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In Discrete Event Simulation (DES) we can often assume that the distributions of service
times are independent of each other. However, in some simulation problems this might
lead to underestimating the potential risk of certain simulation results, such as the
maximum time in system, exceeding some critical threshold, especially when tail
dependencies are present. Given that the impact of potential tail dependencies on
simulation results has only sparsely been addressed in the simulation literature, in this
paper we present a novel framework to model tail dependencies between service time
distributions in DES through copulas. A main modelling challenge for this is the lack of
relevant historical data on tail dependencies. Therefore, we present a linear programming-
based method to assess minimum information copulas through expert judgements which
minimise unspecified parametric assumptions. It offers a structured way to include tail
dependencies in DES via copula theory despite lacking historical data. Additionally, we
provide a classification of the possible sources of tail dependencies in DES problems to
better understand their impact on commonly used results in simulation studies, such as the
maximum time in system. Lastly, we apply the assessment method and model tail
dependencies in a simulation of an emergency ambulance service as here the
maximum time in system is often critical.

Keywords: discrete event simulation, dependence modelling, minimum information copulas, risk assessment,
structured expert judgement, maximum time in system

1 INTRODUCTION

In the mathematical modelling literature and practice, Discrete Event Simulation (DES) is a well-
established method for analysing dynamic, stochastic and complex real-world problems. It is
applicable whenever a system can be represented by events occurring over time and thereby
changing the system’s state. Between these events no changes to the system’s state occur. Common
applications simulate manufacturing, healthcare and call-center processes for which main events are
i.a. arrivals of entities, such as product parts, patients and calls entering a simulated system, as well as
them being serviced by servers, e.g. being processed by machines, attended by clinicians for physical
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examinations or answered by call-center agents. Usually, entities
queue between different steps of a process whenever servers are
busy or unavailable. See Robinson [1] for an extensive
introduction to DES.

DES models’ main input parameters, the inter-arrival time
distributions between incoming entities and the service (or
processing) time distributions of servers, are often modelled
assuming independence. For service times this applies for
both, times of successive entities at a server and timing
distributions across multiple, different servers. This modelling
choice might stem from modellers’ preference for certain
univariate parametric input distributions, perhaps for
simplicity or due to experience from similar simulation
projects, or this choice is based on observations. In the latter
case, independence is either indeed a sensible assumption (based
on the observations) or insufficient data is collected for
determining dependence relationships. However, unless
justified by sufficient observations, ideally together with other
evidence, such as specifications made in the conceptual modelling
phase (the decision or abstraction process of what to include in a
simulation model [2]), independence can be an oversimplified
assumption for understanding a system’s risks properly. In DES,
such risks refer for instance to increased queue lengths (and
waiting times) due to dependent arrivals or little throughput from
a process due to dependent long service times. A result of interest
in many DES applications, which can be affected significantly by
dependencies, is maximum time in system. It captures the
maximum time to complete the simulated process across all
entities. Closely related and hence also possibly impacted by
potential dependencies are results capturing the percentage of
entities needing longer than a certain threshold to complete a
process.

In this paper, we consider service time dependencies and their
impact on the maximum time in system and related results.
Especially, we look at tail dependencies and extremely long
service times (usually above their 90th, 95th or even 99th
quantile) at one server followed by extreme service times at a
different server (for the same entity). However, the methods
presented here can be used also for other dependence
relationships in DES, such as between times of successive
entities at the same server. A main modelling challenge is the
lack of relevant, historical data on these extreme service time
dependencies. Thus, we focus on assessing minimum information
copulas through expert judgements for specifying our service
time dependencies.

The paper’s first contribution is to enhance the DES toolkit by
presenting a modelling framework for including dependent tail
uncertainties between service time distributions through copulas.
While Taylor et al. [3] and Cheng [4] highlight the importance of
considering dependencies in DES modelling as future key
research area and while Biller and Ghosh [5] recognize
multivariate distributions’ importance for simulation input
modelling when reviewing suitable dependence models,
applications including probabilistic dependencies in DES
models are rare. Further, the impact of tail dependencies on
model outputs and results has been neglected in the
simulation literature. This is despite Cheng [4], Pasupathy and

Nagaraj [6], Biller [7] and Biller and Corlu [8] mentioning copula
theory’s potential for simulation modelling. Yet, with these
references mainly addressing arrival processes, we aim for
extending the treatment and understanding of dependencies
and tail dependencies between service time distributions. Note,
we focus on DES in this paper due to simulation modelling’s
suitability for various complex problem situations. However, we
acknowledge that dependencies between service times have been
studied previously for specific queueing systems in the queueing
theory literature dating back to Mitchell et al. [9] and Pinedo and
Wolff [10]. The second and main contribution is to provide
simulation modellers with a method for including information on
detailed dependencies through expert judgements when facing a
lack of relevant, historical data on these. Extreme outcomes of
joint service times are only rarely observed and available in data
sets which is why their inclusion in a simulation often constitutes
a main modelling challenge. According to the author’s
knowledge, this is the first application of assessing copulas
through expert judgement in DES modelling. Lastly, we
classify common sources and types of dependencies for
commonly simulated systems. This classification is a novel
way of structuring the related simulation literature.

The paper’s remainder is as follows. In Section 2, we present
our classification of different sources and types of dependence
relationships possibly relevant for DES. In Section 3, we briefly
review the literature onmethods assessing dependence models for
the previously classified sources and types. Section 4 presents our
method to assess tail dependencies between service time
distributions through expert judgements. The relevant
background on minimum information copulas as a suitable
way for modelling tail dependencies between service times is
discussed. In Section 5, we apply our method and show the
impact of tail dependencies on the maximum time in system for a
simple ambulance emergency simulationmodel. We conclude the
paper in Section 6 by reflecting on our method’s achievements
and outlining future research areas for copula theory and expert
judgement in DES modelling.

2 CLASSIFYING SOURCES AND TYPES OF
DEPENDENCIES IN DES MODELLING

In DES, several sources and types of dependent uncertainties
can impact a simulation’s behaviour and results. It is worth
clarifying their differences and discussing how they are dealt
with in the simulation literature. Therefore, we present a
classification and an overview of approaches to include them
in DES models.

An early study considering dependent uncertainties in DES is
Wilson [11] who includes bivariate Gaussian distributions and
(as extension) bivariate Johnson distributions in a simulation. As
an example he mentions a workpiece, which is being processed at
various manufacturing cells, whereas a “higher-than-average”
processing time at the first cell is likely to be followed by
longer processing times at the later cells.

General overviews on including dependencies in simulations
are provided in Biller and Ghosh [5] and Biller and Corlu [8]. The
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latter is of interest for us given its discussion about copulas in
simulation input modelling.

With our focus on dependencies between service time
distributions, we consider dependence relationship similar to
Wilson [11]. Other treatments of dependent uncertainties exist
in simulation modelling whereas the majority considers those
between arrival rates and dependencies between inter-arrival and
service times (e.g. serial dependencies or autocorrelations and
dependencies across time and arrivals). However, arrival
processes are out of scope here and for overviews on including
their dependencies in DES, we refer to Biller and Ghosh [5] and
Ibrahim et al. [12]. We only briefly mention Biller and Ghosh [13]
and Channouf and L’Ecuyer [14]. The latter use Gaussian copulas
for dependent arrivals in a call-center while the former model
dependencies between customer arrivals and demand using Vine
copulas [15].

As we clarified earlier, our DES approach in this paper is
different to analytical methods in queueing theory including
dependencies. When outlining the different dependence types
in this section, however, we cover some examples from that
research area due to a similar understanding of dependencies’
impact on systems.

2.1 Service Time Dependencies From the
Number of Serviced (Processed) Entities
A first possible source for dependencies between service time
distributions stems from the number of serviced (or processed)
entities at servers. That is, the more entities have been processed
by servers, the slower or faster their service times become. In this
context, dependencies between service times arise either at the
same server for each successively serviced entity or they arise for
service times at different servers given that the number of entities
in the system affects these in the same way.

On the one hand, we aim for including servers’ fatigue in our
DES models, leading to a joint downward trend in successive
service times. Thus, the service time for a specific entity is more
likely to take longer given that the previous one already exceeded
a certain quantile for its time distribution. On the other hand,
learning effects occurring with each serviced entity can speed up
successive service times [16]. In both cases, service times
correlate, usually positively when experiencing the same
learning or fatigue effects.

Learning and fatigue concern also the operations management
literature which frequently makes use of simulation models and
analytical approaches of queueing theory. Here, the idea of a
system’s load often leads to successive service times being
dependent [17]. Additionally to fatigue, Dong et al. [17]
mention also psychological factors for service times jointly
slowing down. A higher load increases pressure which in turn
slows decision-making and information processing. With non-
human servers, a high system load might also induce slowdowns
due to technical reasons. Dong et al. [17] mention the example of
slower performance of IT systems due to high load. Reasons for
joint faster service times in the operations management literature
are “speed-up manifests” as they apply in intensive care units,
production lines and various types of service lines [18].

The number of processed entities (or load) typically depends
on the incoming arrivals into a system.While, as aforementioned,
the detailed discussion of arrival processes is out of scope in this
paper, briefly note that capturing and fitting dependence models
between arrival rates and service times has also been considered
(see e.g. Brown et al. [19]). In that way, service time distributions
can be related due to intra- and inter-day, but also weekly,
monthly and seasonal fluctuations of arrivals. This is also
termed “time-series dependence” [1].

2.2 Service Time Dependencies From
Different Server Types
In other cases, possible service time dependencies stem from
considering specific, different server types. At a server, we might
need a human or machine who or which needs to be present for
an entity to be serviced or processed. Different server types are
then for instance humans with specific skill-sets or machines with
different performance and quality levels. Service times, either at
the same server or across different ones, are then dependent
conditional on the specific server type that is doing the work
there, positively if they are of the same type or negatively if they
are different types.

In the broader literature on queueing systems this is often
termed “heterogeneous server problem”. Armony [20] and
Armony and Mandelbaum [21] mention the example of
including a pool of trainees and a pool of experienced servers
in a model whereas whenever the first ones are on shift, we expect
joint slower service times. Optimal solutions on scheduling and
staffing are proposed, often by optimising skills-based routing for
heterogeneous server types. For an overview on modelling
approaches to service times based on heterogeneous servers,
see also Gans et al. [22].

2.3 Service Time Dependencies From
External Events
Another type and source of dependent service time uncertainties
is of systemic nature. That is, service times can be dependent
based on events external to the modelled process. These might
cause service times to jointly deviate either across different servers
(each affected by the same external event) or for successive
entities at the same server.

Xie et al. [23] mention two examples of dependencies in
simulations that are induced by what they term “common
latent factors”. As such, task durations in project planning
simulations can be correlated due to factors, such as weather
conditions. In production lines, e.g. of jet engines or
semiconductors, the overall room temperature could impact
several machines’ performance and likelihood of breakdowns.
Similarly, when simulating a company’s call center, Pang and
Whitt [24] consider the defect of a sold product (occurring with a
certain probability) as external event that causes all calls to take
longer. When modelling arrivals into an emergency call center,
L’Ecuyer et al. [25] include dependent arrivals as bursts which are
triggered by a single (external) emergency event, e.g. a fire,
accident or terrorist attack and impact service times. In a
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reliability context, Wilson [11] provides a more general example
in which times to failure for several servers are strongly related
and tend to fail simultaneously because of a common shock to the
system. These failures then affect service times for all process’
steps (servers) jointly. Finally, in a simulation of a hospital’s
emergency room, multiple patients might be associated through
the same medical incident. Several patients can be victims of a
single highway accident or food poisoning at the same restaurant.
Such common causes might lead to several service times taking
longer than usual as various patients are affected by the same
external event [24]. In the previous examples, service times are
typically positively correlated as several servers in a simulated
process need to cope with these new conditions stemming from
external events in the same manner.

Note, a common way for including external events with
potentially systemic impact in DES is the use of hybrid
simulations. These use other simulation techniques and
stochastic processes additionally to DES models to specify the
occurrence of external events. Conditional on the outcome of the
other model, the service time distributions in the DES are
adjusted [26]. We consider the direct modelling of service
time dependencies as an alternative when hybrid modelling is
not possible or out of scope.

2.4 Service Time Dependencies From
Entities’ Inherent Characteristics
Lastly, dependencies between service time distributions might
arise due to inherent characteristics of the entities going through a
system or process. For example, patients usually have different
health conditions and a patient with complex conditions, who
took longer in a physical exam, might also be more likely to need
longer at other servers, such as the GP consultation about further
steps for their treatment. Likewise, a workpiece’s specific
characteristics might cause it to have longer processing times
at each in a series of machining stations [11].

In another example, Stanfield et al. [27] include correlations
between the operation times of items undergoing a re-use
(recycling, repair or re-manufacturing) process in product-
reuse production systems. Here, an item’s initial condition can
be highly varied whereas jobs on items with an initial good
condition are done faster at each step of the process while
items in poor condition take longer for several or all tasks
(servers). They propose an extension of the Johnson
distribution for capturing the univariate and multivariate
distributions which requires a specification of the first four
moments for the marginal distributions together with the
correlation matrix. The authors highlight the advantage of not
having to use Gaussian marginal distributions as required for a
multivariate Gaussian distribution.

A further example for this dependence type is Jaoua et al. [28]
who use copulas to capture probabilistic dependencies between
different call types in a call center operation. This informs
decisions on pooling similar call types as otherwise quickly
resolved call types might lead to low occupancy of call center
agents while dependence between long call types leads to a service
level shortfall.

A final example comes from Robinson [1] who proposes the
use of a series of conditional probability distributions. In that way,
for each entity (Robinson [1] considers different customer types
in a gym) we first specify a (univariate) distribution for their
specific service time. Then, depending on which type of entity is
being serviced, we can sample from that conditional distribution.
However, Robinson [1] acknowledges that this might become
complex and intractable.

In some simulation problems, there can be an overlap between
this dependence type and dependencies from external events
(2.3), e.g. when different health conditions are caused by an
external event. We, as modellers, then have options for modelling
either both dependence types or only the more predominant one.

3 BRIEF LITERATURE REVIEW: EXPERT
JUDGEMENT FOR UCERTAINTY
QUANTIFICATION OF DEPENDENCIES IN
DES MODELLING

Following from the classification of different sources and types of
dependencies in DES, we now briefly review the literature on their
uncertainty quantification through expert judgement for
simulation models. As aforementioned, this is necessary
whenever we do not have (enough) relevant, historical data on
the joint distributions of interest.

For many of the previous types, we can either include a specific
dependence model in our DES or consider a partially specified
joint distribution. In the first case, we usually choose a
dependence model which captures features of a joint
distribution that we consider important for our simulation.
For instance, some of the previous Refs. [13, 14, 25, 28]
propose copula models, mainly for specifying dependencies in
arrival processes. A common motivation for choosing them
(which also motivates our later case study) is the option to
explicitly consider tail dependencies for a joint distribution of
interest. Further, we often choose a dependence model with the
aim of specifying a joint distribution as completely as possible.
Thus, we might select parametric multivariate distributions
which are fully specified under low parametric assumptions,
i.e. when quantifying a few parameters (e.g. a bivariate
Gaussian distribution [11]).

For partially specified joint distributions, we combine a
measure of dependence (or association measure) with our
marginal distributions. For instance, Stanfield et al. [27]
include dependencies in their simulation via a correlation
matrix together with the marginals. Modelling dependence via
association measures is less complex, however often faces
limitations regarding the aforementioned details of joint
distributions, for example by only focussing on central
dependence strength. Further, a joint distribution might not be
uniquely nor even feasibly defined that way [5].

Several authors advocate the use of expert judgement methods
when facing lacking relevant historical data for simulation
parameters given that we can often identify suitable experts as
the ones being familiar with the process being simulated [29] and
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the growing influence of Bayesian methods in simulation [30].
Nevertheless, applications using structured (or formal) expert
judgement in simulation studies are scarce, even for univariate
distributions. Likewise, only few applications exist for quantifying
dependence models and measures as part of building a
simulation.

An early application is by Wagner and Wilson [31]. They
present a graphical interface for assessing bivariate Bézier
distributions through experts’ judgements. It uses control
points (moved on screen) for setting dependencies between
the processing times of two successive manufacturing
operations in a simulation. It is not reported how intuitive this
way of assessing a joint distribution is for experts, especially if not
familiar with Bézier distributions.

Closer related to our later elicitation method are Ghosh and
Henderson [32]. They present so-called Patchwork distributions
for simulation input modelling and suggest they can be assessed
via experts’ judgements while matching several of Clemen et al.
[33]’s proposed properties for eliciting information about joint
distributions (such as a defensible foundation in probability
theory, ease of assessment, ensuring mathematical coherence).
However, applications of assessing this distribution are
not known.

The general decision and risk analysis literature (as opposed to
simulation studies specifically) offers more expert judgement
methods for eliciting dependencies together with experiences
of their performance in case studies. Werner et al. [34]
provide an extensive overview of methods assessing several
common dependence models and measures. These also
comprise the ones mentioned previously as ways to include
dependencies in simulations. We briefly outline their
assessment through expert judgement next.

A dependence model which has been used in several of the
aforementioned simulations is a copula. We introduce copulas
formally later when presenting our method for assessing
minimum information copulas between service times which is
based on Werner et al. [35].

Another way to specify a copula is presented in Werner et al.
[36]. They choose the best-fitting parametric copula after asking
experts for conditional exceedance probabilities on some chosen
quantiles. They acknowledge that this method is pragmatic with
the aim of identifying suitable parametric copula classes for
broadly distinguishing potentially important features of joint
distributions, such as symmetric and asymmetric tail
dependence. Next, Bedford et al. [37] elicit experts’
expectations on several functions of interest. They mention the
example of two components’ failure times. From that, a
minimally informative copula is chosen which satisfies the
expected value constraints. Similarly, Kotz and VanDorp [38]
suggest eliciting conditional fractiles based on which they specify
a sub-family of generalised diagonal-band copulas.

Other dependence models commonly included in the previous
simulations are parametric multivariate distributions, especially
the multivariate Gaussian one. For that, the elicitation literature
[39, 40] considers specifying the mean vector and covariance
matrix of so-called hyperparameters. These themselves follow
from distributional assumptions on the actual distribution

parameters. Thus, hyperparameters reflect experts’ knowledge
on the unknown distribution parameters.

Regarding the elicitation of dependence (association)
measures for partially specified joint distributions in
simulations, Werner et al. [34] conclude that the direct
elicitation of correlation coefficients, such as Spearman’s rank
correlation, can provide sensible assessments. However, it
requires statistical expertise, although this does not guarantee
sensible judgements. Alternatively, we can elicit probabilistic
information, e.g. conditional probabilities. They might be a
more intuitive assessment for experts to make [34].

In summary, we observe that there is not much experience
reported in the literature on the elicitation of dependencies as part
of a simulation project. Nevertheless, the information required
for including them in simulations when facing lacking relevant
historical data can be obtained by using methods from other areas
of decision and risk analysis as shown in this section.

4 ASSESSING AND MODELLING TAIL
DEPENDENCIES BETWEEN SERVICE
TIMES WITH MINIMUM INFORMATION
COPULAS

In the previous section, we briefly reviewed expert judgement
methods for some of the main ways to include dependencies in
DES models, i.e. for assessing dependence models and measures
proposed in the simulation literature. In this section, we
introduce our method for assessing and modelling service time
(tail) dependencies via minimum information copulas. It can be
applied for all previous types (Section 2) with service time
dependencies occurring either between successive entities at
the same server or between different servers for the same
entity. For ease of notation and to avoid unnecessary
duplication, we only refer to the joint distribution between
different servers’ service times in the remainder.

The assessment method has been introduced first in Werner
et al. [35]. We show its application specifically in DES modelling
as contribution to improving the robustness of such models
whenever we cannot assume independence between service
time distributions while facing incomplete historical data
on them.

4.1 Modelling Dependencies With Minimum
Information Copulas
First, we briefly cover some background on copula theory and
minimum information copulas as we choose these for capturing
dependence relationships between service time distributions.

4.1.1 Background on Copulas
While we refer to Joe [41] and Nelsen [42] for extensive
introductions to copula theory, briefly, copulas are functions
mapping points on the unit hypercube to unit interval values
and likewise multivariate joint distributions with (standard)
uniform marginal distributions. In two dimensions, recall that

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org October 2021 | Volume 7 | Article 6412455

Werner Assessing Tail Dependencies in DES

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


FX(x) and FY(y) are the cumulative distribution functions (CDFs)
for continuous random variables x and y accordingly. For these, a
copula C (.) exists, such that FXY (x, y) � C(FX(x), FY(y)). It is the
bivariate CDF defined on the unit square with two standard
uniform marginal distributions, U and V. Hence, with u � FX(x)
and v � FY(y), the copula C (u, v) is defined as C(u, v) �
FXY(x, y) � FXY[F−1

X (u), F−1
Y (v)] with F−1 being the inverse

CDF. We can use a copula to define a joint distribution for
variables with any marginal distributions through their
transformation to standard uniform marginals.

As highlighted previously, copulas are a popular modelling
choice as they allow for capturing detailed information about
dependencies. That is, additionally to central dependence
strength, copulas capture the dependence in the upper and/or
lower extremes of a joint distribution. We can then use measures
of tail dependence (see above references) for understanding tails’
impact on the overall joint distribution. Many of these measures
consider the number of observations in a distribution’s joint tail
proportionally to the possible maximum number. This is
important as the dependence in the upper tail might be
different to the dependence in the mid-range or lower parts
[43]. Parametric multivariate distributions are restricted in
regards to their ability to capture tail dependencies.

For dependencies between service time distributions, radially
symmetric copulas [43] imply that the dependence between short
service times is the same as the one between long ones. From the
earlier sources, this might be a sensible assumption in simulation
problems when dependencies stem from server types (Section
2.2) and entities’ inherent characteristics (Section 2.4). Wemight
distinguish slow and fast server types, the former working slowly
across several tasks (or servers) while the latter work fast across
these, so that the dependence between service times is symmetric.
Likewise, entities with inherent characteristics might exhibit
symmetric dependence given that slow entity types are slow
across many servers while the other entities are fast at several
servers. However, these copulas can be less suitable for capturing
dependencies from external events (Section 2.3). In these cases,
copulas with asymmetric tail dependencies (see e.g. [43]) can
model more strength exclusively in the upper distribution tail
in situations when long service times are likely to be followed by
long ones, e.g. servers slowed down by an external event, whereas
short service times are not likely to be followed by successive
short ones.

4.1.2 Minimum Information Copulas
Following from the general introduction to copulas, we now
briefly discuss minimum information copulas. These are flexible
when relying on experts’ judgements for modelling dependencies.
In particular, for these copulas we can decide on the level of detail
that we want to model and hence elicit from experts. That is, we
can build a unique copula from only a few assessments in case the
experts are not comfortable to providemore detailed information.

More specifically, minimum information copulas aim at
satisfying specified constraints while maintaining minimum
information relative to the uniform density on the unit square.
It is the most independent copula satisfying some given
constraints [44].

For an extensive introduction to this copula type, we refer to
Bedford and Wilson [45] and Meeuwissen and Bedford [44] who
also proof their existence and uniqueness. In brief, given a finite
number of constraints for functions on the unit square (from
historical data or expert judgement assessments), a copula is
minimally informative if the Kullback-Leibler divergence [46] or
relative information from the independent, uniform copula, C (u,
v) �UV, is minimal. Consider the two bivariate densities f1 and f2.
The relative information of f1 with respect to f2 is defined as:

I(f1|f2) � ∫∫f1(x, y)log f1(x, y)
f2(x, y)( )dxdy (1)

The relative information I (f1|f2) measures the divergence of f1
from f2 and it is minimised to 0 when f1 � f2. Hence, a higher value
corresponds to less similarity. This is the same when f1 and f2 are
copula densities and we choose the uniform copula as
background distribution. Note, in this paper we are dealing
with copula densities, which are piecewise constant over
specified rectangles (see next section), and the corresponding
minimisation problem for that is discussed extensively in Bedford
and Wilson [45].

Next, we show a way of eliciting constraints on minimum
information copulas from experts.

4.2 Assessing Minimum Information
Copulas With Expert Judgements
For a minimum information copula to be informative, we want to
elicit constraints from experts about the underlying joint
distribution. Of course, the more constraints experts can
provide, the more detailed and possibly suitable the resulting
copula might be for modelling the dependence relationship of
interest.

A main advantage of our assessment method is that it allows
for controlling how experts deal with cognitive complexity. For
instance, in some cases experts might feel comfortable making
many detailed assessments whereas this is too challenging in
other contexts and for other experts. With only a few
assessments the issue of underspecification arises when
modelling dependencies. That is, we have a partially
unknown distribution for which various alternative
distributions fit. As aforementioned, we can then obtain a
unique one by finding the distribution that is minimally
informative. For many detailed assessments, our method
ensures that all assessments are feasible through providing
lower and upper bounds for them by solving a Linear
Programming (LP) problem. Otherwise, overspecification of a
dependence model, the case of many assessments being
incoherent with each other and hence not providing a
feasible joint distribution, can become problematic.

While we refer to Werner et al. [35] for details and proofs,
briefly, our method defines quantile partitions on the unit square
as sets of rectangles. A probability distribution on each quantile
partition simply assigns a probability value for each rectangle.
Given that we are dealing with piecewise constant copula
densities, we also know that the sum of rectangles’
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probabilities is equal to the partitions’ upper bounds.We can then
refine quantile partitions by sequentially splitting each rectangle
into new, smaller rectangles on the unit square. All rectangles in
the old partition are either a union of two or four rectangles of the
old partition or they are in the new partition. The new probability
values of these are assessed by experts who thereby also provide
the constraints for minimising this newly specified copula with
respect to the uniform density on the unit square. In order to
ensure a feasible copula, newly assessed quantile partitions cannot
exceed the previous rectangles’ distributions. Therefore, experts
are given the feasible upper and lower bounds in which their
assessment should fall. More specifically, the first assessment
(later denoted as (i)) is always unrestricted, i.e. can take any value
between [0, 1]. For service times S1 and S2 and their dependence
assessed by P(S2 > y|S1 > x) for x and yminutes (corresponding to
specific quantiles of their marginal distributions), an assessment
of P(S2 > y) means independence given that learning about S1
does not change an expert’s belief. Negative dependence can be
assessed by [0, P(S2 > y)) and positive dependence by ((S2 > y), 1].
All following assessments are restricted by the LP solutions for
each assessment (see Eq. 5 in the Appendix). Assessing negative
dependence (e.g. within upper tail quadrants) is expressed by
being equal or close to the provided lower bound and likewise
positive dependence corresponds to an assessment close (or
equal) to the upper bound. The interpretation of assessments

within the feasible bounds might require explanation for experts
especially if the focus of an assessment is on tail dependence, i.e.
on a quadrant above some extreme quantiles, such as both 95th.

Figure 1 provides an example of an elicited sequence of
refinements.

It shows a sequence of assessing refined quantile partitions for
a joint distribution’s upper tail via assessments of new quantile
maxima from (ii) throughout (iv) following the initial assessment
(i). This sequence refines a copula between service times
exceeding certain thresholds. For instance in (i), we elicit the
conditional probability of server S2 exceeding its median given
that server S1 exceeds its median. This can be framed as follows:

“Given that S1 exceeds its median value of x (minutes,
hours, etc.), what is the probability that S2 also exceeds its
median value of y (minutes, hours, etc.)?”

In (ii) and (iii), we alternate between eliciting the probabilities
of S1 and S2 exceeding some higher quantile, e.g. their 95th, given
that the other service time is (still) above their median. Lastly, in
(iv), we elicit the conditional probability of both S1 and S2
exceeding the higher quantile. In a similar way, we can elicit
more quantile partitions and different quantiles. As such, in the
illustrative case study we include the 75th and 95th quantiles
together with the medians.

FIGURE 1 | Exemplary quantile partitions and assessments of upper tail service time dependence.
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4.3 Implementing Minimum Information
Copulas in DES Models
Once the minimum information copulas for the dependent service
times are defined, we implement these in the DES model. By
recording the unconditional service time (and corresponding
quantile) at the first of two servers (e.g. S1 in the above framing
for Figure 1) for each serviced entity, we then sample that entity’s
conditional service time at the other server (S2 in the above
example) from the minimum information copula as shown
schematically in Figure 2 during run time of the simulation.

We do this for every entity for which a conditional service time
is sampled.

5 ILLUSTRATIVE CASE STUDY: IMPACT OF
TAIL DEPENDENCIES ON AN EMERGENCY
AMBULANCE SERVICE SIMULATION
Decision-making in healthcare typically involves complex
uncertainties which is why it often requires rigorous
approaches to risk and decision analysis. Therefore, most
public and private organisations in this sector rely on
stochastic modelling of their systems and processes, such as
simulation models, for making informed decisions. For
overviews on DES applications in healthcare, see for instance
Hamrock et al. [47], Jahangirian et al. [48], Gunal and Pidd [49]
and Duguay and Chetouane [50].

An area of healthcare, in which complex uncertainties are of
particular concern and where simulation can be an important basis
for decision-making, is emergency ambulance service planning.
Overviews on simulation studies for ambulance systems are
provided by Pinto et al. [51] and Aboueljinane et al. [52]. Here,
ensuring a patient’s timely aid and possibly transport to a hospital
is critical. However, uncertainties around the durations of the
different tasks involved in ambulance services pose a risk of
underestimating the time needed for completing each
emergency. This can mislead decision-makers involved in
resource planning and dispatching of emergency units. This is
especially critical whenever tail dependencies are of concern,
potentially increasing the overall time per emergency drastically.
This in turn might keep a higher number of ambulance units
occupied for longer than expected. As such, questions regarding
the availability of sufficient ambulance units (for particular types of
emergencies) while still ensuring a high utilization due to economic
reasons, need to be addressed by decision-makers and can benefit
from more rigorous models.Therefore, we address the impact of
tail dependencies on ambulance services in this illustrative case
study.Wewill show a way of including risks from tail dependencies
potentially affecting the maximum time in system for emergencies.

5.1 Background to Case Study: Simulation
Set-Up and Dependence Assessments
The simulation in this illustrative case study has been developed
together with an expert with over 4 years experience of working in

FIGURE 2 | Schematic representation of conditional service time simulation from a copula.
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an ambulance service in the United Kingdom. The expert’s
practical experience, also considered as substantive expertise is
what we are mostly after when selecting experts [53].

5.1.1 Simulated Ambulance Service Process
The focus of the simulation model presented here is on the journey
of an ambulance (after being dispatched) and the tasks on scene at
an emergency. The process ends once a patient has been transferred
to a hospital and the unit is ready for the next emergency after some
turn-around activities. This excludes and largely simplifies the call
generation (demand side), i.e. modelling the frequency of incidents,
and the dispatching of an ambulance service modelling part. In fact,
we are only interested in simulating many single emergencies
whereas a more complex model can be developed based on this
by plugging in the inter-arrival times of emergency calls and
running scenarios on the availability of multiple ambulance
units and their utilization. Another assumption in this
simulation is that there will always be a hospital accepting the
emergency. In real systems, this might not always be the case which
can increase the delay for transportation to a hospital significantly.
We are focusing on ambulance performance measured by their
maximum time in system for an emergency. The details of the
simulated process are shown in Figure 3.

The different elements of the process, servers S1 to S7, and the
corresponding univariate timing distributions for these were
identified by our expert together with provided process maps
and fitted from historical data (seeAppendix for the details of the
servers’ univariate distributions).

5.1.2 Identification and Assessment of Main
Dependence Relationships
After having outlined and structured the various elements that
are included in the simulated process, the same expert determined

between which of these tasks there might be a potential
(significant) impact due to dependencies. As shown in
Figure 3, the probabilistic dependencies between “Travel to
emergency” (S1) and “Travel to hospital” (S5) as well as
between “Arrival and preparation” (S2) and “Initial
assessment” (S3) are regarded to have a main impact (upper
tail risk) for the maximum time in system measure to be
significantly higher than in the same model assuming that all
service times are independent.

Next, the expert assessed these dependence relationships
quantitatively using the method presented in Section 4.2 and
by that defined the minimum information copulas C1 and C2. C1

is the copula of joint distribution FS1 ,S5 and C2 of FS2,S3. Table 1
provides an overview of the assessments for C2 together with the
framing of the corresponding elicitation questions.

In Table 1 we see that the expert considers there generally to
be a positive dependence relationship between the service times of
S2 and S3 as indicated by assessment (i), even if not a strong one
(see Section 4.2 for an explanation on interpreting assessments).
For (iii), the expert’s assessment is close to the resulting upper
bound so that we can interpret it to indicate again positive
dependence in the quadrant above both 75th quantiles, this
time with high dependence strength. Similarly, for the extreme
quadrant of S2 and S3 both being above their corresponding 95th
quantiles the expert assesses there to be (strong) upper tail
dependence. Note, we only elicited refinements on the upper
right quadrant (above both medians) which results in less
restrictive feasible bounds from the linear program and
assumes that the probability mass in the remaining three
quadrants (P(S3 > y0.5|S2 ≤ x0.5), P(S3 ≤ y0.5|S2 > x0.5), and
P(S3 ≤ y0.5|S2 ≤ x0.5)) is equally distributed.

Table 2 (in theAppendix) shows the assessments for C1. Here,
we observe that while the expert assesses independence for the
central distribution part, i.e. assessment (i), she then refines the
upper tail in the following assessments (up to (v)) by assessing a
positive dependence relationship in more extreme parts.
However, overall she assesses less probability for the extreme
quadrants than for the dependence between S2 and S3.

The expert’s rationale for the assessments underlines that a
potential tail dependence for C2 stems from the initial situation at
the emergency scene. In some emergencies, bystanders slow down
the preparation (or set-up) of the unit, which includes unpacking
necessary equipment as an essential part of S2, while they also
affect the first contact and initial assessment on the victim (S3).
An example is an emergency in which bystanders actively try to
hinder the ambulance’s work, e.g. through harassment or
interrupting otherwise. Another source of dependence between
these tasks comes from the victim itself who might refuse
treatment, again affecting both tasks similarly. While this
might also affect S4 as pointed out by the expert initially, in
the final assessment she considered S4 to be independent of S2 and
S3, simply as the tasks in S4 can be done quickly after S3.

For C1, the main source of potential tail dependence stems
from the general traffic in the local area of the emergency
occurring. That is, while the routes themselves from the base
to the emergency and from there to the hospital are typically
different, some external effects, such as a central road closure, can

FIGURE 3 | Simulated ambulance service process outline.
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prolong both. Further, the time of the day, week etc. is likely to
have an effect on both travel durations together. Due to such
external events affecting any travel (within a certain local area),
the expert assessed a likelihood of tail dependence between S1 and
S5, i.e. C1, even if not as strong as between the other two tasks
(i.e. C2).

5.1.3 Sensitivity of Tail Dependencies
Throughout this paper, we have used the term tail dependence so
far in a general sense, referring to the situation of two extremely
long service times, i.e. at two different servers, occurring for the
same entity that is being serviced. However, as mentioned in
Section 4.1.1, several tail dependence measures exist for
analysing the upper and/or lower parts of a joint distribution
more rigorously. In this context, we now look at our minimum
information copulas and their tail dependence more closely. In
particular, we want to better understand the impact of the joint
distribution tails for when we simulate from our minimum
information copula and by that their sensitivity with regards
to the expert’s assessments on these.

To do so, we consider the assessed quadrants above the 50th,
75th, and 95th quantiles as the expert’s refined judgements on
the upper tail and hence on the importance of tail dependence

for the chosen service time relationships. In order to better
understand the tail dependence of C2, Figure 4 compares the
different scatter-plots for the question of “what-if” the
elicitation had stopped after assessment (i) and (iii) with (v)
(in Table 1) accordingly. In other words, it considers the
scenarios of only having refined the upper quadrants up to a
certain level.

It shows the impact that each refinement has on a more
extreme quadrant with regards to the joint distribution’s upper
tail. Similarly, Figure 5 shows how the estimated conditional
probability P(S3 > u|S2 > u) differs for copulas (i), (iii), and (v)
for different quantiles through the tail concentration function
R(u) � P(S3 > u|S2 > u)/(1 − u)2 [54].

Following from that, we first measure the overall dependence
strength of C2 via Spearman’s rank correlation, ρ. Then, we use its
conditional measure for the upper tail for each of the above versions
of our minimum information copula ((i), (iii) and (v)) to obtain
more insight on the difference in their tail dependence strength.

Spearman’s rank correlation is derived for a copula via
(e.g. [42]):

ρ(X,Y) � 12∫∫
[0,1]2

C(u, v)dudv − 3 (2)

TABLE 1 | Overview of dependence elicitation procedure and results for C2.

Framing “Given that we observe [. . . ]” Conditional
probability

Assessment Independence
Assessment

(i) “[. . . ] a service time longer than 4.33 min for S2, what is your probability that we observe a
service time longer than 7.82 min for S3?”

P(S3 > y0.5|S2 > x0.5) 0.65 0.5

(ii) “[. . . ] a service time longer than 6.11 min for S2, what is your probability that we observe a
service time longer than 7.82 min for S3?”

P(S3 > y0.5|S2 > x0.75) 0.5 0.5

(iii) “[. . . ] a service time longer than 6.11 min for S2, what is your probability that we observe a
service time longer than 16.44 min for S3?”

P(S3 > y0.75|S2 > x0.75) 0.5 0.25

(iv) “[. . . ] a service time longer than 10.06 min for S2, what is your probability that we observe a
service time longer than 16.44 min for S3?”

P(S3 > y0.75|S2 > x0.95) 0.35 0.25

(v) “[. . . ] a service time longer than 10.06 min for S2, what is your probability that we observe a
service time longer than 47.90 min for S3?”

P(S3 > y0.95|S2 > x0.95) 0.35 0.05

TABLE 2 | Overview of dependence elicitation procedure and results for C1.

Framing “Given that we observe [. . . ]” Conditional
probability

Assessment Independence

(i) “[. . . ] a service time longer than 7.2 min for S1, what is your probability that we observe a service time
longer than 11.7 min for S5?”

P(S5 > y0.5|S1 > x0.5) 0.5 0.5

(ii) “[. . . ] a service time longer than 12.88 min for S1, what is your probability that we observe a service time
longer than 11.7 min for S5?”

P(S5 > y0.5|S1 > x0.75) 0.5 0.5

(iii) “[. . . ] a service time longer than 12.88 min for S1, what is your probability that we observe a service time
longer than 30.85 min for S5?”

P(S5 > y0.75|S1 > x0.75) 0.3 0.25

(iv) “[. . . ] a service time longer than 29.76 min for S1, what is your probability that we observe a service time
longer than 30.85 min for S5?”

P(S5 > y0.75|S1 > x0.95) 0.35 0.25

(v) “[. . . ] a service time longer than 29.76 min for S1, what is your probability that we observe a service time
longer than 124.46 min for S5?”

P(S5 > y0.95|S1 > x0.95) 0.1 0.05

Assessment of C1

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org October 2021 | Volume 7 | Article 64124510

Werner Assessing Tail Dependencies in DES

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


In order to obtain a rank correlation measure for the upper
tail specifically, recall first that the copula of the
conditional distribution P(U > x, V > y|U > u, V > v) on
[u, 1] × [v, 1] is:

Φ(C, u, v)(x, y) � C(1 − FX(C, u, v)−1(x), 1 − FY(C, u, v)−1(y))
C(1 − u, 1 − v)

(3)

with FX(C, u, v)(x) � C(1−x,1−v)
C(1−u,1−v) and FY(C, u, v)(y) � C(1−u,1−y)

C(1−u,1−v)
accordingly. See Charpentier [55] for proofs and details.
We can then derive a conditional rank correlation measure
for the upper tail, on [u, 1] × [v, 1], (see [55] for details)
through:

�ρ(C, u, v) � 12∫∫
[0,1]2

Φ(C, u, v)(x, y)dxdy − 3 (4)

Using numerical integration, we then obtain an overall
ρ of 0.372 and conditional tail measures are shown in
Table 3.

FIGURE 4 | Resulting minimum information scatter-plots when stopping refinements after specific assessments for C2.

FIGURE 5 | R(u) when stopping quadrant refinements after assessments (i), (iii), (v).

TABLE 3 | Conditional correlation as Spearman’s rho (ρ) for the upper tail of C2.

(i) (iii) (v)

�ρ(0.5) 0.209 0.372 0.372
�ρ(0.75) 0.146 0.22 0.363
�ρ(0.95) 0.117 0.157 0.338
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We can analyse the behaviour in the tails further if desired, in
particular if we can assume that our minimum information
copula is an extreme value (EV) distribution. P Capéraà and
Genest [56] provide a non-parametric measure which has been
frequently used for minimum information EV copulas.

However, from the above, we already observe that without
further refinements after assessment (i), tail dependence
decreases continuously and is low in the minimum
information copula’s upper, extreme part. For the quadrant
higher than the assessed 75th quantiles (i.e. with assessment
(iii) included), the conditional �ρ remains higher than before
and decreases less. Lastly, with assessment (v) included, tail
dependence remains at a high level the longest given the high
probability assessment (proportionally to the provided upper
bound) for the quadrant above both 95th quantiles.

5.1.4 Simulation of Ambulance Service
Finally, we built and ran the simulation in SIMUL8 [57]. We used
its connection to spreadsheets and R [58], specifically the copula
package [59], to first store the sampled service times of the
unconditional tasks, i.e. at S1 and S2, and to then sample times
for the conditional tasks using our minimum information copulas.
Figure 6 shows the simulation together with annotations on where
we stored the initial occurrences of exceeding a specific quantile in
order to then sample the conditional service times.

5.2 Simulation Results and Discussion
With the dependence assessments and simulation model in place,
we obtained the results to compare the different maximum times

in system for the version of this simulation including the
dependencies and another version assuming independence
between all service times.

For both versions, we obtained the maximum times in system
from 30 simulation runs for each of which the random number
seeds1 (for all distributions) were changed. In that way, we
obtained 30 representative maximum time in system results
for each version. Given that the simulation focuses on the
process of single emergencies, note within each simulation run
we simulated >50 emergencies. Each simulation version’s
maximum time in system results are summarized in the box-
plots in Figure 7.

We observe that both simulation versions perform quite
differently regarding the generated maximum time in system
results. As such, the median of the simulation version with
independent service times (70.37 min) is lower than even the
25th quartile of the box-plot for the simulation version including
the assessed minimum information copulas which is 89.92 min.
In fact, this median result would fall within the extreme results on
the other simulation’s lower end. The inter-quartile ranges are not
overlapping and the box-plot resulting from the simulation
version assuming independence between service times (25th:
67.73, 50th: 70.37, 75th: 72.49 min) is much narrower
compared to the other version (25th: 89.92, 50th: 98.22, 75th:

FIGURE 6 | Simulation during run time (SIMUL8 screenshot with annotations).

1In SIMUL8 and simulation generally, we include randomness via streams of
pseudo-random numbers which create a simulation’s random events and timings
according to the defined statistical patterns.
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107.87 min). This shows an overall higher uncertainty around
this result for when we include the assessed dependencies. In
particular the number of extreme simulation results above the
corresponding 75th and 95th quartiles are of interest. It shows the
impact that exceeding a certain service time quantile for either S1
or S2 can have by likely triggering higher service times in the
corresponding conditional tasks, possibly resulting in (much)
higher maximum time in system results. Thus, even in such a
simple process, the upper tail risk of our assessed copulas can
have a significant impact.

5.3 Reflections on Illustrative Case Study
While more research and insight on simulation problems with
potentially dependent service times is needed to better understand
how (tail) dependence risk can propagate to simulation results, we
consider the proposed method to be suitable for improving its
understanding in our context and by that informing decision-
making in emergency ambulance service planning. Even in this

small case study, we already see that the impact of tail dependencies
can be considerable for the overall time an ambulance unit spends
on an emergency and hence is ready to be deployed again. This can
have a significant impact on planning unit availability and other
aspects of resource scheduling and staffing.

Nevertheless, the complexity of the simulation in our
illustrative case study is limited and only included one expert.
In future, it will be important to test the proposed method for
more complex ambulance service simulations. In particular, it
will be interesting to weight in the benefits of assessing more
possible dependencies in a simulation against the challenges of
dealing with experts’ increased cognitive challenges to do so.
There is a balance between assessing the relationships between all
service times, which is most likely not possible with regards to
time and willingness of experts to make that many assessments,
and assessing too few dependencies, thereby possibly omitting or
underestimating important ones. For the small simulation in this
case study the expert was comfortable with identifying the most

FIGURE 7 | Comparison of maximum times in system (in minutes) for simulation with dependent and independent service times.

FIGURE 8 | Quantile partition of the joint distribution from (i) to (iv).
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critical dependencies before assessing them. However, this cannot
always be assumed. For instance, Anagnostou and Taylor [60]
outline that ambulance service simulations should include the
Accident and Emergency (A&E) department, as they are
interwoven with the emergency medical services. This would
already increase the complexity of the above model significantly.
Therefore, in future case studies on DES models with
dependencies, we should integrate methods for structuring
experts’ knowledge to first judge which and hence how many
dependence relationships to include and asses. In that way,
omissions of dependencies are more structured and justifiable
than in the previous case study.

Lastly, including more experts that work on the different
aspects of ambulance services might improve the robustness of
the assessed dependencies. Therefore, future applications should
include multiple, different experts on ambulance services and
their additional insight should be evaluated.

6 CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we have introduced a method for including potential
tail dependencies between service time distributions as these can
significantly impact important simulation results, commonly sought
after in DES, whenever we cannot assume independence. Especially,
we considered the simulation result of maximum time in system in
this context. We have shown in the illustrative case study that for
ambulance services the maximum time in system is critical whereas
it can be impacted by possible tail dependencies.

While this paper gives the reader a general introduction to
including tail dependencies in DES and answers questions about
why a modeller might do so by outlining their sources, the main
contribution is the LP-based expert judgement method presented. It
offers flexibility in terms of assessing copulas to a level as desired by a
decision-maker and addressing the modelling challenge of lacking
historical data on dependencies between service times. We regard it
as an important tool for anymodeller whenever facing thismodelling
challenge in order to ensure robust simulation results and hence
robust decisions based on these in the face of tail dependence risks.
Already Robinson [1] points out that simulation models are “data
hungry”. Therefore, offering structured ways of assessing missing
data can be even of broader interest for the simulation community,
not only in the context of tail dependencies.

In future research, it is desirable to consider tail dependencies for
more complex simulations and by that explore how comfortable
experts are with assessing minimum information copulas for other
simulation problems. An example is developing a DES for a non-
existing system or process, such as a new factory design or a newly
proposed clinical pathway for patients. Here, dependencies and their
assessments might be more debatable among the experts and
decision-makers. In this regard, the number of assessments to
make in order to obtain sufficiently detailed minimum
information copulas might be addressed given that the proposed
method offers flexibility on that. Further, in future research we
should explore experts’ willingness and ability to assess dependence
relationships in higher dimensions as these might be important to

consider for many simulation problems. For these, we elicit
conditional probabilities with a conditioning set of more than
one condition whereas the question can be framed e.g. as “Given
that not only S1 but also S2 exceed their median values of xS1 and xS2

minutes, what is the probability that S3 exceeds its median value of y
minutes?”. While our method provides feasible upper and lower
bounds for such assessments and a minimum information copula in
higher dimensions, it is important to consider experts’ potential
cognitive challenges when making such assessments.

Next, including more experts and ones from different
backgrounds will be important in future dependence
assessments on DES models as they offer a wider perspective on
the uncertainties involved. In DES, we often require experts on the
whole simulated process, but also ones for specific sub-parts, such
as clinicians making decisions in one specific part while nurses are
involved in other process steps.With multiple experts, we then also
need to explore sensible ways of combining dependence
assessments which is currently a little explored research area [61].

Lastly, when reflecting on our case study in the previous
section, we already highlighted the importance of more
structured ways to support experts’ in the initial decision on
which dependencies to include.

Quantile Partition and LP Example for
Feasible Assessment Bounds
Based on the earlier example of a common assessment sequence
as shown in Figure 1, we present the corresponding quantile
partition together with the LP problem for obtaining assessments’
feasible bounds. Figure 8 shows the resulting quantile partition.

Based on Figure 8, we can now formulate the following LP
problem to determine the feasible bounds:

min ,
max

}p33 (5)

subject to

p13 + p12 � p~12
p23 + p22 + p33 + p32 � p~22
p11 � p~11

and

p21 + p31 � p~12
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APPENDIX

Marginal Service Time Distributions (In
Minutes):

S1 ∼ Lognormal(7.2, 2.37)
S2 ∼ Lognormal(4.33, 1.67)

S3 ∼ Lognormal(7.82, 3.01)
S4 ∼ Erlang(11.6, 8.35)
S5 ∼ Lognormal(11.7, 4.21)
S6 ∼ Gamma(6.89, 0.65)
S7 ∼ Gamma(8.46, 0.27)
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