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The COVID-19 pandemic has had worldwide devastating effects on human lives,
highlighting the need for tools to predict its development. The dynamics of such
public-health threats can often be efficiently analyzed through simple models that help
to make quantitative timely policy decisions. We benchmark a minimal version of a
Susceptible-Infected-Removed model for infectious diseases (SIR) coupled with a
simple least-squares Statistical Heuristic Regression (SHR) based on a lognormal
distribution. We derive the three free parameters for both models in several cases and
test them against the amount of data needed to bring accuracy in predictions. The SHR
model is ≈ ±2% accurate about 20 days past the second inflexion point in the daily curve
of cases, while the SIRmodel reaches a similar accuracy a fortnight before. All the analyzed
cases assert the utility of SHR and SIR approximants as a valuable tool to forecast the
disease’s evolution. Finally, we have studied simulated stochastic individual-based SIR
dynamics, which yields a detailed spatial and temporal view of the disease that cannot be
given by SIR or SHR methods.

Keywords: statistical heuristic regression, susceptible-infected-removed model, spatial stochastic, Monte-Carlo,
COVID-19, SARS-CoV-2

1 INTRODUCTION

The consequences of a pandemic like COVID-19 caused by the virus SARS-CoV-2 cannot be
overstated (Nature, 2021). Accurate mathematical tools allowing to monitor and forecast the
evolution of the contagious disease are useful to guide social, economic and public health
decisions made by governments. Nevertheless, despite the availability of powerful mathematical
models (Anderson et al., 2020), initial forecasting by some organizations underestimated the
evolution of the epidemics, hampering the immediate taking of necessary actions (Economist,
2020; Herzberge and Hecketsweller, 2020).

This study aims to take advantage of available worldwide data on COVID-19 (Roser et al., 2021;
Dong et al., 2020) to benchmark and assign error bars to minimal models, like the susceptible-
infected-recovered (SIR) with different sophistication levels (Kermack and McKendrick, 1927;
Weiss, 2013; He et al., 2020a; Yang and Wang, 2020; Khan et al., 2020; Annas et al., 2020), a
straightforward least-squares best-fit (LS) Statistical Heuristic Regression based on a lognormal
distribution (Lam, 1988), or basic Monte-Carlo simulation (Girona, 2020; Gang, 2020). It is well-
known that finding a global minimum of non-linear least-squares problems for p free parameters
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requires, at worst, a brute force search in p-dimensional
parameter space. If each parameter can take m values inside a
given interval, it is a non-polynomial task that scales like mp and
becomes non-practical for large or moderate values of p.
Correspondingly, there are no general polynomial bounds on
the time complexity given in the number of samples and the
search space dimension. These models are gauged against two
variables measured daily: 1) the number of deaths, and 2) the
number of new infections. Such indicators both possess
advantages and disadvantages. Deaths are usually counted
using a consistent methodology and, undeniably, it is an
observable proportional to the spread of the disease, but the
tally of deaths carry a delay of about one month on the actual
dynamics of the disease. On the other hand, the number of
infections is timely, but incorporates more uncertainties since it
depends on details not related to the disease, e.g., on the number
of tests performed. We show that the simultaneous monitoring of
both observables supplemented with relatively simple
mathematical approaches can be used to follow and forecast
the evolution of the disease with enough accuracy to help
decision-making processes and we discuss the associated
error bars.

Other efforts to modeling the pandemics include sensitivity
and meta-analysis to estimate averaged values for the
reproduction number, incubation time, infection rate and
fatality rate (He et al., 2020b), wavelet-coupled random vector
functional link networks (Hazarika and Gupta, 2020), machine
learning (Dhaka and Singh, 2020), and Advanced Autoregressive
Integrated Moving Average Model (Singh et al., 2020).
Approaches via learning algorithms are usually compared via
corresponding tests (Demsar, 2006), where we recall the
significant differences to statistics (Breiman, 2001).

The paper is organized as follows. In Section 2 (results and
discussion), we introduce the Statistical Heuristic Regression
model (SHR, section 2.1), the Susceptible-Infected-Removed
model (SIR, section 2.2), and the Spatial Stochastic
Individual-Based model (MC, section 2.3). After each topic,
we analyze the corresponding application to different countries
or regions, most notably Spain and Germany. Finally, in the
section of Conclusions, we summarize and review our approaches
and further discuss the application of the cases analyzed and
future venues.

2 RESULTS AND DISCUSSION

2.1 Statistical Heuristic Regression (SHR)
Epidemics can efficiently be modeled as a geometric process
related to independent random events (Lam, 1988). This method
yields a regression curve that describes the temporal variation of a
contagious disease for the number of deaths, infections or some
other relevant observable variable. Such a statistical heuristic
approach results in a lognormal function,

ccM ,μ,σ(t) � cM
e−

(ln(t−t0)−μ)2
2σ2���

2π
√

σ(t − t0) t − t0 > 0 , (1)

which is the probability distribution function of a random
variable whose logarithm, u � ln(t), is normally distributed
around its mean value μ with a dispersion σ (Johnson et al.,
1994). The beginning of the propagation is determined by t0 and
the value of the single maximum cM � c(tM) happens at tM � t0 +
μ − σ2.

Starting from the model dc(t)dt � α(t)c(t) and imposing general
requirements on α(t) (which follow from the observed behavior
of the number of daily cases) also leads to the same expression
(Wenbin et al., 2013). Using entropy-related arguments, these
authors have estimated that σ ≈ 0.4, which compares well with
the averaged values for ten different western countries for deaths
and infected, 0.6 ± 0.2 and 0.5 ± 0.2 respectively, cf. Tables 1 and
2. Finally, we notice that such lognormal distribution derived on
(Lam, 1988) was proved useful to model the SARS outbreak in
2003 (Chan et al., 2006).

The corresponding accumulated cases are,

CcM ,μ,σ(t) � ∫t

0
c(u) du � cM

2
Erfc( − ln(t − t0) − μ�

2
√

σ
) t − t0 > 0 ,

(2)

Given arbitrary precision, C(t) and c(t) carry the same
information about the set of three parameters, F � {cM , μ, σ},
since c(t) is simply the temporal derivative of C(t). However, in
practical terms, c(t) is heavily affected by noise in the collection of
the data series {ci}, and least-squares fits to the functions C(t) and
c(t) are expected to determine slightly different values for F .
Therefore, we chose to report values related to C(t), which are

TABLE 1 | Parameters for SHR model (confirmed deaths, first wave). p: country’s population (millions). μ and σ: parameters in the lognormal distribution. C(∞): asymptotic
value for accumulated cases (per million person). R2 and r2: R-squared correlation factors forC(t) and c(t), respectively. tM and t2: maximum and second inflection point
(origin is the first of January 2020).

Country p μ σ C(‘) R2 d1 tM t2

G. Britain 66.65 3.61 ± 0.01 0.76 ± 0.02 688 ± 4 0.9999 07/03 37 52
Spain 46.94 3.55 ± 0.06 0.43 ± 0.03 606 ± 2 0.9997 05/03 28 40
Italy 60.36 3.75 ± 0.02 0.51 ± 0.01 581 ± 1 0.9999 23/02 37 52
United States 327.20 3.95 ± 0.01 1.08 ± 0.04 456 ± 5 0.9997 01/03 47 64
France 67.00 3.27 ± 0.03 0.59 ± 0.02 451 ± 1 0.9998 15/02 53 63
Switzerland 10.23 3.77 ± 0.03 0.36 ± 0.02 199 ± 1 0.9999 06/03 32 45
Germany 83.02 3.71 ± 0.02 0.45 ± 0.01 110 ± 0.3 0.9999 09/03 36 50
Denmark 5.81 3.60 ± 0.02 0.53 ± 0.01 106 ± 0.4 0.9999 16/03 23 36
Austria 8.86 3.30 ± 0.04 0.62 ± 0.03 80.5 ± 0.2 0.9997 13/03 26 38
Finland 5.52 4.31 ± 0.14 0.20 ± 0.03 59.6 ± 0.3 0.9995 22/03 33 45
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less affected by noise. Still, we notice that the information
contained in c(t) is equally valuable and sometimes simpler to
obtain, in particular, the position and value of its inflexion points
and single maximum.

Next, we aim to prove that the ansatz in Eqs 1, 2 reproduces
the behavior of COVID-19 in ten different western countries
using actual data up to the time of submission (revised version,
March 2021). We observe a first wave that is relatively
homogeneous among all countries (if properly normalized)
and that could be considered strongly mitigated around May-
June everywhere (Section Averaged profile). Other waves have
later developed, which are more heterogeneous because they
reflect each country’s different responses to the epidemics. A
superposition of individual elementary peaks has been used to
model these ulterior waves. Even if SHR merely amounts to a
precise fit of the data, we observe that it carries significant
advantages over the mere manipulation of the data series, {ci},
as: 1) it can be extrapolated to the near future (extrapolations
should be treated with great care, but an informed extrapolation
about the behavior in the future is always better than a wild guess)
and, 2) it reduces long lists of numbers to an analytical expression
which only depends on three parameters. Such an analytical

function can be then easily manipulated to get integrals,
derivatives of any order, or to search for extrema/inflexion
points, etc.

2.1.1 Spain
Spain is a country where the disease was particularly virulent in its
first wave, spreading with remarkable strength. The SHR model
agrees well with the data for both deaths and infections (Figure 1
and Tables 1 and 2; a common color code is applied to facilitate
comparisons: red is used for daily cases (empty dots for actual
data and dashed/dotted lines for models), black for 7 days moving
averages of daily cases, and blue is used for accumulated cases
(again, empty dots for actual data and dashed/dotted lines for
models). We have used red vs magenta for daily cases and blue vs
cyan for accumulated cases to allow easy comparison between
models. Other details are given in the figure captions. Together,
these two variables provide a better idea of the epidemic’s course
by identifying two critical items: the impact on the population via
infections and, the impact on the health system via deaths. Three
simple features defining the epidemics that will be rationalized
later in the context of the SIR model are: 1) the exponential
behavior near the origin, 2) the position and value of the single

TABLE 2 | Parameters for SHR model (confirmed infections, first wave). p: country’s population (millions). μ and σ: parameters in the lognormal distribution. C(∞):
asymptotic value for accumulated cases (per million person). R2 and r2: R-squared correlation factors for C(t) and c(t), respectively. tM and t2: maximum and second
inflection point (origin is the first of January 2020).

Country p μ σ C(‘) R2 d1 tM t2

G. Britain 66.65 4.09 ± 0.01 0.47 ± 0.02 4511 ± 11 0.9999 31/01 78 99
Spain 46.94 3.55 ± 0.06 0.43 ± 0.03 5082 ± 14 0.9996 1/02 56 67
Italy 60.36 3.75 ± 0.02 0.51 ± 0.01 4083 ± 9 0.9999 31/01 56 71
France 67.00 3.66 ± 0.03 0.40 ± 0.02 2743 ± 12 0.9998 25/01 68 80
United States 327.20 4.23 ± 0.04 0.93 ± 0.03 13300 ± 400 0.9391 21/01 49 107
Switzerland 10.23 3.79 ± 0.03 0.35 ± 0.02 4028 ± 5 0.9999 26/02 31 41
Germany 83.02 3.84 ± 0.02 0.38 ± 0.01 2038 ± 10 0.9999 27/01 63 23
Denmark 5.81 4.35 ± 0.12 0.28 ± 0.04 2056 ± 30 0.9994 27/02 42 61
Austria 8.86 2.92 ± 0.05 0.57 ± 0.03 2334 ± 7 0.9996 26/02 29 37
Finland 5.52 4.41 ± 0.06 0.29 ± 0.02 1341 ± 12 0.9998 30/01 74 96

FIGURE 1 | SHR/Spain. Left/Right panels: deaths/infections related to COVID-19. Data (circles) are taken from Roser et al. (2021); Dong et al. (2020). Dashed
curves fit the data usingEqs 1, 2. Blue: total accumulated cases per million inhabitant. Red: daily cases per one hundredmillion inhabitants (the factor ×100 is introduced
for the sake of better visibility on the scale of total cases only). The black thin line is a 7 days moving average of data. The green dashed line is the averaged representative
curve discussed in section sct:averaged. Red and blue thin dotted lines give the contributions of individual waves. The inset (left) gives the percentage between
deaths and infections from March to September. The inset (right) enlarges region II where a nearly constant number of infections takes place (red: least-squares fit to
data and constant mean value. Black: 7 days moving average). Changes in data collection methodology took place on April 19th, April 25th and November 4th,
producing discontinuities on the data.
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maximum in the daily number of cases and, 3) an asymmetric
decay toward the future w.r.t the past. The ratio between total
infections and deaths has evolved from about 1% in March to a
maximum of 12% in August, but it has significantly decayed for
the second wave to about 4% at the end of September (inset in
left-hand side in Figure 1).

Three regions are identified in the plots, both for deaths and
infections. The first region (I, wave 1) finishes approximately on
the first of May 2020 (d � 152) and it clearly shows the three
aforementioned features marking its association with an
infectious disease. The second region (II, inset in right-hand
side in Figure 1), goes approximately between the 150th and
200th day, and its hallmark is to sustain a fairly constant level of
daily infections, c(t) � < ci > , which reflects in a linear increase
of the accumulated number of cases, C(t). Region II
approximately terminates near the end of the general
lockdown in Spain, on the 21st of June (d � 173).

Neither the SHR nor the SIR models can account for a
sustained period of constant infections, although they can
accommodate this regime via the slowly decaying queue of the
distribution where the derivative of the function is very low. In
contrast, such behavior can be naturally described via Monte-
Carlo simulation. Likewise, while MC can describe several waves
by producing more than one local maxima due to spatial
inhomogeneous dynamics, SHR and SIR can only describe
such a scenario via a linear combination of individual waves,
each one governed with its own parameters.

Finally, in a third region (III, wave 2) the collective
transmission displays again a similar behavior to the region I,
marking the evolution of an out-of-control disease. The
superposition of these multiple regimes, plus other waves if
needed, describes the overall function well. We notice that the
accuracy in the fit for any wave is not expected to be reasonably
stable until at least the corresponding maximum is well developed
(Section Accuracy of SHR). However such incertitude, the model
predicts that in Spain the number of infections due to the second
wave should be reaching its maximum in December 2020, at most
in January 2021. In addition, the model predicts that the strength
of the second wave is approximately weaker than the first one by a
factor two, as measured by the number of accumulated certified
deaths from SARS-Cov-2. Although these predictions may be
affected by large error bars since the maximum in the second

wave is not yet well developped, those values offer sound
guidance about the course of the disease. We have used this
model to extrapolate the shape of the curve by a fortnight after the
last day of the corresponding available data; the resemblance to
the ulterior course of the disease will be seen in the next weeks.

The accompanying number of registered infections yields a
picture of the likely evolution of deaths in the following days, even
if the variation in the absolute numbers from the first to the
second wave is dominated by the change in the number of tests
performed. Given the large dispersion of raw data due to
difficulties to collect them it is clear the necessity to perform
moving averages and the advantages of working with least-square
approximants that can be extrapolated a few days ahead, a
statement that is true for the behavior of other countries.
While deaths only show two waves so far, infections identify
at least four local maxima that can be correlated with different
events, like the end of the summer vacations or the occurrence of
several bank holidays in Spain where the population has been
moving and mixing in great numbers.

2.1.2 Germany
Compared with other countries with large populations, Germany
has managed the pandemics quite well, as it is observed by
comparing the number of cases per inhabitant. Moreover, its
evolution has been recorded with consistency both for deaths and
infections. Therefore, it is an appropriate benchmark for
any model.

Similarly to Spain, the SHR model can be used to accurately
represent the disease evolution using only three parameters per
wave (Figure 2). Curiously enough, best-fit values for μ and σ are
quite similar to Spain (Tables 1, 2), indicating that, independently
of the absolute strength, there are common underlying features in
both cases. Therefore, it is interesting to explore the ability of a
single normalized averaged curve to represent such contrasting
cases as Spain and Germany, using C(∞)∝ cM as the single only
free parameter. Such a curve is represented in Figures 1, 2 by the
green dashed line having μ � 3.53 and σ � 0.56 (Section
Averaged profile), and it is clear that despite having such a
limited freedom for fitting (since it only depends on one
parameter), it provides a very reasonable approximation to the
data. In contrast to Spain, the ratio between total infections and
deaths in Germany evolved from about 1% in April to 4% in

FIGURE 2 | SHR/Germany. Symbols as in Figure 1.
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September, which is about three times lower than for Spain (inset
in Figure 2).

2.1.3 Other Countries
We also prove the capabilities and versatility of the SHR ansatz to
reproduce the observed data by applying the same methodology
to a pool of western countries: Great Britain (GBR), Italy (ITA),
United States (United States), France (FRA), Switzerland (CHE),
Denmark (DNK), Austria (AUT) and Finland (FIN), cf. Figures
3, 4. In general, the agreement is quite good, both for deaths and

infections. Among other advantages, this procedure allows a
quick and simple monitoring of the evolution of the disease in
the different countries. In particular, it is a useful tool to identify
and forecast the appearance of a second wave. At the moment of
writing, only the United States has fully developed the maximum
associated with the second wave and, from the combined
behavior of deaths and infections, it could be argued that the
country is clearly heading toward a third wave. Since this is the
only case so far, it is not possible to characterize well such a
second wave by a proper average of different countries, although

FIGURE 3 | SHR/Other countries (I). Symbols as in Figure 1. Changes in methodology took place in United Kingdom (GRB) on May 20th and July 3rd, and in
France (FRA) on May 28th.
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it seems fair to say that it is represented by a wider distribution of
daily deaths, (e.g. the second component represented by the
dotted red curve corresponds to having μ � 5.5 and σ � 1.2)
and a lower value at the peak by about a factor 2.

2.1.4 Regions: NYC vs Madrid
Prominent places where the infection spreads quickly are densely
populated regions, which constitute the core of the propagation of
the disease. Therefore, it is interesting to compare the distribution
of cases in those regions. We have juxtaposed the performance of

New York City (9.1 M-people, NYC) and the Community of
Madrid (6.7 M-people, CAM) in the first wave (Figure 5). To
highlight the similarities rather than the differences they are
superimposed in such a way that the position (day) of the
maximum coincides. Furthermore, CAM has been scaled by
the ratio of respective populations, which makes the value at
the maximum very similar for both regions. Despite all the
differences between these regions, it is clear that a typical
pattern emerges, which leads us to investigate the advantages
of working with averages.

FIGURE 4 | SHR/Other countries (II). Symbols as in Figure 1.
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2.1.5 Averaged Profile
Normalizing and superimposing the curves for COVID-19
deceases on different countries such that the maximum in
c(t) is in a common position (tM) allows us to focus on
similarities. Despite slight differences, nine out of the ten
arbitrarily chosen western countries are all well represented
by a normalized average function, 〈c(t)〉, (Figure 6).
United States shows as an outlier; a warning about the quite
different boundary conditions from the other European
countries. Since second waves are not fully developed (except
in United States) it is not possible yet to ascertain if such a
universal average could represent faithfully second waves, even
if maybe with different effective values of μ and σ owing to the
different boundary conditions that may apply. We have not
tried the same procedure with the infected because of the greater
temporal and spatial variability of procedures used to define that

variable. However, results for deaths in the first waves make us
believe that such a representative average could also be applied
to a properly defined observable for infections. Excluding
United States, the maximum average error made by
substituting the actual data by the average function (ϵ � c(t) −
< c(t)> ) is ≈ 0.03 in units of cM , which happens near the
inflections points where the function c(t) has decayed to ≈ 0.4
(see inset in left panel in Figure 6). Therefore, the averaged
curve yields an answer with a fractional error of ≈ ±5%, which
is an excellent initial guess taking into account that it only
depends on a single parameter, cM . Such parameter cM can be
easily obtained from a single point: the maximum value in the
daily distribution of cases for each wave, which we derive from a
moving average of a few days (seven days makes appropriate
averages that account for regular weekly routines and removes
most of the noise for all the cases we have analyzed).

FIGURE 5 | Comparison of the evolution of number of deaths in NYC and the region of Madrid (CAM) during the first wave. NYC (9.1 M people, red, down pointing
triangles,▽, dashed line) andMadrid (6.7 M people, black, upwards pointing triangles,△, dotted line) during the first wave. The data and SHR fits for both locations were
juxtaposed matching the day with the maximum number of deaths, aiming to highlight the similarities. The values of the CAM were also scaled to the ratio of population

between the two regions (9.17.6) to enable a better comparison.

FIGURE 6 | Averaged profile. Daily c(t) (left panel) and accumulated C(t) � r(t) cases (right panel) for ten different countries, normalized to its maximum value and
displaced rigidly in time so C″(t) � c′(t) � 0 the same day. Color codes are: (1) Spain (blue), (2) Germany (red), (3) France (green), (4) United States (orange), (5) Italy
(magenta), (6) Great Britain (cyan), (7) Switzerland (purple), (8) Denmark (brown), (9) Austria (darker blue) (10) Finland (darker red). The black thick dashed line gives the
average over the ten countries, with μ � 3.53, σ � 0.56.
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2.1.6 Accuracy of SHR
To be able to confidently use a least-squares statistical regression
to a given data set {Ci} ((i � 1, n)) the main question is howmany
data points, n, are needed to yield a reasonable estimation of the
evolution of the epidemics based solely on the extrapolation of the
fitted functions. Such question is relevant considering how
unreliable extrapolations usually are (Press et al., 2007).
Indeed, any simple algorithm to forecast the evolution of an

epidemics can only be valuable if reasonable error bars can be
assigned to predictions.

A simple target to quantify the error is to study the
behavior of the expected total number of cases, C(∞), as a
function of n. Figure 7 shows the variation of the predicted
asymptotic value as a function of the available amount of data
after the second inflexion point. In most cases, a fractional
accuracy of ±15% is achieved a fortnight after the second

FIGURE 8 | SIR/Spain. Left upper panel: exponential fit near the onset. Right upper panel: initial iteration for deaths (see text). Left lower panel: final iterations for
deaths. Right lower panel: final iterations for infections. Blue: accumulated cases, R(t) (per million people). Red: daily cases, I(t) (×100 to increase visibility in the same
scale as R). Black is a 7 days moving average of data to help the eye.

FIGURE 7 | Accuracy of SHR best fits. Starting at the second inflection point, t2, fractional error in the evolution of the predicted accumulated number of casesC(t)
for: (1) GBR (green), (1) ESP (blue), (2) ITA (red), (3) GBR (green), (4) FRA (orange), (5) United States (cyan), (6) CHE (dashed darker green), (7) DNK (dashed darker blue),
(8) DEU (dashed darker red), (9) AUT (dashed darker orange) (10) FIN (dashed darker cyan). The region ±5% is delimited by black dashed lines. A common normalizacion
has been used by making C(t2 + 40) � 1 for all cases.
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inflexion point, which is further decreased to ±5% in another
fortnight.

2.2 Susceptible-Infected-Removed (SIR)
So far, we have shown that SHR qualifies as a quick and
straightforward way to describe the evolution of an infectious
disease. If adequately used, i.e., attached with appropriate error
bars, it can be extrapolated to make predictions in the near future,
since the functional forms associated with Eqs 1, 2 adapt so well
to the observed data.

However, a better understanding of the dynamics of the
epidemics can be obtained from a set of differential equations
which describe its time evolution. The simplest model for the
evolution of a contagious disease is to postulate that the rate of
new infections is proportional to the number of infected people

itself, dI(t)dt � I(t)
τ0
, which results in an unbound exponential growth,

I(t)∝ e
t
τ0 , and makes a characteristic mark for the onset of a

pandemic.
Such a simple model does not take into account how the rate of

infections decreases as the number of infections approaches the
total population. Therefore, a refined version is to divide a given
population of size N into three classes (S, I ,R): 1) susceptible
entities who can catch the disease, S(t), 2) infected ones who have
the disease and transmit it, I(t), and 3) removed ones who have
been isolated, died, or recovered and become immune, and are
therefore not able to propagate the disease, R(t). In this model,
individuals pass from the susceptible class S to the infective class I
and finally to the removed class R with rates determined by a set
of ordinary differential equations (ODEs) (Kermack and
McKendrick, 1927; Anderson, 1991; Hethcote, 2000; Weiss,

FIGURE 9 | SIR/Germany. Left/Right panels: Deaths/Infections. Blue: total cases, r(t). Red: daily cases, i(t) (×10). Other symbols as in Figure 8.

FIGURE 10 | SIR (deaths)/FRA, ITA, GBR, and CHE. Respectively left to right and top to bottom. Symbols and lines as in Figure 8.
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2013). The ODEs derive from the interactions of the entities in
the different classes, which can be represented as

S + I → 2I , I →R,

where we assume generalized mass-action kinetics (Müller and
Regensburger, 2012) (with slightly different scaling with respect to
N). First, it is assumed that the number of susceptible individuals
decreases at a rate proportional to the density of infected, i(t) � I(t)

N
times the number of susceptible individuals, S(t),

dS(t)
dt

� −(S(t))
n

τ0
i(t), (3)

where τ0 is an adjustable parameter that represents a typical time
to transmit the disease, and n is a parameter that influences the
ability of the disease to infect susceptible individuals in a non-
linear way, (e.g. it might represent the effect of the viral load). Its
main effect is to alter the temporal scale of the epidemics, which
in some circumstances facilitates the fitting of the model to real
data. The standard SIR model is recovered with n � 1.

Removed entities originate from infected; therefore, its
variation is assumed to be proportional to the number of infected,

dR
dt

� (I(t))
τ1

, (4)

where τ1 is an adjustable parameter that represents a typical time
to recover from the disease. This equation merely helps to count

the total number of removed from the beginning of the infection
up to a given day t,

R(t) � ∫t

0

(I(u))
τ1

du. (5)

Lastly, the infected vary according to the inflow of susceptible
individuals who become infected minus the outflow of infected
that have been removed,

dI
dt

� (S(t))n
τ0

i(t) − I(t)
τ1

, (6)

The derivative dI
dt moves from positive to negative depending

on the balance between both terms in the equation and it
determines a single peak in I(t) (for n � 1, I′(t) � 0 for S(t)

N � τ0
τ1).

The task at hand for a given population of N elements is to
determine the parameters, τ0, τ1 and n, that best reproduce the
behavior of the epidemics by solving the coupled system of
differential Eqs 3, 6, subject to some initial conditions, e.g.,
S(0) � N − 1, I(0) � 1. Good agreement with data can be used
to lend an interpretative value to τ0 and τ1 (unlike parameters μ
and σ which only have a statistical meaning). The ratioR0 � τ1

τ0
is

called the effective reproductive number; values R0 ≫ 1
characterize a virulent disease where R(∞) � S(0).

First, we focus on the task of simulating a population where
s(0) � S(0)

N � r(∞) � R(∞)
N � 1. For this particular case, R0 ≫ 1

and the entire susceptible population is removed at the end. The
proposed algorithm goes as follows.

1) We use the daily number of deaths to identify the position
and maximum value in the infections/deaths data: tpM and
ipM .

2) τ0 is the main parameter that determines the position of
the peak in i(t). We estimate a value for τ0 that brings the
maximum in i(t) near t*M .

3) We get an approximate value for τ1 from the expression
ipM � 1 − 1

R0
(1 + lnR0) (Weiss, 2013).

4) The value i*M yields N in the particular case of
R(∞) � N � cM . We adjust the value ofN to agree with ipM.

5) We minimize the root-mean square deviation,
χ
N �

���������������
1
n∑n

i�1(Ci − R(ti))2
√

, between the number of

FIGURE 11 |Monte-Carlo simulations. Left panel: MC (continous) vs SIR (dashed). N � 10000. Red/Magenta: infected. Blue/Cyan: removed. Parameters used in
MC are: pi � 0.5*i(t), pr � 0.1. Parameters used in SIR are: τ0 � 2, τ1 � 8. Middle panel: various MC scenarios for infected (dotted) and removed (dashed). Thick black:
probabilities as in left panel. Blue: nearest-next neighbors increased probability of infection increases to pi � 0.75 i(t). Red: both probabilities for infection and removal are
kept constant values, pi � 0.1 and pr � 0.05. Right panel: average and standard deviation (inset) of 10 random realizations for pi � 0.2*i(t) (double for nearest-
neighbors infections) and, pr � 0.05.

TABLE 3 | Parameters for SIR model (first wave).N (number of individuals), τ0 and
τ1 (given in days). Upper: deaths per million people. Lower: infections per
million people.

Country N τ0 τ1

Spain 622 1.81 18.23
G. Britain 621 2.57 22.47
Italy 586 2.47 25.59
France 454 3.68 19.41
Switzerland 200 2.97 16.70
Germany 112 2.48 23.15
Country N τ0 τ1
Spain 5,082 3.11 18.05
Germany 2,111 3.49 12.50
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accumulated cases predicted by the model, R(t), and the
recorded data, Ci, to find optimal values for τ0, and τ1.

2.2.1 Spain
Similarly to the SHR analysis we have presented above, we illustrate
the performance of the SIR model by first looking at the distribution
of deaths and infections in Spain (Figure 8). The lower left panel
shows how numerical solutions to SIR equationsmatch very well the
temporal behavior of the epidemics under the condition s(0) �
r(∞) � 1 for optimized values of τ0 and τ1 (Table 3). Dispersion of
data in the daily reported cases is usually smaller before the peak is
reached (the quasi-exponential region) and fluctuations grow in
importance after the maximum is reached–which is a general
observation holding for most of the countries we have studied.
We assign it to the balance between different currents transferring
individuals between the three classes, the phenomenon responsible
for the appearance of a single maximum in daily cases for a given
wave in the pandemics.

The proposed procedure works for the deaths subset as
follows. First, the curve of daily cases is followed up to the
appearance of its maximum, which to circumvent the noise is
identified from a smoothed curve obtained by a five-day moving
average, IpM(tpM � 96) � 17.1 per million people (the single daily
maximum value is IM(tM � 94) � 20.2). The SHR model for
accumulated deaths using only data up to six days past the
maximum yields a prediction of total deaths of N � 383,
which is off the final mark by about 40%.

Once the maximum is identified, the quasi-exponential behavior
near the origin is used to estimate an initial value for τ0
(Supplementary Eq S4). For Spain, the first case happens at
t � 65, and the first inflexion point is at t1 � 82. Therefore, the
first 10 points (about halfway to t1) are used to get an exponential fit
to the accumulated number of cases that yields τ0 ≈ 2.8 ± 0.3. Such
a value, combined with an initial guess R0 � 10 produces a
maximum in the curve of daily deaths at tM � 103. Accordingly,
τ0 is decreased until we locate the maximum closer to the right
position. For τ0 � 2.2 we get tM � 95 and IM � 11.7 (per million
inhabitant). Therefore, we update the value of N using the ratio 17.1

11.7
and start an efficient local Levenberg-Marquardt minimization of
the root-mean-squared deviation between the actual data and the
computed values. This is done to simultaneously optimize N, τ0 and
τ1 (Figure 8, left-lower panel). Taking into account that only data up
to six days past the maximum have been used, it is remarkable that
this self-consistent procedure reduces the fractional error between
the prediction of the SIR model and the data from 40% to ±3%,
being the root-mean-squared deviation (RMSD) between the
accumulated data and the predicted function χ

N � 0.6%. Such a
low RMSD value matches the good visual agreement observed. We
believe that the logic behind the steps proposed above amounts to
more than a recipe to get a best fit, yielding meaning to the values
obtained and their interpretation.

Next, we explore how the SIR model represents the evolution
of the number of infections. The number of infections is a
magnitude that carries larger error bars, but it can provide
timely information on the evolution of the epidemics
(Figure 8, right-lower panel shows the case for Spain). As

expected, infections start earlier than the deaths (t � 32 vs
t � 65), but need more time to attain its maximum value
(t � 54 vs t � 25 after the first case).

A prominent feature is the existence of the second wave of
infections separated from the first one by a region of sustained
constant number of cases, as we have discussed in Figure 1. To fit the
data, we superpose the two waves, each with its own defining
parameters. However, the constant region between waves cannot
be easily accommodated in these models and it is a clear indication of
a different stage in the epidemics with low but sustained transmission
of the disease at a pace similar to the one at which individuals are
removed (while in the SIR model usually it is assumed that τ1 > τ0).
We shall come back to this point in the context of Monte-Carlo
simulation. Finally, we notice that this second wave of infections has
finally overlapped with a third one, as it is noticeable in Figure 1.

2.2.2 Germany
We have applied the same procedure to Germany, a country
which had in the first wave about four times less casualties per
million inhabitant than Spain. The left panel of Figure 9 shows
the final iteration for the daily and accumulated number of
deaths, which again predicts the total number due to the first
wave with accuracy ≈ ±3% of the final true value, even if we
have only used data up to six days past the maximum. The
RMSD between the accumulated data and the predicted
function is χ

N � 0.5%, which reflects the good visual
agreement observed too.

Regarding the infections, it is interesting that the region of
sustained infection is also observed, although a second wave is
only weakly apparent up to the present day (t � 200). Again,
infections start earlier (t � 28) w. r.t deaths (t � 70).
Furthermore, maximum values are attained after a longer
amount of time (t � 63 for infections (t � 63) than for deaths
(t � 30), counted after the first case, following a similar procedure
to the one for Spain.

2.2.3 Other Countries
Finally, similar results have been observed in four more countries:
France, Italy, Great Britain and Switzerland (Figure 10; Table 3).

2.3 Spatial Individual-Based Model
To gain further insight into the spatio-temporal evolution of
COVID-19, we consider next a stochastic discrete-time
individual-based model in which the spread propagates on a
two-dimensional N × N lattice, where each node represents an
individual. The dynamics are Markovian, and we will use Monte
Carlo (MC) to sample from its distributions in time, which is a
technique known to handle well difficult collective effects in
many-body systems, like e.g. the magnetic phase transition in
the 2D Izing model (Peliti, 2011). The N2 individuals can be in
any of the three states of the SIR model, making transitions
between them with two probabilities: 1) for someone susceptible
to be infected S→ I , pi and, 2) for someone infected to recover
and be removed I →R , pr . At each time-step, individuals make
transitions between classes according to the corresponding
probabilities. We consider various scenarios of uniform and
spatially dependent Markov dynamics.
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First, we start with a single isolated case of infection per 104

individuals, and we use pi(t) � i(t)
τ0

for S→ I in close analogy to
the SIR model, while we assign a constant value pr � 1

τ1
to the

second transition probability, I →R. Comparing MC
simulations for N � 100 with pi(t) � 1

2 i(t) and pr � 1
10 to the

deterministic SIR with τ0 � 2.1 and τ1 � 9 yields an excellent
agreement between both approaches for same initial values,
which confirms the adequacy of Monte-Carlo techniques (left
panel in Figure 11, where both results cannot be distinguished).
By way of example, we modify the model to increase the
probability of infection of individuals in next-neighbors
contact with members already infected to pi � 3

4 i(t). As
expected, infections grow faster near the onset, the daily
maximum happens earlier and results in a larger and narrower
peak (while keeping the final total number the same, Figure 11
blue dotted line compared to thick dotted line).

On the other hand, a scenario where the infection
probability is kept constant (pi � 0.1, pr � 0.05) results in a
wider and smaller maximum (the infection and recover
constant probabilities have been adjusted to yield the peak
near the same MC steps on the previous cases, Figure 11 red
dotted line compared to thick dotted line). For these
conditions, a typical temporal evolution of individuals
(pixels) is shown in Figure 12. A weak tendency to
clustering is observed, although the system is seen to reach
a quasi-homogeneous state fast.

Unlike SIR, this model can sustain in a natural way a constant
background of infections if at some point in the epidemics pi
becomes very similar to pr , establishing a transient regime which
we categorize as qualitatively different from the region where the
daily distribution derived from SHR or SIR is simply too low. This
is a feature that can be observed in real data (Figure 1 inset in the
right-hand side).

Finally, we checked how statistical properties of the model
perform and scale under different lattice sizes and parameters
via simulation. The distributions over time for N � 100 and
N � 1000 are virtually indistinguishable as long as the initial
infectious individuals are kept in the same ratio. In order to
further visualize the stochasticity under the chosen scale, we

show in the right panel of Figure 11 ten randomly chosen
realizations out of one hundred runs with random initial
positions of infectious in the lattice. As the starting day where
the infection expands is random, we have rigidly displaced
the time of the samples such that they peak on the same day.
Then, the ten different realizations and their averaged value
lie nicely on the same curve and the standard deviation
displayed in the inset is seen to be acceptably small.

CONCLUSION AND FUTURE VENUES

We have analyzed and compared three mathematical approaches
of increasing complexity to investigate the dynamics of COVID-
19. A take-homemessage is that all three approaches have enough
flexibility to embody the pandemics’ actual behavior for ten
arbitrarily chosen countries. However, they display different
error bars and have different abilities to be extrapolated into
the future to produce valuable predictions.

We have proved that a least-squares SHR-model based on
the lognormal distribution is well suited to describe the
epidemic’s evolution using only two free parameters per
infection wave. Confronted against real data up to the
second inflexion point, the values determined for these
parameters are well converged and stable, guaranteeing
fractional error bars of ±5%. Therefore, the SHR-model is
suitable to extrapolate tendencies to the next one or two weeks,
even in the presence of noisy data. A simpler averaged version
depending only on a single free parameter per wave has been
shown to be adequate to be used as a first approximation, albeit
with larger associated incertitudes. We have also considered a
generalized deterministic SIR dynamics to analyze the
temporal evolution of the disease. In this case, the
corresponding two free parameters are well converged and
stable once the maximum in the daily distribution of cases is
passed, i.e. about a fortnight before the SHR reaches a similar
accuracy. Besides the two deterministic models, we have
considered stochastic individual-based dynamics reflecting
the daily changes in individuals’ classes. We examined both

FIGURE 12 |MC/Spatial. Typical evolution of individuals (pixels) with MC steps (10 steps between frames). Green, red and blue correspond to susceptible, infected
and recovered. Other parameters are: N � 100, pi0 � 0.001, pi1 � 0.1, pr � 0.05.
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the case of uniform and neighbour-dependent transitions via a
Monte-Carlo simulation, which has an excellent
correspondence with the analogue SIR model’s temporal
evolution.

While such simple dynamics ignore individual, spatial or
further inhomogeneities (e.g., genetic, socioeconomic, or other
differences) we have proven that they can reproduce, predict and
forecast relevant features of the actual COVID-19 dynamics. In
particular, they provide reasonably robust ways to monitor and
forecast the actual temporal evolution of contagious diseases in
different environments, while only requiring basic
mathematical tools.

The analysis of ten different countries makes us conclude
that the SHR model can be extrapolated into the future with at
most a 5% fractional error after a fortnight passed the second
inflexion point. On the other hand, the SIR model, which
includes two free parameters only too, seems more stable and
can be used with a similar accuracy about one week passed the
maximum. Finally, the MC model is helpful to study the
interactions between separated regions developing the
epidemics.

By comparing SHR and SIR we find an excellent correlation
between functions cσ,μ(t) and iτ0,τ1(t), and their respective
cumulative distributions C(t) and r(t), which suggest that an
analytical parametrized solution for SIR might be possible by
trying a variational-like approach:

iτ0 ,τ1(t) :� cσ,μ(t) + δ(t).
Our results strongly suggest that useful bounds can be

found for δ(t). Such promising venue will be explored in the
future.

On the other hand, the excellent agreement between SIR and
MC (provided the transition probabilities are chosen in
accordance with the hypothesis behind the SIR model) opens
new prospects to whrite spatially resolved SIR-like models that
might be solved applying Markov chains techniques.
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