation set are generally more accurate and
present less variability using the two proposed methods,
especially the estimations of oil rate and cumulative oil and
water production. Proposition 2 has also shown slightly better
results, but its limitations are the same as the E2C-ROM: the need
to reconstruct the full state to estimate the well data. On the other
hand, our new E2CO methodology can predict well data using the
reduced state directly without being estimated by the Peacemen
formula.

Although we have shown the advantages and limitations of our
proposed methods using a 2D reservoir, their performance and
generalizations need to be tested on more realistic scenarios with
larger and more complex models (black-oil or compositional). The
explosion on the number of state variables’ and, thus, the model
dimension may lead to more challenging well data estimation. It may
be necessary to increase the dimension of the reduced space lz , and the
neural network dimension responsible for generating the linearized
system matrix.

FIGURE 21 | Water saturation map for the last predicted time step of validation sample 3.
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GLOSSARY

A Discretized state matrix

Ac Continuous state matrix

Ar Discretized reduced state matrix

B Discretized input matrixFormation volume factor

Bc Continuous input matrix

Br Discretized reduced input matrix

BHP Bottom Hole Pressure

B Discretized input matrixFormation volume factor

C Discretized output matrix

Cc Continuous output matrix

Cr Discretized reduced output matrix

D Discretized feed-through matrix

Dc Continuous feed-through matrix

Dr Discretized reduced feed-through matrix

E2C Embed to Control

E2CO Embed to Control and Observe

epj Producer well p relative error of phase j flowrate

Eo Relative oil flow rate error for all producers

Ev Relative error for state variable v

Ew Relative water flow rate error for all producers

EBHP Relative bottom hole pressure error for all injectors

eiBHP Injector well i relative error of bottom hole pressure

Ecum,j Relative cumulative phase j flow rate error for

all producers

epcum,j Producer well p relative error for the phase j

cumulative flow rate

h Height of the well grid block

HFS High Fidelity Simulation (Numerical Simulation)

k Permeability

kr,j Relative permeability to the phase j

lx Dimension of the state on the original space

lz Dimension of the state on the reduced space

Lflux,pred Prediction Flux Loss Function

Lflux,rec Reconstruction Flux Loss Function

Lflux2Ph,pred Prediction Two phase Flux Loss Function

Lflux2Ph,rec Reconstruction Two phase Flux Loss Function

Lflux2Ph Two phase Flux Loss Function

Lflux Flux Loss Function

Lpred Prediction Loss Function

Lrec Reconstruction Loss Function

Li pres Loss function of the injectors gridblock pressure

Li sat Loss function of the injectors gridblock saturation

Lp pres Loss function of the producers gridblock pressure

Lp sat Loss function of the producers gridblock saturation

Ltrans Transition Loss Function

Lwell data2 Well data loss function for proposition 2

Lwell data3 Well data loss function for proposition 3

μ Viscosity

MOR Model Order Reduction

ni Number of injector wells

np Number of producer wells

P Pressure

∇p Pressure gradient of adjacent grid blocks

POD Proper Orthogonal Decomposition

ϕ Porosity

ρ Density

qinj Injection Water Rate

qo Oil Rate

qw Produced Water Rate

ro Well gridblock equivalent radius

rw Well bore radius

S Saturation

Sw Water Saturation

SKIN Skin Factor

TPWL Trajectory Piecewise Linearization

u System input or control

WI Well index

x State on original space

_x State time derivative

x̂ Estimated state on original space

y System output

ŷ Estimated observed data

cflux Weight applied to Lflux

cflux2Ph Weight applied to Lflux2Ph

ci pres Weight applied to Li pres

ci sat Weight applied to Li sat

cp pres Weight applied to Lp pres

cp sat Weight applied to Lp sat

cwell data2 Weight applied to Lwell data2

cwell data3 Weight applied to Lwell data3

z State on latent space

ẑ Estimated state on latent space
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