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Copula functions can be utilized in financial applications to determine the dependence
structure of the financial asset returns in the portfolio. Empirical evidence has proved the
inadequacy of the multi-normal distribution, traditionally adopted to model the financial
asset returns distribution. Copula functions can be employed in a flexible way for building
efficient algorithms and to simulate a more adequate distribution of the financial assets.
This paper aims to describe some simple statistical procedures currently employed to
calibrate the copula functions to the financial market data. Furthermore, we present some
useful methods for choosing which copula function better fits the real financial data. Also,
some algorithms to simulate random variates from certain types of copula functions are
illustrated. Finally, for illustration purposes, the previous procedures described are applied
to two Italian equities. In particular, we show how to generate efficient Monte Carlo
scenarios of equity log-returns in the bivariate case using different types of copula
functions.
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INTRODUCTION

The study of the copula functions is very relevant because of their implementation in the field of
financial portfolio risk management. The copula functions are used in financial applications
since 2000, following the seminal researches of [1, 2]. The crucial matter is the real distribution
of financial data. Empirical evidence has widely proved that the multinormal distribution is
inadequate to model portfolio’s financial asset returns distribution at least from two points of
view:

(1) The empirical marginal distributions are skewed and fat-tailed.
(2) The normal distribution does not consider the possibility of extreme joint co-movements for

financial asset returns.

In other words, the real dependence structure of the financial assets is different from the Gaussian
one and especially under situations of market stress [3]. For this reason, the copula functions can be a
useful and simple tool for implementing efficient algorithms and to simulate the financial asset
returns distribution more realistically.

The copulas allow us to model the dependence structure independently from the marginal
distributions. In this way, we may construct a multivariate distribution with different margins and
the dependence structure given from a particular type of copula function. Therefore, a crucial step in
this context is the choice and the calibration of the most adequate copula function from the real
financial data.
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In this paper, a group of useful methods for calibrating, selecting,
and simulating copula functions is presented. We aim to collect and
to describe in a very simplemanner the principal contributions in this
field provided by the most famous and accredited international
literature (for example [4–18]). In our opinion, the study of
copula functions is very important because these quantitative tools
are valuable for developing advanced financial portfolio models.
Potential applications are in the field of market, credit, and
operational risks. In particular, the copula functions can model
the dependence structure between risk factors (for example, equity
returns, interest rate returns, and foreign exchange returns) in amore
reliable way.

In particular, the credit assets clearly show a non-normal
return distribution and the phenomena of asymmetry,
leptokurtosis, and tail dependence. To take into account these
empirical characteristics of credit asset return distributions, with
particular regard to multiple default events, we may model the
default dependence structure by using different types of copulas.
Technically, the times until default of each obligor in the loan
portfolio may be simulated following a copula-based approach
first illustrated in Li [1].

The copula functions have been also applied in the field of
portfolio credit asset allocation where the optimal portfolio
composition [19] may change by utilizing various types of the
copula. The crucial aspect is the choice of the kind of copula better
describing the default dependence structure of credit assets in a
portfolio (see, for example [20]).

Further applications of copula functions in the financial risk
management have been also developed by [21–25]. Nowadays,
the copula functions find a precious application also in the
estimate of the systemic risk generated by the Systemically
Important Financial Institutions (see, for example [26–28]).

The implications in the field of the macro-prudential
regulation on the global financial system are evident [29, 30].

Finally, in this paper, the described statistical methods for
calibrating, selecting, and simulating copula functions are
implemented to an empirical financial data set concerning the
log-returns of two Italian equities: Olivetti and TIM. When it is
possible, we show as the copula approach performs better than the
bivariate normal distribution in modeling the real financial data.

The paper is structured as follows. In Definition of the Copula
Function Section, a brief definition of copula function is given,
describing the main families of copulas utilized in financial
practical applications1. In Parameter Estimation of a Given
Copula Section, some quantitative approaches to estimate the
parameters of a determined copula function from real data are
presented. The procedures for selecting the type of copula
function which better fits empirical data are shown in Selecting
the Right Copula Section. In Simulation Algorithms Section, the
algorithms to simulate random variates from some types of
copula are illustrated. An application to a time series of the
log-returns for two Italian equities is performed in Application to
Two Italian Equities Section. Finally, in Concluding Remarks
section, we draw some concluding remarks.

DEFINITION OF THE COPULA FUNCTION

An n-dimensional copula2 is a multivariate distribution function
(d.f.) C, with uniform distributed margins in [0, 1] (U(0, 1)) and
the following properties:

1. C: [0, 1]n → [0, 1];
2. C is grounded and n-increasing;
3. C has margins Ci which satisfy Ci(u) �C(1, . . . , 1, u, 1, . . . , 1) �

u for all u ∈ [0, 1].

It is obvious, from the above definition, that if F1, . . . , Fn are
univariate distribution functions, C(F1(x1), . . . , Fn(xn)) is a
multivariate d.f. with margins F1, . . ., Fn, because Ui � Fi(Xi),
i � 1, . . . , n, is a uniform random variable. Copula functions are
a useful tool to construct and simulate multivariate
distributions.

The following theorem is known as Sklar’s Theorem [31, 32].
It is the most important theorem about copula functions because
it is used in many practical applications.

Theorem3: Let F be an n-dimensional d.f. with continuous
margins F1,. . ., Fn. Then it has the following unique copula
representation:

F(x1, . . . , xn) � C(F1(x1), . . . , Fn(xn)). (1)

From Sklar’s Theorem we see that, for continuous multivariate
distribution functions, the univariate margins and the
multivariate dependence structure can be separated. The
dependence structure can be represented by a proper copula
function. Moreover, the following corollary is attained from (1).

Corollary: Let F be an n-dimensional d.f. with continous
margins F1,. . ., Fn and copula C (satisfying (1)). Then, for any
u � (u1,. . ., un) in [0, 1]n:

C(u1, . . . , un) � F(F−1
1 (u1), . . . , F−1

n (un)), (2)

where Fi
−1 is the generalized inverse of Fi.

A trivial example is the copula of independent random
variables (the product copula). It takes the following form:

Cind(u1, . . . , un) � u1 · . . . · un.

Another example is the Farlie–Gumbel–Morgenstern (FGM)
copula, which in the bivariate case is defined by:

C(u1, u2) � u1u2[1 + α(1 − u1)(1 − u2)], − 1≤ α≤ 1.

Elliptical Copulas
The class of elliptical distributions provides useful examples of
multivariate distributions because they share many of the
tractable properties of the multivariate normal distribution.
Furthermore, they allow modeling multivariate extreme events
and forms of non-normal dependencies. Elliptical copulas are
simply the copulas of elliptical distributions. Simulation from

1i.e.: the class of the elliptical copulas and the class of the Archimedean copulas.

2The original definition is given by Sklar (1959) [31–33].
3For the proof, see Sklar (1996) [32].
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elliptical distributions is easy to perform. Therefore, as a
consequence of Sklar’s Theorem4, the simulation of elliptical
copulas is also easy.

Normal Copula
The Gaussian (or normal) copula is the copula of the multivariate
normal distribution. The random vector X � (X1, . . ., Xn) is
multivariate normal iff:

(1) The univariate margins F1, . . ., Fn are Gaussians;
(2) The dependence structure among the margins is described by

a unique copula function C (the normal copula) such that5:

CGa
R (u1, . . . , un) � ΦR(φ− 1(u1), . . . ,φ− 1(un)), (3)

where ΦR is the standard multivariate normal d.f. with linear
correlation matrix R and φ−1 is the inverse of the standard
univariate Gaussian d.f.

If n � 2, Eq. 3 can be written as:

CGa
R (u, v) � ∫φ− 1(u)

−∞
∫φ− 1(v)

−∞
1

2π(1 − R2
12)1/2 exp{ − s2 − 2R12st + t2

2(1 − R2
12) }dsdt,

where R12 is simply the linear correlation coefficient between the
two random variables.

t-Student Copula
The copula of the multivariate t-Student distribution is the
t-Student copula. Let X be a vector with an n-variate t-Student
distribution with ] degrees of freedom, mean vector μ (for ]> 1),
and covariance matrix ]

]−2Σ (for ]> 2)6. It can be represented in
the following way:

X �d μ +
�
]

√�
S

√ Z, (4)

where μ ∈ RnS∼χ2] and the random vector Z∼Nn(0,Σ) are
independent.

The copula of vector X is the t-Student copula with υ degrees
of freedom. It can be analytically represented in the
following way:

Ct
],R(u) � tn],R(t−1] (u1), . . . , t−1] (un)), (5)

where Rij � Σij/
�����ΣiiΣjj

√
for i, j ∈ {1, . . . , n} and where tn],R denotes

the multivariate d.f. of the random vector
�
]

√
Y/

�
S

√
, where the

random variable S∼χ2] and the random vectorY7 are independent.
t] denotes the margins8 of tn],R.

For n � 2, the t-Student copula has the following analytic form:

Ct
],R(u, v) � ∫t−1] (u)

−∞
∫t−1] (v)

−∞
1

2π(1 − R2
12)1/2{1 + s2 − 2R12st + t2

](1 − R2
12) }−(]+2)/2

dsdt,

where R12 is the linear correlation coefficient of the bivariate
t-Student distribution with ] degrees of freedom, if ]> 2.

Archimedean Copulas
An Archimedean copula can be written in the following form:

C(u1, . . . , un) � ψ−1[ψ(u1) +/ + ψ(un)] (6)

for all 0≤ u1, . . . , un ≤ 1 and where ψ is a function often called the
generator, satisfying:

i. ψ(1) � 0;
ii. for all t ∈ (0, 1), ψ′(t)< 0, i.e. ψ is decreasing;
iii. for all t ∈ (0, 1), ψ″(t)≥ 0, i.e. ψ is convex.

Examples of bivariate Archimedean copulas are the following:

Product Copula

ψ(t) � −ln t; C(u1, u2) � u1 · u2.

Clayton Copula9

ψ(t) � t−α − 1, α> 0; C(u1, u2) � (u−α1 + u−α
2 − 1)− 1/α.

Gumbel Copula10

ψ(t) � (−ln t)α, α≥ 1; C(u1, u2)
� exp{− [(− ln u1)α + (− ln u2)α]1/α}.

Frank copula11

ψ(t) � −ln e
−αt − 1
e− α − 1

, α ∈ R; C(u1, u2)

� −1
α
ln(1 + (e−αu1 − 1)(e−αu2 − 1)

e−α − 1
).

Extensions to the multivariate case are the following:

Cook–Johnson Copula12

4See Eqs. 1 and 2.
5As one can easily deduce from (Eq. 2).
6If ]≤ 2, then the covariance matrix is not defined.
7Y has an n-dimensional normal distribution with mean vector 0 and covariance
matrix R.
8All the margins are equally distributed.

9Clayton (1978) [33].
10Gumbel (1960) [34], Hougaard (1986) [35].
11Frank (1979) [36].
12It is a multivariate extension of the Clayton copula.
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C(u1, . . . , un) � ⎛⎝∑n
j�1

u−αj − n + 1⎞⎠− 1/α.

Gumbel–Hougaard Copula

C(u1, . . . , un) �

exp{ − [(− ln u1)α + (− ln u2)α +/ + (− ln un)α]1α}
Frank Copula

C(u1, . . . , un) � −1
α
ln(1 + (e− αu1 − 1) · (e−αu2 − 1) ·/ · (e−αun − 1)

(e−α − 1)n−1 ).

PARAMETER ESTIMATION OF A GIVEN
COPULA

The Maximum Likelihood (ML) Method
Let f be the density of the joint distribution F:

f (x1, . . . , xn) � c(F1(x1), . . . , Fn(xn))∏n
i�1

fi(xi)

where fi is the univariate density of the marginal distribution Fi and
c is the density of the copula given by the following expression:

c(u1, . . . , un) � zC(u1, . . . , un)
zu1 . . . zun

.

We suppose a set of T empirical data of n financial asset log-
returns, χ � {(xt1, . . . , xtn)}Tt�1. Let ϑ � (ϑ1, . . . , ϑn, α) be the
parameter vector to estimate, where ϑi, i � 1, . . .,n is the
vector of parameters of the marginal distribution Fi and α is
the vector of the copula parameters. The log-likelihood function
is the following:

l(ϑ) � ∑T
t�1

ln c(F1(xt1; ϑ1), . . . , Fn(xtn; ϑn); α) +∑T
t�1

∑n
i�1

ln fi(xti ; ϑi).
(7)

The ML estimator ϑ̂ of the parameter vector ϑ is the one that
maximizes Eq. 7, i.e.:

ϑ̂ � argmaxl(ϑ).

The Method of Inference Functions for
Margins (IFM)
According to the IFM method13, the parameters of the marginal
distributions are estimated separately from the parameters of the
copula. In other words, the estimation process is divided into the
following two steps:

i. Estimating the parameters ϑi, i � 1,. . ., n of the marginal
distributions Fi using the ML method:

ϑ̂i � argmax li(ϑi) � argmax∑T
t�1

ln fi(xti ; ϑi)
where li is the log-likelihood function of the marginal
distribution Fi;

(ii) Estimating the copula parameters α, given the estimations
performed in step (i):

α̂ � argmax lc(α) � argmax∑T
t�1

ln c(F1(xt1; ϑ̂1), . . . , Fn(xtn; ϑ̂n); α)

where lc is the log-likelihood function of the copula.

The Canonical Maximum Likelihood (CML)
Method
The CML method differs from the IFL method because no
assumptions are made about the parametric form of the
marginal distributions. The estimation process is performed in
two steps:

i. Transforming the dataset (xt1, . . . , xtn), t � 1, . . ., T, into
uniform variates (ût1, . . . , ûtn), using the empirical
distributions14;

ii. Estimating the copula parameters as follows:

α̂ � argmax∑T
t�1

ln c(ût1, . . . , ût
n; α).

For example, we can estimate the parameter R of the Gaussian
copula (Eq. 3) with the CML or the IFM method in the following
way15:

R̂IFM/CML � 1
T
∑T
t�1

ςΤt ςt

where ςt � (Φ−1(ut1), . . . ,Φ−1(utn)). In this notation uti � ûti
when we are using the CML method and uti � Fi(xti ; ϑ̂i) when
we are using the IFM method, i � 1,. . ., n.

The following recursive procedure16 is used to estimate the
parameter R of the tν-Student copula (Eq. 5):

i. Let R̂1 be the IFM/CML estimator of the R parameter for the
Gaussian copula;

ii. R̂m+1 � 1
T (]+ n] ) ∑T

t�1
ςΤt ςt

1+1
]ςtR̂

−1
m ςΤt

, m � 1, 2, . . .,

where ςt � (t−1] (ut1), . . . , t−1] (utn));

13Joe and Xu (1996) [13].

14In other words, the variates (ût1, . . . , ûtn) are generated from the empirical copula.
15See [7].
16See [4].
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iii. Step (ii) is repeated until R̂m+1 � R̂m. So, the IFM/CML
estimator of the parameter R for the tν-Student copula is
R̂IFM/CML � R̂∞.

Mashal and Zeevi [37] suggest using the following algorithm
to estimate the parameters ] and R of the tν-Student copula:

i. Transforming the dataset (xt1, . . . , xtn), t � 1, . . ., T, into
uniform variates (ût1, . . . , ûtn), using the empirical marginal
distributions.

ii. Estimate R̂ using the Kendall’s τ non parametric estimator:
R̂ij � sin(π2τ̂ij) , i,j � 1,. . .,n.

iii. Perform a numerical search for ]̂, i.e.,

]̂ � argmax
] ∈ (2,∞]

⎡⎣ ∑T
t�1

log(c(ut1, . . . , utn; ], R̂)⎤⎦, where c(u1, . . . , un;
],R) � Γ((] + n)/2[Γ(]/2)]n− 1(1 + y′R−1y)− (]+n)/2

|R|1/2[Γ((]+1)/2)]n∏n

i�1 (1+y2i /])
−(]+1)/2 and

y � (y1, . . . , yn) � (t−1] (u1), . . . , t−1] (un)).

Parameter Estimation and Dependence
Measures
This method works only with one-parameter bivariate copulas.
The main dependence measures17 can be written as a function of
the copula [15]. In some cases analytical solutions are available
and the copula parameter can simply be written as a function of
the dependence measure. Otherwise, a numerical procedure is
necessary.

For instance, for the Gaussian copula we obtain:

R12 � 2 sin(π
6
ρS) and R12 � sin(π

2
τ)

For the Clayton copula:

α � 2τ
1 − τ

.

For the Gumbel copula:

α � (1 − τ)− 1.

For the Morgenstern copula:

α � 3ρS and α � 9
2
τ.

Non-parametric Estimation
So far, the parameters of a given type of copula are been
estimated. Now the empirical copula (or the Deheuvels copula
[38]) is constructed from the sample data. This is any copulas of
the empirical multivariate distribution.

Let {x(t)1 , . . . , x(t)n } be the order statistics and {rt1, . . . , rtn} be
the rank statistics, t � 1,. . ., T of the dataset. We have: x

(rti )
i � xti ,

i � 1,. . ., n.

Any Function

Ĉ(t1
T
, . . . ,

tn
T
) � 1

T
∑T
t�1

∏n
i�1

1[rti ≤ ti] (8)

defined on the lattice ℓ � {(t1T , . . . , tnT) : 1≤ i≤ n; ti � 0, . . . ,T}
is an empirical copula.

The empirical copula density [15] has the following
expression:

ĉ(t1
T
, . . . ,

tn
T
) � ∑2

i1�1
. . .∑2

in�1
(− 1)i1+/+in Ĉ(t1 − i1 + 1

T
, . . . ,

tn − in + 1
T

).

SELECTING THE RIGHT COPULA

In Parameter Estimation of a Given Copula Section, some
methods to calibrate the parameters of a given analytical
representation of copula function are illustrated. Now the issue
is selecting the type of copula function which fits better the
empirical data.

Selecting an Archimedean Copula
The method described in this section (see [13]) can select
the Archimedean copula which fits better real data. An
Archimedean copula has the analytical representation given
by Eq. 6. So, to select the copula, it is sufficient to identify the
generator, ψ.

In the bivariate case (n � 2), Genest and Rivest [13]
defined a univariate function, K, which is related to the
generator of the Archimedean copula through the following
expression:

Kψ(z) � z − ψ(z)
ψ’(z). (9)

A non parametric estimation of (9) is the following:

K̂(z) � 1
T
∑T
t�1

1[ϑt ≤ z] (10)

where ϑi � 1
T − 1

∑T
t�1

1[xt1 < xi1 , xt2 < xi2], i � 1,. . .,T.

We choose a parametric representation for the generator, ψ.
Then, the parameter, α of the selected Archimedean copula is
estimated using, for instance, the following estimation of the
Kendall’s τ:

τ � (T
2
)− 1∑

i< j

sign[(xi1 − xj1) · (xi2 − xj2)].
The parameter α may also be estimated using the IFM or the

CML method. Using α, a parametric estimation of (9) is easily
obtained.

All the steps described above are repeated for different choices
of the generator ψ. To select the Archimedean copula which fits
better the dataset, Frees and Valdez [10] propose to use a QQ-plot
between Eqs. 9 and 10.

17i.e. the rank correlation coefficients: the Spearman’s rho, ρS, and the Kendall’s
tau, τ.
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The optimal copula may also be selected by minimizing the
distance based on the L2 norm between Eqs. 9 and 10:18

d2(K̂ ,K) � ∫1

0
[K(z) − K̂(z)]2dz.

The method described in this section may also be used to
graphically estimate the parameter α of a given Archimedean
copula.

Selecting the Right Copula Using the
Empirical Copula
Let {Ck}1≤k≤K be the set of the available copulas. We choose the
copula Ck which minimize the following distance, based on the
discrete Ln norm, between the same Ck and the empirical copula
as defined in (8):

dn(Ĉ,Ck) � ⎛⎝∑T
t1�1

/ ∑T
tn�1

[Ĉ(t1
T
, . . . ,

tn
T
) − Ck(t1T , . . . , tnT)]

2⎞⎠1/2.

(11)

The distance (Eq. 11) may also be used to estimate the vector
of parameters ϑ ∈ Θ of a given copula C(u; ϑ) in the
following way:

ϑ̂ � argmin
ϑ∈Θ

⎛⎝∑
u∈ℓ

[Ĉ(u) − C(u; ϑ)]2⎞⎠1/2.

SIMULATION ALGORITHMS

In this section, we show a collection of algorithms to simulate
random variates (u1, . . . , un) from certain types of copula C. For
the definition of the copula, these random variates ui are a
determination of correlated uniform(0,1) distributed random
variables. So, to simulate random variates (x1, . . . ,xn) from a
multivariate distribution F with given margins Fi, i � 1, . . . ,n, and
copula C, we have to invert each ui using the marginal
distributions: xi � F−1

i (ui), i � 1, . . . , n.

Simulation From the Gaussian Copula
To generate random variates from the Gaussian copula (Eq. 3),
we can use the following procedure. If the matrix R is positive
definite, then there is some n × nmatrix A such as R � AAT. It is
also assumed that the random variables Z1, . . ., Zn are
independent standard normal. Then, the random vector μ +
AZ (where Z � (Z1, . . ., Zn)

T and the vector μ ∈ Rn) is
multivariate normal distributed with mean vector μ and
covariance matrix R.

The matrix A can be easily determined with the Cholesky
decomposition of R. This decomposition is the unique lower-
triangular matrix L such as LLT � R. Hence, one can generate

random variates from the n-dimensional Gaussian copula
running the following algorithm:

Find the Cholesky decomposition A of the matrix R;
Simulate n independent standard normal random variates
z � (z1,. . ., zn)

T;
Set x � Az;
Determine the components ui � φ(xi), i � 1, . . . , n;
The vector (u1, . . . , un)

T is a random variate from the
n-dimensional Gaussian copula, CGa

R .

Simulation From the tν-Student Copula
To simulate random variates from the t-Student copula (5),
Ct
],R, we can use the following algorithm, which is based on

Eq. 4:

Find the Cholesky decomposition, A, of R;
Simulate n independent random variates z � (z1, . . . , zn)

T from
the standard normal distribution;
Simulate a random variate, s, from χ2] distribution,
independent of z;
Determine the vector y � Az;
Set x �

�
]

√�
s

√ y;
Determine the components ui � t](xi), i � 1, . . . , n;
The resultant vector is: (u1,. . ., un)

T ∼ Ct
],R.

Simulation From the Cook–Johnson Copula
This algorithm is a particular case of the one suggested by
[39] for the generation of multivariate outcomes from a
compound copula. To generate random variates from the
Cook–Johnson copula with a parameter α, we have to
perform the steps below:

Generate n independent random variates, y1, . . ., yn from the
exponential distribution19 with parameter λ � 1;
Generate a random variate, z, from a Gamma(1/α, 1)
distribution independent of y1, . . . ,yn;
Set uj � (1 + yj/z)− 1/α, j � 1, . . . , n;
The vector u�(u1, . . . ,un) is generated from the Cook–Johnson
copula.

The Cook–Johnson copula reproduces a positive dependence
structure. A negative dependence structure may be obtained for
some of the variables by setting upi � 1 − ui.

Simulation From the Morgenstern Copula
The following algorithm [40] generates bivariate random variates
from the Farlie–Gumbel–Morgenstern copula:

Generate independent uniform(0,1) random variates v1 and v2;
Set u1 � v1;
Calculate A � α(2u1 − 1) − 1 and
B � [1 − α(2u1 − 1)]2 + 4αv2(2u1 − 1);
Set u2 � 2v2/(

��
B

√ − A));

18See [7]. 19The exponential distribution has the following form: F(x; λ) � 1 − e−λx , x > 0.
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The vector (u1, u2) is generated from the Farlie–Gumbel
–Morgenstern copula.

A General Algorithm to Simulate a Copula
This method is based on the conditional distributions of
a random vector U � (U1, . . . , Un). In the bivariate case,
we have:

Pr{U2 ≤ u2\U1 � u1} � C2\1(u1, u2)
where C2\1(u1, u2)� lim

Δu→ 0+
C(u1 + Δu, u2) − C(u1, u2)

Δu � zC(u1 , u2)
zu1

.

The Algorithm20 is the Following:

Generate two independent uniform(0,1) random variates v1
and v2;
Set u1 � v1;
Let C(u2;u1) � C2\1(u1, u2). Set u2 � C−1(v2;u1);
The vector (u1,u2) is generated from the copula C.

For instance, for the bivariate Frank copula, we have:

C2\1(u1, u2) � (e−αu2 − 1)e−αu1
(e− α − 1) + (e−αu1 − 1)(e−αu2 − 1)

and

C−1(u; u1) � {u2 : C2\1(u1, u2) � u}

� −1
α
ln(1 + u(e−α − 1)

u + (1 − u)e−αu1).
The above algorithmmay be generalized to the multivariate case:

Generate n independent uniform(0,1) random variates,
(v1,. . ., vn);
Set u1 � v1;
let C(um;u1,. . ., um-1) � Cm\1,. . .,m-1(u1,. . ., um), m � 2,. . .,
n, where

Cm\1,...,m−1(u1, . . . , um) � Pr{Um ≤ um\

(U1, . . . ,Um−1) � (u1, . . . , um−1)}
� zm−1

(u1 ,...,um−1)C(u1, . . . , um, 1, . . . , 1)
zm−1
(u1 ,...,um−1)C(u1, . . . , um−1, 1, . . . , 1) (12)

Set um � C−1(vm;u1,. . ., um-1), m � 2,. . ., n;
The vector (u1,. . ., un) is generated from the copula C.

This algorithm is computationally intensive for high values of
n. It is a difficult issue to compute the conditional
distribution (12).

Simulation From the Empirical Copula
The below algorithm permits to generate a vector of random
variates from the empirical copula (Eq. 8):

Randomly draw a complete observation vector (xt1, . . . , xtn)
from the historical dataset χ;
Using the empirical distribution functions, F̂i, to transform
each component of the observation vector to a set of uniform
variates: ui � F̂i(xti ), i � 1,. . ., n;
(u1,. . ., un) is a vector of non-independent uniforms(0, 1) that
are dependent through the empirical copula.

APPLICATION TO TWO ITALIAN EQUITIES

In this section, we apply the methods of copula function
calibration and simulation described before. We use a
dataset of 1,012 daily observations of the log-returns of
two Italian equities: TIM and Olivetti. In Table 1, the
principal statistics regarding the two Italian equities are
reported. In Figure 1, we plot the empirical standardized
log-returns of TIM against the standardized log-returns of
Olivetti.

We have estimated, with the CML method, the parameters of
different types of the bivariate copula, using the dataset of 1,012
historical daily log-returns observations. In this way, we do not
consider any particular analytical form for the marginal
distributions, and only the copula effects are taken into account.

Therefore, we have selected the copula which better
approximates the empirical copula using the L2 norm (Eq.
11). The results are shown in Table 2.

TABLE 1 |Main statistics of the empirical distribution of the log-returns of TIM and
Olivetti.

Mean Standard deviation

TIM 0.000269 0.025799233
Olivetti 0.000919 0.031200767

Linear correlation Spearman’s rho Kendall’s tau

0.522391 0.517832 0.359868

FIGURE 1 | Plot of the empirical standardized log-returns TIM/Olivetti.
20Introduced by [12].
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Observing the results inTable 2, the t10-Student copula seems to be
the one that better approximates the empirical copula of the dataset.
However, the difference between the t10-Student copula and the
Normal copula is very low. So the Gaussian copula could be
appropriate. We remember that the use of the Gaussian copula
permits us to construct algorithms to simulate scenarios from a
multivariate distribution with different margins. The commonly
used multivariate Normal is only a particular case where all the
margins are Gaussians too.

The simulation algorithms shown in Selecting the Right Copula
Section are applied for simulating 1,000 scenarios for the
standardized log-returns of the equities TIM and Olivetti,
using the parameter estimations in Table 2. In all the cases,
we have used standardized Gaussian margins, because our aim is
only to compare the different copulas. In Figures 2–8 we have
plotted the results.

Comparing the plots in the above Figures with the empirical
distribution obtained from the historical data and represented

in Figure 1, we can see some differences. These deviations may
be caused by an inadequate choice of the margins21. Our aim
was only to compare different types of copulas without
assumptions about the analytical form of the marginal
distributions.

FIGURE 3 | 1,000 Monte Carlo simulations of bivariate random
variates (x1, x2) with t20-Student copula (R12 � 0.53564) and standard
normal margins.

FIGURE 4 | 1,000 Monte Carlo simulations of bivariate random
variates (x1, x2) with t10-Student copula (R12 � 0.54037) and standard
normal margins.

TABLE 2 | CML estimation of the parameters (α or R12) and calculation of the L2

norm for different copula types.

Copula Parameter estimation d2(Ĉ,C)/1012

Gaussian 0.53248 0.00451
t5-student 0.53953 0.00460
t10-student 0.54037 0.00432
t20-student 0.53564 0.00446
FGM 1.55349 0.00595
Gumbel 1.56218 0.00839
Frank 3.82211 0.00507
Clayton 1.12436 0.01583

FIGURE 2 | 1,000 Monte Carlo simulations of bivariate random variates
(x1, x2) with Gaussian copula (R12 � 0.53248) and standard normal margins.

21Standardized Gaussians.
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CONCLUDING REMARKS

This paper is a brief review of the existing methodologies for
calibrating, choosing, and simulating different types of copula
functions. The described methods are applied to a historical
log-returns dataset of two Italian equities. We have seen how
copula functions are a useful tool for implementing efficient
simulation algorithms. Practical algorithms for generating

Monte Carlo scenarios from a multivariate distribution with a
fixed copula and different margins are easily implemented to
simulate financial asset returns. The traditional models use the
multinormal distribution22 to simulate asset log-returns. We can

FIGURE 5 | 1,000 Monte Carlo simulations of bivariate random variates
(x1, x2) with t5-Student copula (R12 � 0.53953) and standard normal margins.

FIGURE 6 | 1,000 Monte Carlo simulations of bivariate random variates
(x1, x2) with Clayton copula (α � 1.12436) and standard normal margins.

FIGURE 7 | 1,000 Monte Carlo simulations of bivariate random variates
(x1, x2) with Farlie-Gumbel-Morgenstern copula (α � 1.55349) and standard
normal margins.

FIGURE 8 | 1,000 Monte Carlo simulations of bivariate random variates
(x1, x2) with Frank copula (α � 3.82211) and standard normal margins.

22i.e. Gaussian copula and margins.
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choose different marginal distributions for building more efficient
algorithms also using a normal copula. The choice of the margins
seems to have a more significant impact than the choice of the type
of the copula on the results of the simulation. In this paper, only the
copula effects are taken into account.

As clearly underlined in the paper, the application to a return
time series of two Italian equities has only a demonstrative scope.
The copula functions may be implemented to a portfolio of n
financial assets traded on different stock markets such as the
American, European and Asian ones.

In the field of portfolio risk management, the copula functions
are precious tools for developing advanced financial risk
measurement models. Traditionally, these quantitative
instruments have been utilized for measuring more adequately
the market, credit, and operational risks of financial institutions.
Successively, copula functions have been also implemented in the
field of the integrated measurement of the different financial risks
by modeling the dependence structure among the market, credit,

and operational losses. Currently, the copula functions are used
for estimating the marginal contribution of each financial
institution to the systemic risk, that is the instability of the
global financial system. The implications in terms of macro-
prudential policy and supervisory choices on financial
institutions are evident.
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