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Financial markets are complex systems where information processing occurs at multiple
levels. One signature of this information processing is the existence of recurrent
sequences. In this paper, we developed a procedure for finding these sequences and
a process of statistical significance testing to identify the most meaningful ones. To do so,
we downloaded daily closing prices of the Dow Jones Industrial Average component
stocks, as well as various assets like stock market indices, United States government
bonds, precious metals, commodities, oil and gas, and foreign exchange. We mapped
each financial instrument to a letter and their upward movements to words, before testing
the frequencies of these words against a null model obtained by reshuffling the empirical
time series. We then identify market leaders and followers from the statistically significant
words in different cross sections of financial instruments, and interpret actionable trends
that can be traded upon.
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1 INTRODUCTION

In his seminal 1970 paper, Fama introduced the notion of an efficient market, within which
the prices of securities fully reflect all information from the past, as well as future expectations
on their returns [1]. In his paper, the empirical evidence Fama cited as supporting this efficient
market hypothesis is zero (or close to zero) serial correlation. However, if financial markets
are truly efficient, then it would be impossible for traders to profit beyond the fundamental
values of the securities. Naturally, the only trading strategy that makes sense in an efficient market
would be buy-and-hold. This brings us then to the elephant in the room: why are there so many
hedge funds (according to https://www.investopedia.com/terms/h/hedgefund.asp, more than
10,000 of them) in the world, and why are so many of them making money? Fundamentally,
all hedge funds engage in some form of technical trading [2–4], frequently dismissed by financial
economists as not founded on firm principles. The profitability of technical trading was first
investigated by Lukac et al. [5] and Brock et al. [6]. Testing 12 technical trading rules for 12
commodities between 1978 and 1984, Lukac et al. found that seven rules produced significant
gross returns, while four rules produced significant net returns and significant risk-adjusted
returns, after taking into account transportation and storage costs. Testing the commonly used
moving average and trading range break rules on the Dow Jones index from 1897 to 1986, Brock
et al. found these technical trading rules generating significant positive returns, especially from
buy signals. Later, Levich and Thomas [7], Parisi and Vasquez [8], Kwon and Kish [9], also
showed that technical trading can be significantly profitable, for currency futures contracts
between 1976 and 1990, for many stocks on the Chilean stock market between 1989 and 1998, and
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for the New York Stock Exchange value-weighted index over
the period 1962 to 1996, respectively.

When the technical trading rules were tested within shorter
subperiods in Refs. [7] and [9], their profitabilities were found to
be lower for the last sub-periods, 1986 to 1990 and 1985 to 1996,
respectively. Kwon and Kish suspected that this was due to the
market becoming more efficient after computerization. But as
they pondered this, a wave of criticism on technical trading
started, led by the papers by Ready [10] and Bajgrowicz and
Scaillet [11]. In these papers, as well as those by Fang et al. [12]
and Taylor [13], technical trading rules found to be profitable in
the earlier periods in Ref. [6] were tested for later periods, and
found to have lost their magic. Taylor, who examined the
performance of momentum-based technical trading rules over
the cross section of Dow Jones Industrial Average component
stocks between 1928 and 2012, found the profitability of these
technical trading rules evolving slowly over time, but are most
profitable between the mid-1960s to the mid-1980s. This
phenomenon was also observed for the performance of hedge
funds. For example, earlier studies by Ackermann et al. and Liang
reported stellar performances of 9.2–16.1% annual return for 906
hedge funds between January 1994 and December 1995) [14], and
monthly returns ranging from −0.10 to +1.35% for 385 hedge
funds between January 1994 and December 1996 [15],
respectively. However, a more recent study by Fung et al. of
1,603 funds between January 1995 and December 2004 found
them delivering 14–24% annual return only between 1995 and
1999 [16]. In 1998, the average return was zero, presumably
because of the Long Term Capital Management crisis, and
generally anemic from 2000 onwards (except for 12% in
2003), because of the NASDAQ crash in 2000. In principle,
these criticisms focused on technical trading rules shown to be
profitable in earlier papers, and therefore do not constitute
definitive proof that technical trading rules as a whole do not
work. For example, it is entirely possible that some rules work
well in a given period, but as they becomes less effective in
another period, other rules would become more profitable. It is
also possible, while a technical trading rule is profitable in a given
period, another rule that we have not considered might do even
better. This last problem of finding the optimal technical trading
rule based on hidden temporal patterns is one ideally suited to
machine learning. In one of the earliest studies, Allen and
Karjalainen used a genetic algorithm to learn technical trading
rules for the daily S&P 500 prices from 1928 to 1995 [17].
Unfortunately, the rules learned did not perform better than
the simple buy-and-hold strategy in out-of-sample test periods,
although some rules did performed better in some periods.
Fernández-Rodríguez et al. had better luck, finding that the
simple technical trading rule is superior to the buy-and-hold
strategy for bear and bull markets [18].

Ultimately, through the literature survey above, we see that
machine learning is also not exhaustive. It finds the best, but not
all that are profitable. Also, technical trading rules discovered
through machine learning (including those using artificial
neural networks [19–21]) do not necessarily perform better
than those learned by human traders. Here let us address the
question why technical trading rules have only short-lived

successes, from the context of information processing by
complex systems. For example, a typical language like
English contains more than 100,000 words, using which we
construct sentences containing about 20 words. However, an
overwhelming majority of the 2010

5
sentences that we form by

randomly selecting words are unintelligible. For an English
sentence to be meaningful, the sequence of words has to
closely obey a set of rules that we call the English grammar,
and further constrained to convey meaning. Because of this
severe reduction of the space of all possible sentences to the
space of all meaningful sentences, we expect in daily usage many
sentences or sub-sentences to be repeated. Another way to look
at this phenomenon, is that recurrent sequences are necessary
for the transmission of meaning or information, and for
information processing in general. Consequently, the rules of the
language make it more likely for repetition to occur. Another
example of information processing in complex systems is the
Krebs cycle in our biological pathways, which gets activated more
than 1013 times a day to produce adenosine triphospate (ATP) [22,
23], a molecule that we constantly consume to stay alive. If we could
measure the concentrations of all transcribed species, the highly
recurrent sequences associated with the Krebs cycle would be
impossible to miss.

Financial markets are also complex systems, in which
participants are constantly learning how to process the
complex information coursing through the system. As they
do so, they add to the complex information in the system.
Therefore, efficient or not, we expect hidden rules and
recurrent sequences to be present in financial markets.
However, as financial agents act on the market, they are
themselves acted upon. As such, no agent or strategy can
dominate forever, even though a previously-dominant strategy
may return to dominance time and again. This explains why
technical trading rules can be profitable (because exploitable
information always exists in the market), and why their
profitabilities are short-lived (because they generate
information that can be exploited by other technical trading
rules). Therefore, when a group of technical trading rules become
unprofitable, another group of technical trading rules become
profitable. This tells us that to hunt for this shifting information,
we should look not only for correlations in time, but also
correlations in space, across different instruments and
different asset classes. So far, technical trading focuses on
temporal patterns representing high-order serial correlations
in individual instruments, but spatio-temporal patterns
involving multiple instruments should also exist, and can be
exploited for technical trading. Surprisingly, after a broad survey
of the literature, we found no previous studies on technical
trading based on spatio-temporal patterns. In fact, when we search
Google Scholar using “pattern recognition” and “multivariate time
series”, we end up with two hits. In the 2011 conference paper by
Spiegel et al. [24], time series segmentation was first used to
define features in the individual time series, before these
features were used to define patterns across the small number
of car accelerator sensor time series. In their 2016 paper [25],
Fontes and Pereira used a three-step method involving
subsequence matching and fuzzy clustering, followed by PCA to
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analyze sensor time series cross section from a gas turbine for
monitoring and fault prediction.

In this paper, we take the natural next step to test the feasibility
of technical trading using spatio-temporal patterns over the cross
section of Dow Jones Industrial Average component stocks, as
well as over cross sections of multiple asset classes including
commodities, bonds, FOREX rates, indices, metals, and oil and
gas. To find these recurrent spatio-temporal patterns, all these
existing works relied on time series segmentation to first convert a
real-valued time series into a symbolic time series. This is
computationally heavy, so instead of time series segmentation,
we describe in Section 2 how we collected and cleaned our data,
and how we map a specific choice of price movements to spatio-
temporal cross sections of strings with lengths up to 5 days and
comprising up to 10 alphabets. Ultimately, with this symbolic
mapping all temporal patterns can be mapped to strings of
alphabets. However, even after this simplification the
extraction of actionable information on financial markets is
not a trivial task, firstly because we have no prior knowledge
what these signals would look like, and must thus analyze
movements within the system, identify recurrent sequences
that appear, and use these to infer the rules of information
processing within financial markets. Such an analysis has been
carried out in various fields to analyze various complex systems
[26–30], and we ourselves have done so for natural languages [31]
and teaching practices [32]. Secondly, the very many signals
overlap in time to mask each other, and more importantly,
participants hide their intentions as they trade. This leads to
the financial markets becoming so “noisy” that one can guess
price movements correctly only slightly more than 50% of the
time (although Kelly showed in 1956 that this is sufficient to
ensure a positive return betting on an outcome [33]). This second
problem also occurs for our gene expression machinery, or the
information processing machinery of other complex systems.
Fortunately, network science has made great strides in

systematically and independently identifying spatial motifs
[34–36], which are collections of nodes that are co-activated
much more frequently than we expected from random and
uncorrelated activation of nodes, or temporal motifs [37, 38],
which are sequences of nodes that are activated one after another.
Spatial motifs can be very large, and we need a lot of data to be
confident that they are not products of random fluctuations.
Similarly, temporal motifs can be very long, making the space of
sequences to search through very large indeed. As far as we know,
there have been no efforts to develop methods for identifying
spatio-temporal motifs, consisting of different cross sections of
nodes at different lags. Therefore, in Section 2, we describe how
to unpack spatio-temporal sequences into collections of temporal
sequences, and thereafter test these empirical sequences against
null models to identify sequences that are repeated more
frequently than by chance. We then report in Section 3 that
in general, there are no actionable serial correlations for single
instruments, but many recurrent multiple-instrument spatio-
temporal sequences exist, which allow one to design trading
strategies around them. Finally, we tested the feasibility of
these trading strategies in Section 4, before summarizing our
findings in Section 5.

2 DATA AND METHODS

2.1 Data
We downloaded two sets of time series data in the form of
comma-separated values (CSV) files. The first set (see
Supplementary Table S1) comprised daily prices of the 30
component stocks of the Dow Jones Industrial Average (DJI).
These belong to the 30 largest publicly-owned United States
companies, which are prominent brand names many people
are familiar with. We used the maximum time period for each
stock, so that we can compare them across the longest possible

FIGURE 1 | (A) The price time series of five financial instruments, mapped to the alphabets ‘A’, ‘B’, ‘C’, ‘D’, ‘E’. When the price of an instrument rises, the
corresponding letter is added to the spatial cross section. (B) For days t � 1 to t � 6, the spatial cross sections are non-empty, but there are no price gains on day t � 7
(and therefore the spatial cross section on this day is empty). Thereafter, on day t � 8, we find a new non-empty spatial cross section. Hence we find a length-6 spatio-
temporal sequence (of non-empty spatial cross sections) that ends on day t � 6, and another spatio-temporal sequence starting on day t � 8. In practice, because
we set the price on a non-trading day to the price on the last trading day, the longest spatio-temporal sequence we have to deal with in this paper is length-5. (C) The
length-6 spatio-temporal sequence shown in (B) can also be thought of as being equivalent to 2 × 2 × 2 × 4 × 2 × 3 � 192 length-6 temporal sequences. Some of these
temporal sequences are shown here.
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time period. The second set (see Supplementary Table S2)
comprised daily prices of three to five instruments each from
six different asset classes, including stock indices, precious metals,
commodities, government bonds, energy materials, and foreign
exchange. The 26 instruments in this second data set were
selected primarily because data was readily available, and also
because they are easily recognizable.

We then imported these CSV files into Python for cleaning.
First, we removed empty cells or cells that contain
errors, before saving the cleaned data as two separate
numpy files. The first file contains the dates in International
Organization for Standardization (ISO) format, while the
second file contains the corresponding closing prices. For
missing prices over weekends or public holidays, we set
them equal to the prices of the previous days. As such, a
financial instrument can only increase continuously for at
most 5 days, as closing prices over the weekends are set to
those on Friday.

2.2 Compiling Lists of Spatio-Temporal
Sequences
To avoid having to deal with the full complexity of financial
markets, but still be able to discover statistically significant
patterns within the data, we map the day-to-day price change
time series to symbolic sequences from a small alphabet. There
are many ways this can be done, depending on what trading
strategy we would like to adopt. For example, if we would like to
watch for 2 days of positive price changes, and buy the
instruments that are most likely to also experience positive
price changes in the next one, two, or three days, we would
choose to map the price changes to letters of an alphabet (one
letter for each instrument), only when the price changes are
positive. This example is illustrated in Figure 1A. Alternatively,
if we would like to sell an instrument whose price is most likely
to fall after 2 days of gain in the prices of two other instruments,
we can map positive price changes to uppercase letters ‘A’, ‘B’,
‘C’, . . ., and negative price changes to lowercase letters ‘a’, ‘b’,
‘c’, . . ..

In Figure 1B, we show howwe organize the symbolic sequences of
the cross section of instruments into spatio-temporal sequences. A
spatio-temporal sequence consists of spatial cross sections like (‘B’, ‘C’),
(‘C’, ‘E’), (‘A’, ‘C’), (‘A’, ‘B’, ‘C’, ‘E’), (‘A’, ‘E’), (‘B’, ‘C’, ‘E’) at successive
times. Spatial cross sections at different times need not be the same in
size, like (‘B’, ‘C’) and (‘A’, ‘B’, ‘C’, ‘E’) for example. Spatio-temporal
sequences also need not be equally long in time. For example, the
spatio-temporal sequence (‘B’, ‘C’)→ (‘C’, ‘E’)→ (‘A’, ‘C’)→ (‘A’, ‘B’,
‘C’, ‘E’) → (‘A’, ‘E’) → (‘B’, ‘C’, ‘E’) has a temporal length of 6. This
spatio-temporal sequence stops here, because in the time series cross
section, no instrument has an increasing price on day 7. The spatial
cross section (‘B’, ‘C’, ‘D’, ‘E’) on day 8 then represents the start of
the next spatio-temporal sequence, which may have a different
temporal length. Going through the time series cross section
{(Δp1,1, . . . ,Δp1,t , . . . ,Δp1,T ), . . . , (ΔpN ,1, . . . ,ΔpN ,t , . . . ,ΔpN ,T )},
where Δpi,t is the price change of instrument i � 1, . . . ,N on day
t � 1, . . . ,T , we then obtain a list of spatio-temporal sequences

{Σ1, . . . ,Σk, . . . ,Σn}, where Σk � σk,1 → σk,2 →/→ σk,mk consists
of mk spatial cross sections σ l � (sl,1, sl,2, . . . , sl,pl). In spatial cross
section σ l , the price changes of 1≤ pl ≤N instruments (whose
symbols are sl,1, . . . , sl,pl) are positive.

2.3 Null Model and Test of Statistical
Significance
In general, when we expand the spatio-temporal sequences into
temporal sequences, and count the number of times they appear,
some temporal sequences will be frequent, while others will be
rare. However, a frequent temporal sequence may be less
informative than a rare temporal sequence, if the former
contains many highly-frequent symbols. In other words, these
frequent temporal sequences can occur by chance, because their
symbols are so common. Therefore, the frequencies of different
temporal sequences must be tested against appropriate null
models, to ensure at the very least that they are not likely to
be obtained by chance.

Depending on what information we are interested in, we
can construct different null models. In Section 3.1, we will
show that the probability of empirically finding positive price
movements in an instrument for r consecutive days is pr , where
p is the probability of finding positive price movement for the
instrument on any given day. This suggests that the
appropriate null model to use for one instrument is
independent price movements on each day. We can of
course use this same null model for all N instruments.
However, in this null model the N instruments would be
uncorrelated in time (between different time lags) and also
in space (between different instruments), when strong cross
correlations between instruments are well known. Using such a
null model, we will find many statistically significant spatio-
temporal sequences with strong cross correlations between
instruments on the same days. There is no gain trading these
spatio-temporal sequences, since we cannot act on strong cross
correlations within the same day. Therefore, we should choose
a different null model that does not throw the baby out with the
bath water.

A simple null model that preserves spatial cross correlations,
but contains no temporal correlations, can be obtained by
reshuffling the empirical spatio-temporal sequences, as shown
in Figure 2. If this reshuffling is done within individual spatio-
temporal sequences, we also preserve the distribution of lengths.
With this null model, and some additional care, it is even possible
to perform statistical testing at the level of spatio-temporal
sequences. However, we chose for simplicity to perform
statistical testing at the level of temporal sequences. A temporal
sequence is a simple word (string of symbols), like ‘BCA’,
‘BCABA’, and so on. To do the test, we extract all possible
words that can be generated from the list of spatio-temporal
sequences. For example, for (‘B’, ‘C’) → (‘C’, ‘E’) → (‘A’, ‘C’), we
can generate the words ‘BCA’, ‘BCC’, ‘BEA’, ‘BEC’, ‘CCA’, ‘CCC’,
‘CEA’, ‘CEC’. We then count the number of times each word
appears after this unpacking of the spatio-temporal sequences.
These are our empirical frequencies.
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Next, we shuffle the empirical spatio-temporal sequences S �
100 times to create an ensemble of null-model spatio-temporal
sequences. For a spatio-temporal sequence of length mk, we can
generate up to mk! null-model spatio-temporal sequences. Some
short spatio-temporal sequences withmk < 5 will be repeated if we
shuffle them S � 100 times, but we need not worry about
repetitions even if the data contains just n � 10 spatio-
temporal sequences, as there will be 〈m!〉n ∼ 1017 distinct
combinations if 〈m!〉 � 50 is the average number of null-
model spatio-temporal sequences that can be generated from
each empirical spatio-temporal sequence. Since we shuffle the
empirical spatio-temporal sequences S � 100 times, after
unpacking the null-model spatio-temporal sequences into
temporal sequences, and counting the number of times
different words appear, we will have a distribution of S � 100
null-model frequencies for each word.

Since we sampled the null model S � 100 times, it is convenient
for us to perform the statistical test at the level p< 0.01. A word that
is significant at this level would have an empirical frequency that is
larger than all S � 100 null-model frequencies. Also, because the
null-model frequencies of all words are obtained simultaneously
from the shuffling of spatio-temporal sequences, we do not need to
make Bonferroni [39] or similar corrections [40] for the multiple
comparisons that we are making. All statistically significant words
will truly be at the p< 0.01 level of confidence. In a sense, by testing
observations against the null model, we are simultaneously testing all
kinds of autocorrelations and cross correlations between the sign
time series of the various instruments.

3 RESULTS

3.1 1-Letter Words
When we analyze each of the 56 instruments independently, by
emitting a single letter when the price increases, we are looking at
bull runs of different durations in their time series. We show the
distributions of durations for stocks in the first data set in
Supplementary Figure S1, and those for instruments in the
second data set in Supplementary Figure S2. Plotted on a
linear-log scale, these graphs are all close to being linear,
suggesting that the distributions are exponential. Such an
exponential distribution arises very naturally if we assume that
the price increase on one day is uncorrelated with a price increase
on any other day. Therefore, if the probability of a price increase
is p, the probability of finding a bull run over r days is simply

pr � exp(r ln p) � exp(−r∣∣∣∣ln p∣∣∣∣). (1)

This result should not surprise us, since it is just an
unconventional way to present a very well known observation
in finance, namely the serial correlation or autocorrelation is
nearly zero [41]. This also means that there is no signal for a
trader to act on, when the 1-letter word lengths are so distributed,
beyond betting on the probability p of getting a price increase on a
given day, regardless of the number of days of price increases
prior to it. According to Fama and others after him, the market is
thus “efficient” [1].

3.2 2-Letter Words
However, this does not mean that there is no actionable price
movement information in the financial markets. In fact, trying to
understand this information by looking at the price movement of
a single instrument is like trying to understand the first sentence
of this paragraph by looking at the distribution {_,_, _, ‘a’, ‘a’, _, _,
_, ‘aa’, _, _, ‘a’, _, _, ‘aa’, ‘a’} of the letter ‘a’ appearing in the words.
If we use two letters, say ‘a’ and ‘e’, the distribution {‘ee’, _, ‘e’, _,
‘ea’, ‘a’, ‘ee’, _, _, ‘aae’, ‘e’, ‘ee’, ‘a’, _, ‘e’, ‘aa’, ‘ae’} is now more
informative (though still not enough for us to comprehend the
sentence). The distribution {‘ee’, ‘i’, ‘e’, _, ‘ea’, ‘a’, ‘ee’, ‘i’, _, ‘aiae’,
‘ie’, ‘ee’, ‘iai’, ‘i’, ‘e’, ‘iaia’, ‘ae’} becomes even more informative if
we include one more letter (‘i’). In this subsection, let us
demonstrate (as a proof of concept) how we can extract more
information from the distribution of 2-letter words. To do this, let
us examine two pairs of instruments, (A � HD, B � TRV) and
(A � platinum, B � USD-EUR), which are chosen because
individually, their distributions of 1-letter words are the least
informative (in that the probability of finding a word with length-
r is closest to the product of independently finding r length-1
words).

For the HD-TRV pair, we used data between Sep 22, 1981 and
Mar 7, 2018. Going through the 9,194 closing prices, we found
1,019 trading days when there were no price increases in either
HD or TRV. The rest of the trading days are partitioned into
1,974 spatio-temporal sequences. The shortest of these spatio-
temporal sequences are {(A)}, {(B)}, and {(A, B)}, which are the
three possible spatial cross-sections. The longest spatio-temporal
sequence is length-22 (price increases over multiple holidays and
weekends). We focused on the 1,676 spatio-temporal sequences
length-5 and shorter. These unpack into 4,213 temporal
sequences, with the distribution shown in Table 1. As
expected, after statistical testing at the level of p< 0.01 most of
the temporal sequences are insignificant, except for BABA and
BABB. This tells us that after a price increase in TRV on day 1,
followed by a price increase in HD on day 2, followed by a price
increase in TRV on day 3, there is a very significant chance of
price increases in either HD or TRV.We can findmore actionable

FIGURE 2 | Shuffling a length-10 spatio-temporal sequence with spatial
cross sections of different sizes, to obtain a null-model ensemble of length-10
spatio-temporal sequences.
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temporal sequences if we relax the criterion of our statistical
testing to p< 0.05.

For the platinum-USD-EUR pair, we used data between Dec
27, 1979 and Mar 13, 2018. Going through the 9,922 prices, we
found 639 trading days when there were no price increases in
either platinum or USD-EUR. The rest of the trading days were
partitioned into 1,884 spatio-temporal sequences, and the
longest spatio-temporal sequence is length-27 (price
increases over multiple holidays and weekends). Focusing
on the 1,449 spatio-temporal sequences length-5 and
shorter, we find that these unpack into 3,185 temporal
sequences, with the distribution shown in Table 2. In this
case, we find BA occurring more frequently than expected
from the null model, at the p< 0.01 level. No other temporal
sequences occur more frequently than expected from the null
model, even at the p< 0.05 level. This tells us that an increase in
the USD-EUR exchange rate is very likely to be followed by an
increase in the price in platinum the next day—an observation
that traders can act on! Interestingly, ABBA, AAABB, and
AAAAB occur less frequently than expected from the null
model, the first two at the p< 0.05 level, while the last at the
p< 0.01 level. The observations on AAABB and AAAAB
suggest that following 3–4 days of increases in the platinum
price, we are likely to find an ensuing decrease in the USD-

EUR exchange rate. This is also an observation that traders can
act on.

3.3 5-Letter Words
In Section 3.2, we illustrated how we can better understand the
information contained in an English sentence by going from
one-letter sequences to two-letter sequences, and how the
information extraction improved with three-letter
sequences. In this subsection, let us show that this is also
true for financial markets, by going to a cross section of five
stocks, (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, using
prices between Feb 16, 1990 and Mar 8, 2018. Out of the 10,248
trading days, there are 2,225 days on which there are no price
increases in any of the five stocks. From the remaining 8,023
trading days, we found 1,987 spatio-temporal sequences of
lengths between 1 and 5. After unpacking, we obtained 158,106
temporal sequences.

Out of 5 + 52 + 53 + 54 + 55 � 3, 905 distinct five-letter
temporal sequences of length up to 5, we found 183 temporal
sequences (< 5%) that are statistically significant at the level of
p< 0.05. Of these, 35 (< 1%) are statistically significant at the
level of p< 0.01. These are not small numbers. The distributions of
dynamical motifs are skewed in favor of longer temporal
sequences. For the p< 0.05 temporal sequences, four are length-

TABLE 1 | Empirical frequencies of 2-letter temporal sequences of up to length-5, corresponding to price increases in HD and TRV. In this table, an asterix indicates statistical
significance at the level of p<0.01.

Seq Freq Seq Freq Seq Freq Seq Freq Seq Freq

A 453 AA 227 AAA 104 AAAA 54 AAAAA 35
AAAAB 31

AAAB 48 AAABA 28
AAABB 24

AAB 100 AABA 45 AABAA 30
AABAB 30

AABB 48 AABBA 21
AABBB 24

AB 197 ABA 99 ABAA 37 ABAAA 37
ABAAB 34

ABAB 39 ABABA 37
ABABB 31

ABB 91 ABBA 34 ABBAA 30
ABBAB 27

ABBB 38 ABBBA 28
ABBBB 27

B 478 BA 232 BAA 106 BAAA 59 BAAAA 32
BAAAB 23

BAAB 45 BAABA 26
BAABB 21

BAB 90 BABA* 58 BABAA 25
BABAB 23

BABB* 60 BABBA 17
BABBB 19

BB 213 BBA 103 BBAA 40 BBAAA 32
BBAAB 28

BBAB 37 BBABA 30
BBABB 27

BBB 106 BBBA 45 BBBAA 27
BBBAB 26

BBBB 45 BBBBA 25
BBBBB 27
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2, five are length-3, 27 are length-4, and 147 are length-5. For the
p< 0.01 temporal sequences, one is length-3, five are length-4, and
29 are length-5. Therefore, the identification of longer dynamical
motifs seems to be easier. However, they are also less common
overall. For trading, a compromise has to be found.

For this cross section of five stocks, we also found a very
interesting statistic: of the 183 p< 0.05 temporal sequences, 39
starts with A (GE), 32 starts with B (CSCO), 27 starts with C
(HD), 43 starts with D (JPM), and 42 starts with E (MMM).
Restricting ourselves then to the 147 length-5 p< 0.05 temporal
sequences, we found that 22 ends with A (GE), 47 ends with B
(CSCO), 42 ends with C (HD), 14 ends with D (JPM), and 22 ends
with E (MMM). This suggests that, even though we only look at
five stocks, JPM, MMM, and GE are leaders in market-wide bull
runs (and thus less likely to follow), whereas CSCO and HD are
followers (and thus less likely to lead).

Finally, we find 11 of the p< 0.05 length-5 motifs containing
ABB. These are ABABB, BAABB, CBABB, CCABB, DBABB,
EAABB, EABBB, EBABB, ECABB, EDABB, EEABB. Apart
from EABBB, ABB occurs at the end. This is an observation
that traders can definitely act upon. However, since ABB is
itself a p< 0.01 length-3 motif, perhaps it is not surprising that
we find these length-5 motifs extending ABB. The situation is

different with CBB, whose empirical frequency is exceeded by
15 null-model frequencies (p � 0.15), and thus not very
significant. In spite of this, we find 8 length-5 motifs at
p< 0.05 containing CBB. These are ABCBB, ADCBB,
CBBBB, EACBB, EBCBB, ECCBB, EDCBB, EECBB. Except
in CBBBB, CBB again occurs at the end of the other motifs,
making them actionable. More importantly, if we compare the
two series of length-5 motifs,

ABABB, BAABB, CBABB, CCABB, DBABB, EAABB,

EBABB, ECABB, EDABB, EEABB;

ABCBB, ADCBB, EACBB, EBCBB, ECCBB, EDCBB,

EECBB,

we find that six prefixes match, and their empirical frequencies
are close to each other. Therefore, we can write these 12 length-5
motifs as

AB[ABB
CBB

], EA[ABB
CBB

], EB[ABB
CBB

], EC[ABB
CBB

],
ED[ABB

CBB
], EE[ABB

CBB
], (2)

and then further as

TABLE 2 | Empirical frequencies of 2-letter temporal sequences of up to length-5, corresponding to price increases in platinum and USD-EUR. In this table, an empirical
frequency that is significantly higher than expected from the null model is indicated by an asterix (p< 0.05) or two asterixes (p<0.01), whereas an empirical frequency that
is significantly lower than expected from the null model is indicated by a dagger (p< 0.05) or a double dagger (p<0.01).

Seq Freq Seq Freq Seq Freq Seq Freq Seq Freq

A 343 AA 154 AAA 64 AAAA 47 AAAAA 17
AAAAB‡ 11

AAAB 37 AAABA 15
AAABB† 11

AAB 77 AABA 48 AABAA 22
AABAB 18

AABB 46 AABBA 18
AABBB 16

AB† 147 ABA 83 ABAA 43 ABAAA 21
ABAAB 13

ABAB 35 ABABA 18
ABABB 17

ABB 78 ABBA† 34 ABBAA 22
ABBAB 16

ABBB 34 ABBBA 15
ABBBB 13

B 317 BA** 181 BAA 83 BAAA 45 BAAAA 21
BAAAB 14

BAAB 41 BAABA 16
BAABB 16

BAB 86 BABA 49 BABAA 22
BABAB 20

BABB 45 BABBA 18
BABBB 21

BB 166 BBA 81 BBAA 47 BBAAA 22
BBAAB 20

BBAB 40 BBABA 14
BBABB 22

BBB 80 BBBA 39 BBBAA 23
BBBAB 24

BBBB 39 BBBBA 17
BBBBB 23
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB
EA
EB
EC
ED
EE

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ABB
CBB

] �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A
B
C
D
E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ABB
CBB

]. (3)

In doing so, we are repacking the 12 length-5 temporal motifs
back into a spatio-temporal motif.

3.4 10-Letter Words
Ultimately, there are tens of thousands of stocks on the New York
Stock Exchange and other US exchanges, so the 30 DJI
component stocks, or even the 500 S&P 500 component stocks
cannot provide a comprehensive picture on all information
flowing through these stock markets. If we go beyond stock
markets, to include assets from other financial markets
(commodities, oil and gas, bonds, foreign exchange, . . .), it is
clear a cross section of five instruments represents not even the tip
of an iceberg. It is thus tempting to consider cross sections of
many more instruments. However, as we have seen from Section
3.2 and Section 3.3, while the numbers of spatio-temporal
sequences remain comparable, the numbers of temporal
sequences that we unpack going from a two-letter alphabet to
a five-letter alphabet increased 50-fold. If we now go from a five-
letter alphabet to a 10-letter alphabet, the numbers of temporal
sequences is expected to increase another 30-fold, to
approximately 5 × 106. If this number of temporal sequences
gets any larger, testing them statistically will no longer be feasible
on a desktop computer, so we must forget going to 50 letters
(utilizing both uppercase and lowercase letters), where we would
have to deal with 3 × 108 temporal sequences after unpacking, or
larger alphabets.

At the same time, the information we can extract from
financial markets become richer when we use larger alphabets.
To illustrate this, and also highlight new problems encountered,
let us analyze two large cross sections of instruments in this
subsection: 1) a cross section of 10 DJI component stocks, and 2)
a cross section of nine mixed assets. In the first cross section, (A)
GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, (F) MRK, (G) UTX,
(H) BA, (I) VZ, (J) XOM, we used prices between Feb 16, 1990
and Mar 8, 2018. Out of 10,248 trading days, we found 1,863 days
on which there were no price increases in any of the stocks. For
the rest of the trading days, price increases were organized into
1,738 spatio-temporal sequences up to length-5. For 10 stocks,
there are 111,110 unique temporal sequences. Out of these, 3,580
temporal sequences are statistically significant at the p< 0.05
level, while 672 are significant at the p< 0.01 level. As
functions of sequence length, these are distributed as

(F1, F2, F3, F4, F5) � (2, 43, 42, 235, 3258) (4)

for p< 0.05, and

(F1, F2, F3, F4, F5) � (0, 20, 3, 33, 616) (5)

for p< 0.01, where Fn is the frequency of length-n dynamical
motifs. Of the p< 0.05 motifs,

(Fpre
A , Fpre

B , Fpre
C , Fpre

D , Fpre
E , Fpre

F , Fpre
G , Fpre

H , Fpre
I , Fpre

J )
� (214, 149, 207, 197, 363, 605, 105, 143, 516, 1081),

(6)

where Fpre
σ is the number of motifs starting with the letter σ � A,

. . ., J, whereas

(Fpost
5,A , Fpost

5,B , Fpost
5,C , Fpost

5,D , Fpost
5,E , Fpost

5,F , Fpost
5,G , Fpost

5,H , Fpost
5,I , Fpost

5,J )
� (426, 289, 830, 125, 270, 159, 204, 495, 191, 269),

(7)

Fpost
σ being the number of motifs ending with the letter

σ � A, . . . , J. This tells us that XOM, MRK, VZ, MMM are the
top four leaders, while HD, BA, GE, CSCO,MMM are the top five
followers. Again, leaders are not followers (with the exception
of MMM).

Because of the number of p< 0.05 motifs, we can no longer
visually inspect individual sequences like we did for the 5-letter case
to identify actionable patterns. This is why a visualization scheme is
necessary. Since XOM is the strongest leadmover, we can choose to
visualize only the 1,063 length-5motifs that start with J, in the form
of a tree rooted in J. From this root, we draw branches to the 10
letters in the first level (if such sequences exist), and from each of
these letters, draw branches to the 10 letters in the second level (if
such sequences exist), and so on and so forth until we reach the end
of the sequences (the leaves). Because we draw only existing
sequences, some branches will have more leaves while others
will have fewer, as shown in Figure 3. The tree diagrams with
other roots in this cross section of 10 DJI stocks are shown in

FIGURE 3 | Tree diagram of dynamical motifs rooted in (J) XOM (price
increase on the first day). In this figure, we label all ten stocks with price
increases on the second day, but use a larger font for (A) GE, (D) JPM, and (I)
VZ, to indicate that price increases in these stocks are followed by the
largest numbers of dynamical motifs. For price increases on the third day, we
label only those stocks following XOM and GE/JPM/VZ, and are themselves
followed by the most dynamical motifs. Except for (J) XOM following VZ, we
find consistently (A) GE, (C) HD, and (H) BA following price increases on the
second day. This is also true for the branches we did not highlight, as well as
for the fourth day.
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Supplementary Figure S3. In Supplementary Figure S4, we also
show the tree diagrams for a second cross section of 10 DJI stocks.

The second cross section we feature here consists of indices
and precious metals, namely (A) gold, (B) silver, (C) palladium,
(D) S&P 500, (E) Hang Seng, (F) platinum, (G) Dow Jones, (H)
Nikkei, and (I) NASDAQ. We used prices between Apr 2, 1990
and Jan 28, 2018. Of the 10,164 trading days, we find 1,604 days
on which there were no price increases in any of the assets. For the
rest of the trading days, price increases were organized into
1,607 spatio-temporal sequences up to length-5. For the nine
assets, 9,145 temporal sequences are statistically significant at the
p< 0.01 level. This is many more than the 672 p< 0.01 temporal
sequences found for the cross section of 10 DJI stocks, suggesting
that the DJI cross section is well exploited, and therefore there is
less actionable information remaining. In contrast, the cross
section of nine mixed assets investigated here is not well
exploited, so there is more information that traders can act
on. This is to be expected, since fewer funds and traders
simultaneously trade indices and precious metals in the
portfolios they manage.

We also found the 9,145 p< 0.01 temporal sequences
distributed as

(F1, F2, F3, F4, F5) � (0, 81, 697, 6463, 1904). (8)

Unlike for the cross section of 10 DJI stocks, in this cross section
of nine mixed assets, length-4 sequences outnumber length-5
sequences. For the length-4 sequences,

(Fpre
4,A, Fpre

4,B , Fpre
4,C , Fpre

4,D, Fpre
4,E , Fpre

4,F , Fpre
4,G, Fpre

4,H , Fpre
4,I )

� (719, 708, 727, 729, 727, 707, 729, 691, 724), (9)

while

(Fpost
4,A , Fpost

4,B , Fpost
4,C , Fpost

4,D , Fpost
4,E , Fpost

4,F , Fpost
4,G , Fpost

4,H , Fpost
4,I )

� (711, 720, 724, 712, 712, 727, 724, 722, 711).
(10)

None of the assets are particularly strong leaders or strong
followers. For the length-5 sequences, from the distribution

(Fpre
5,A, Fpre

5,B , Fpre
5,C , Fpre

5,D, Fpre
5,E , Fpre

5,F , Fpre
5,G, Fpre

5,H , Fpre
5,I )

� (394, 115, 186, 281, 88, 209, 292, 71, 268), (11)

we find the strong leaders are (A) gold, (D) S&P 500, (G) Dow
Jones, (I) NASDAQ, while the weak leaders are (B) silver, (E)
Hang Seng, (H) Nikkei. Gold is well known to be a leading
indicator of inflation [42, 43], so it would not be surprising for gold
to also lead smaller-scale market movements. Using the Hilbert
transform to complexify the return time series of major global
indices, Vodenska et al. showed convincingly that FOREXmarkets
lead equity markets, and the US equity market is one of the leaders
of other equity markets [44]. Finally, from the distribution

(Fpost
5,A , Fpost

5,B , Fpost
5,C , Fpost

5,D , Fpost
5,E , Fpost

5,F , Fpost
5,G , Fpost

5,H , Fpost
5,I )

� (102, 132, 437, 234, 358, 111, 164, 197, 169),
(12)

we see that (C) palladium, (E) Hang Seng are strong followers,
while (A) gold, (F) platinum are weak followers. As expected, (A)
gold being a strong leader is a weak follower, whereas (E) Hang
Seng being a weak leader is a strong follower. Surprisingly, (C)
palladium is a strong follower, even though it is not weak as a
leader. Similarly, (F) platinum is one of the weakest followers,
even though it is not the strongest of leaders.

The tree diagrams for length-5 p< 0.01 dynamical motifs in
this cross section of nine mixed assets are shown in
Supplementary Figure S5. If we look at the tree diagram
rooted in (A) gold, who is the strongest leader in this cross
section, we find that price increases in (A) gold on the first day is
followed most strongly by price increases in (D) S&P 500, (E)
Hang Seng, (G) Dow Jones, (I) NASDAQ. This response by stock
indices to rallies in the gold price is not at all surprising, apart
from the weak response from (H) Nikkei. For subsequent days,
price increases occur predominantly in (E) Hang Seng and (H)
Nikkei. As it turned out, whoever the leader was on the first day
(E) Hang Seng and (H) Nikkei were consistently the assets that

FIGURE 4 | Probability densities of the fractional returns for trading
MMM on day 4 and XOM on day 5 based on the p<0.01 length-5 motif XOM
→ VZ → BA → MMM → XOM, between Feb 16, 1990 and Mar 8, 2018.

FIGURE 5 | Distributions of fractional returns for trading on day 4 and
day 5 of p<0.01 length-5 motifs in the first cross section of DJI component
stocks, comprising (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, (F) MRK, (G)
UTX, (H) BA, (I) VZ, (J) XOM, between Feb 16, 1990 and Mar 8, 2018.
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responded on the second and third days. This behavior is not seen
in the United States indices, (D) S&P 500, (G) Dow Jones, and (I)
NASDAQ. It is well known that Nikkei follows United States
indices [45–47]. The tree diagrams of two other cross sections of
mixed assets are also shown in Supplementary Figures S6, S7.

4 FEASIBILITY

After identifying the dynamical motifs, let us check whether they
can be traded profitably.We do this for length-5 motifs, which are
the most informative. First, let us explain how a simple trading
strategy can be developed using one specific p< 0.01 length-5
motif, say XOM → VZ → BA → MMM → XOM from the first
DJI cross section. In this motif, price increase first occurs for
XOM on day 1, then for VZ on day 2, for BA on day 3, for MMM
on day 4, and finally for XOM on day 5. After observing a price
increase in XOM at the end of day 1, we can of course buy VZ, BA,

MMM, and XOM, to sell at the ends of days 2, 3, 4, and 5,
respectively. However, this is risky, as we cannot be sure the price
increase of XOM on day 1 is the start of the length-5 motif we are
targeting. It could be the start of another motif, or just an
idiosyncratic price movement that is not part of any motif.
Therefore, a safer way to exploit this length-5 motif is to first
observe the market for 3 days. If price increase occurs for XOM
on day 1, VZ on day 2, and BA on day 3, there is a strong likelihood
that we are in the midst of the length-5 motif. We can then buy
MMM at the end of day 3, and since it is expected to experience a
price increase, sell it at the end of day 4 tomake a profit. Finally, if the
price of MMM does increase on day 4, we can buy XOM at the end
of day 4, and sell it at the end of day 5. In this way, we can execute
one to two transactions every time XOM → VZ → BA occurs.

For this length-5 motif, we find that over the period Feb 16,
1990 to Mar 8, 2018, the price increase sequence XOM → VZ →
BA appeared 964 times, while the price increase sequence
XOM → VZ → BA → MMM appeared 477 times. Buying
MMM 964 times at the end of day 3 and selling it at the of
day 4, we compute for each transaction the fractional return

rMMM(t) � PMMM(t + 3) − PMMM(t + 2)
PMMM(t + 2) (13)

for the price increase sequence XOM→VZ→ BA that started on
day t. The normalized histogram for these 964 fractional returns
is shown in Figure 4. Similarly, of the 477 times the price increase
sequence XOM → VZ → BA → MMM appeared, price increase
in XOM followed 236 times. If we wait for the price increase
sequence XOM → VZ → BA → MMM to appear, buy XOM at
the end of day 4, and sell it at the end of day 5, we find the
fractional return

rXOM(t) � PXOM(t + 4) − PMMM(t + 3)
PMMM(t + 3) (14)

for the price increase sequence XOM→VZ→ BA that started on
day t. The normalized histogram for these 477 fractional returns
is also shown in Figure 4.

FIGURE 6 | Distributions of weekly average fractional returns for trading
on day 4 and day 5 of all p<0.01 length-5motifs in the first cross section of DJI
component stocks, comprising (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM,
(F) MRK, (G) UTX, (H) BA, (I) VZ, (J) XOM, between Feb 16, 1990 andMar
8, 2018.

FIGURE 7 | Distributions of conditional probabilities for price increases on day 4 and day 5 for all p< 0.01 length-5 motifs in the first cross section of DJI component
stocks, comprising (A) GE, (B) CSCO, (C) HD, (D) JPM, (E) MMM, (F) MRK, (G) UTX, (H) BA, (I) VZ, (J) XOM, between Feb 16, 1990 and Mar 8, 2018. Since we distinguish
between strong and weak leaders, in this figure we show the conditional probabilities for motifs with different roots from (A) to (J).
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The average fractional returns are 0.0012 for MMM, and
0.0007 for XOM. These are positive, but puny. More
importantly, over the roughly 28-year period, we would have
traded only (964 + 477)/28 � 51.5 times a year based on the
motif XOM→VZ→ BA→MMM→ XOM. A human trader can
easily trade many more times, let alone trading algorithms.
Therefore, we next check the distribution of fractional returns
shown in Figure 5, if we trade on day 4 (60,153 transactions) and
day 5 (35,855 transactions) for all p< 0.01 length-5 motifs. The
average fractional return on day 4 is 0.0035, while that on day 5 is
0.0042. While these average fractional returns are higher than
those for XOM → VZ → BA → MMM → XOM alone, the
distributions shown in Figure 5 give us the wrong impression
that trading in these motifs is high-risk and low-return. To put it
more accurately, we get such dismal performance only if we
choose to trade one random motif a week.

If we trade multiple motifs in the same week, then our
prospects would be different. This is because we may fail to
profit from some motifs, but still succeed in other motifs.
Therefore, we should first average the fractional return over all
motifs we trade in a given week, before compiling the histogram
of 424 weekly average fractional returns shown in Figure 6.
Unlike for the fractional return of individual transactions, when we
trade all possiblemotifs and average the fractional returns over them,
we find that we almost never losemoney in any week. The average of
the average fractional return per week is 0.0035 on day 4 and 0.0042
on day 5, the same as when we average over the distributions of
fractional returns. However, since we now know the average
fractional return per week is (almost) always positive, we can
compound them to get an average fractional return of 0.0077 per
week, or an average fractional return of 0.4004 per annum!

Another way to understand this profitability is in terms of
p(X4 > 0|X1 > 0,X2 > 0,X3 > 0), which is the conditional
probability for a price increase X4 > 0 to be observed on day 4,
given that price increases X1 > 0, X2 > 0, X3 > 0 have been
observed on day 1, day 2, and day 3 for a given length-5
motif, and p(X5 > 0|X1 > 0,X2 > 0,X3 > 0,X4 > 0), which is the

conditional probability for a price increase X5 > 0 to be
observed on day 5, given that price increases X1 > 0, X2 > 0,
X3 > 0, X4 > 0 have been observed on day 1, day 2, day 3, and
day 4 for the same length-5motif. When we plot these conditional
probabilities as a violin plot in Figure 7, we see that the
conditional probability for day 4 is mostly larger than 0.5.
There seems to be no correlation between the strength of this
conditional probability and the strength of the stocks as leaders.
Finally, we see that the conditional probability for day 5 is
significantly larger than 0.5.

Before we conclude, let us also test the feasibility of our simple
trading strategy for the p< 0.01 length-5 motifs in the first cross
section of nine mixed assets, comprising (A) gold, (B) silver, (C)
palladium, (D) S&P P 500, (E) Hang Seng, (F) platinum, (G) Dow
Jones, (H) Nikkei, and (I) NASDAQ. If we trade one random
motif each week, we would have the distributions of fractional
returns shown in Figure 8. Based on these distributions, the
average fractional return on day 4 (558,752 transactions) is
0.0025, while that on day 5 (318,509 transactions) is 0.0028.
However, if we trade all possible motifs each week, we would have
the distributions of 3,182 weekly fractional return shown in
Figure 9. Just like for the first cross section of DJI stocks, the
average weekly fractional returns on day 4 and day 5 are still
0.0025 and 0.0029, but as we can see from Figure 9, the downside
risk of getting negative average weekly fractional returns is greatly
reduced. As we can see from the violin plot in Figure 10, most of
the conditional probabilities on day 5 are larger than their
counterparts on day 4. However, only the day-5 conditional
probabilities of motifs starting with (E) Hang Seng and (H)
Nikkei are significantly larger than 0.5.

We also investigated a second cross section of DJI stocks, as
well as a second and third cross sections of mixed assets. The
distributions of fractional returns, weekly average fractional
returns, and conditional probabilities of these cross sections
are shown in Supplementary Figures S8 and S9.

FIGURE 8 | Histograms of the fractional returns for day 4 and day 5
trading based on p<0.01 length-5 motifs from the first cross section of nine
mixed assets, comprising (A) gold, (B) silver, (C) palladium, (D) S&P 500, (E)
Hang Seng, (F) platinum, (G) Dow Jones, (H) Nikkei, and (I) NASDAQ,
using prices between Apr 2, 1990 and Jan 28, 2018.

FIGURE 9 |Histograms of the weekly average fractional returns for day 4
and day 5 trading based on all p <0.01 length-5 motifs from the first cross
section of nine mixed assets, comprising (A) gold, (B) silver, (C) palladium, (D)
S&P 500, (E) Hang Seng, (F) platinum (G) Dow Jones, (H) Nikkei, and (I)
NASDAQ, using prices between Apr 2, 1990 and Jan 28, 2018.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org April 2021 | Volume 7 | Article 64159511

Cheong et al. Actionable Serial Correlations

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


5 CONCLUSIONS AND OUTLOOK

In this paper, we explained how information processing by self-
organized functions in complex systems lead to the existence of
recurrent activity sequences or dynamical motifs. In financial
markets, which are also complex systems, past and expected
information that gets incorporated into prices must therefore
be in the form of recurrent sequences. Thus far, technical
traders have exploited temporal patterns corresponding to
high-order serial correlations of individual instruments, but
actionable spatio-temporal patterns (also called dynamical
motifs) must also exist. To identify these dynamical motifs
Σk � σk,1 → σk,2 →/→ σk,mk with mk spatial cross sections,
σk,l � (sk,l,1, sk,l,2, . . . , sk,l,pk,l), each of which containing pk,l
activities, we first described a procedure for mapping price
increases in a spatial cross section of financial instruments to
an alphabet, so that price increases in the cross section can be
mapped first to a symbolic spatio-temporal sequence, and then
unpacked into a collection of temporal sequences represented
as simple strings. We then described how statistically significant
temporal sequences can be identified by testing the empirical
frequencies of these frequencies against a null model obtained by
reshuffling the spatio-temporal sequence (or collection of spatio-
temporal sequences). Such a null model preserves equal-time spatial
cross correlations, but completely destroys any serial correlations.
Dynamical motifs that traders can act on are thus temporal
sequences that occur more frequently then expected from the
null model.

We tested the above procedure on the 30DJI component stocks,
as well as 26 instruments from various asset classes, to find the
absence of serial correlations that traders can exploit, if they are
traded individually. We then tested the procedure on two pairs of
instruments, to find two length-4 dynamical motifs for (HD, TRV)
that are statistically significant at the p< 0.01 level, and one length-
2 dynamical motif for (platinum, USD-EUR) that is statistically
significant at the p< 0.01 level. After testing the procedure next on
a cross section of five DJI component stocks, and finding 35

dynamical motifs (29 of which are length-5) that are statistically
significant at the p< 0.01 level, we proceeded to identify dynamical
motifs in five cross sections containing eight to ten instruments.
For a cross section of 10 DJI component stocks and a cross section
of nine mixed assets, we reported in detail the 672 and 9,145
dynamical motifs that are statistically significant at the p< 0.01
level, how to identify leaders and followers, and more importantly,
how to visualize these in the form of tree diagrams with different
roots. Finally, we checked using our historical data whether these
dynamical motifs can be traded feasibly, by targeting the price
increases expected on day 4 and day 5 in length-5 motifs. We
showed that if we trade only a single dynamical motif, the downside
risk is appreciable, even though the expected fractional return is
positive. While the expected fractional return is not greatly
improved by trading all p< 0.01 length-5 motifs, we found that

FIGURE 10 | Histograms of the conditional probabilities for day 4 and day 5 trading based on all p< 0.01 length-5 motifs from the first cross section of nine mixed
assets, comprising (A) gold, (B) silver, (C) palladium, (D) S&P 500, (E) Hang Seng, (F) platinum, (G) Dow Jones, (H) Nikkei, and (I) NASDAQ, using prices between Apr 2,
1990 and Jan 28, 2018.

FIGURE 11 | The number of times two length-5 motifs ((top) MMM →
CSCO→ HD→ CSCO→ CSCO, and (bottom) HD→ JPM→ JPM→ CSCO
→GE) in the cross section of five DJI component stocks (A) GE, (B) CSCO, (C)
HD, (D) JPM, (E) MMM, appear for each year between Feb 16, 1990 and
Mar 8, 2018.
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the downside risk is greatly reduced. This is true for the 10-DJI-
component-stock cross section, as well as for the 9-mixed-assets
cross section. For the 10-DJI-component-stock cross section with
616 p< 0.01 length-5 motifs, downside risk was practically non-
existent, and an expected fractional return of 0.0077 per week, or
equivalently 0.4004 per annum could be achieved.

In this study, we identified dynamical motifs consisting of
price increases over five consecutive days from daily prices. For
616 length-5 motifs in the cross section of 10 DJI component
stocks, we could execute 96,000 trades over 28 years, or about
3,400 trades per year. For 9,145 length-5 motifs in the cross
section of nine mixed assets, we could execute about 877,300
trades, or about 31,300 trades per year. To get better returns, a
trader would want to trade more frequently. This can be done by
going to higher-frequency data, and use the high-frequency
motifs identified for trading. We do not know how well such a
strategy will perform, but imagine it doing better, since in high-
frequency data, autocorrelations and cross correlations do not
have time to die out, and therefore motifs would become easier to
identify, and are also statistically more significant. In this paper,
we also mapped all price increases in an instrument to a single
letter. If we do not have many instruments, it is possible (and
perhaps desirable) to use two letters per instrument, so that one
would represent a small increase, while the other would represent
a large increase. Alternatively, we can map the price increases in
an instrument to more than one instance of the letter. For
example, an increase of 0–1% can be mapped to A, an
increase of 1–2% to AA, and an increase of 2–5% to AAA.
Traders can then choose to act only if a large price increase is
expected. Other variations are also possible.

As a final caveat, let us say that like for purely temporal
patterns of single instruments, the profitabilities of spatio-
temporal patterns containing multiple instruments are also
expected to be short-lived, because once a spatio-temporal
pattern becomes dominant it can be exploited by other spatio-
temporal patterns. In Figure 11 we show the frequencies of two
length-5 motifs (at the p< 0.01 of statistical significance) over the
period 1990 to 2018. In general, these frequencies are low, so for
the most part it is difficult to tell visually whether they occurred
uniformly over the period, or their occurrences were
concentrated over certain subperiods. However, the frequency
spike of MMM → CSCO→ HD→ CSCO → CSCO in 2016 will

surely not be the product of a uniform probability that produced
the frequencies in other years. Even though this has not happened
in our data sets, we must be prepared for the eventuality of
temporal motifs losing their statistical significance. Therefore, as
we trade the significant sequences, we must at the same time be
mining for new significant sequences. Once these latter
sequences are discovered, they should be added to the
trading pool, but we must also develop the criterion for
discarding sequences that are no longer significant. This
must be done in a way that maximizes the lifetime returns
from such sequences, weighted against the potential for losses at
the end of their usable lifetimes.
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