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We construct the traveling wave solutions of some NonLinear Evolution Equations (NLEEs)
with mutable coefficients arising in different branches of physics and mathematics. we
apply a novel (G′G )-formalism to construct more general solitary traveling wave solutions of
NLEEs such as Sharma-Tasso-Olver with mutable coefficients and Zakharov Kuznetsov
equation. Interesting solutions of NLEEs are investigated by traveling wave solutions which
are in form of trigonometric, rational, and hyperbolic functions. This may build more unified
new solutions for different kinds of such NLEEs with mutable coefficients arising in
mathematics and physics. Wolfram Mathematica 11 is used to perform the
computation work and their corresponding plots and counter graphs are plotted. This
method is found to be more useful and efficient for searching the exact solutions of NLEEs.

Keywords: nonlinear evolution equations, solitons, solitary wave solutions, explicit solution PACS no: 0230Ik,
0365Fd, 0320+i

1 INTRODUCTION

NonLinear Evolution Equations (NLEEs) plays a significant role in the analysis of mathematical
modeling and soliton theory. TheseNLEEs, which are primarily studied inmathematics and physics play
an important role and character in various branches of science and technology, such as propagation of
shallow water waves, population statistics physics, fluid dynamics, condensed matter physics,
computational physics, and geophysics. NLEEs also appear and are very important in many fields
such as wave mechanics, dissipation mechanics, dispersion in optics, reaction and convection equations.
Over the past few decades, many compellingmethodologies for extracting exact solutions of NLEEs have
been formulated. However, it is more difficult to solve the NLEEs but, various methods have been tried
for solving NLEEs, such as the Hirota’s bilinear operations [1] truncated Painleve expansion [2], inverse
scattering transform [3], extended tanh-function method [4], F-expansion method [5], tanh-coth
method [6], Jacobi-elliptic function expansion [7], homogenous balance method [8], sub ODE method
[9], Rank analysis method [10], Extended andmodified direct algebraic method [11], extendedmapping
method [12, 13] and Seadawy techniques to find solutions for some nonlinear partial differential
equations [14] andmany other ansatzes comprising exponential and hyperbolic functions are accurately
used for the analytic analysis of NLEEs. Recently a few other well-known methods are used to extract
explicit solutions of soliton equations, as example the adomionos decomposition method [15], Darboux
transformation (DT) [16], Hirota technique [17] etc. In early 1990s, Wang et al. [18] familiarize a new
formalism called extended (G′

G)-expansion method for a decisive treatment of NLEEs. After that further
applications of this method have also been proclaimed [19, 20]. Therefore, further to expand the domain
of applications of extended (G′

G)-expansion formalism, in this work we examine the nonlinear Sharma-
Tasso-Olver with mutable coefficients (STO) [21, 22] equation exact solutions are attained which are in
form of hyperbolic, trigonometric and rational functions. In works of literature, many times it appears as
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an evolution equation acquiring many symmetries. The extended(G′
G)-expansion formalism has also been applied to the Zakharov

Kuznetsov (ZK) equation [23] and abundant exact solutions are
derived which included the trigonometric, rational, and hyperbolic
functions. First of all, we describe the method and applied it to two
given equations, all different possible wave solutions are presented
by their 3D plots and their corresponding contour plots. At the end
of this article, discussion and conclusion are given in detail in the
last section.

2 THE METHOD AND ITS APPLICATIONS

In order to solve NLEEs, defined with two independent variables
x and t, in this section we highlights the important points of the
extended (G′

G)-expansion formalism. Suppose a NLEEs is of the
form

P(u, ut, ux, utt, uxt, uxx, . . .) � 0, (1)

where u � u (x, t) and P is polynomial in u � u (x, t)
Point 1: Let us introduce the wave variable

ξ � x − ct, (2)

so that

u(x, t) � u(ξ). (3)

This leads to NonLinear ordinary differential equation
(NLODE) as

P(u, uξ , uξξ , uξξξ , . . .) � 0, (4)

where uξ denotes differentiation of u wrt ξ.
Integrating the ODE (4) many times with setting the constant

of integration to be zero.
Point 2: The solution of Eq. 4 can be expressed by a

polynomial in extended (G′
G) i.e.

u(ξ) � δm(G′

G
)m

+ δm−1(G′

G
)m−1

+ . . . ‥ � ∑i�m
i�−m

δi(G′

G
)i

, (5)

where G � G(ξ) entertain following ODE of the form

G′′ + cG′ + ρG � 0, (6)

where δm, δm−1, . . .,δ0, c and ρ are constants to be found out later
and δm ≠ 0.

Point 3: Replacing Eq. 5 into Eq. 4 and using Eq. 6, and
assembling all terms with the equal order of (G′

G) together, and
then equating each participating and the resulting polynomial to
be zero yields a set of mathematical statement for δm, δm−1, . . .,δ0,
c, c and ρ.

Point 4: Since the general solutions of Eq. 6 have been well
known for us, then substituting δm, δm−1, . . .,δ0 and c and the
general solutions of Eq. 6 into Eq. 5 we obtain more solitary wave
solutions of NLEEs Eq. 1.

With this detailed mathematical explanation of the extended(G′
G)-expansion formalism, we now try to solve the NLEEs of

physical importance as discussed in previous section.

3 SHARMA-TASSO-OLVER EQUATION

Nonlinear Sharma-Tasso-Olver (STO) the mutable coefficients
have discussed in many branches of mathematical physics,
science and engineering. STO equation reads as [21].

ut + f(t) uux + 1
3
u3( )

x
+ g(t)uxxx � 0. (7)

This equation contains both linear dispersive term uxxx and the
double nonlinear terms uux and ut. Here the parameters f(t) ≠ 0,
g(t) ≠ 0 and are both temporal variable. Using a transformation
STO (7) with new variable reads

u(x, t) � u(ξ), ξ � x + w

ζ
∫t

0
g(t)dt. (8)

provided f(t) and g(t) in Eq. 7 should hold the condition f(t) �
3g(t). Integration Eq. 7, shorten to

w

ζ
uξ + uξξξ + 3 uuξ + 1

3
u3( )

ξ
. (9)

Homogeneous balance between linear dispersive term uξξ and the
double nonlinear terms u3 solution are as suggested by formalism,
we find n � 1

u(ξ) � δ0 + δ1(G′

G
) + δ−1(G′

G
)−1

, (10)

where δ0, δ1, δ−1 are constants. Replacing Eq. 10 with Eq. 6 into
Eq. 7, accumulating the coefficients of (G′

G) we attain a set of
mathematical statement for δ0, δ1, δ−1, w and ζ and solving set of
equation by mathematical software, we have.

Case (1)

δ−1 � ρ, δ0 � 0, ζ � ζ , δ1 � 1, c � −c2ζ + 4ζρ, (11)

Case (2)

δ−1 � 0, δ0 � c

2
, ζ � ζ , δ1 � 1, c � −1

4
c2ζ + ζρ, (12)

so as per the first conditions the Eq. 10 will give

u1(ξ) � (G′

G
) − ρ(G′

G
)−1

,

ξ � x + −c2ζ + 4ζρ
ζ

∫t

0
g(t)dt.

(13)

For the second case Eq. 10 will give

u2(ξ) � c

2
+ (G′

G
),

ξ � x +
−c2
4

ζ + ζρ

ζ
∫t

0
g(t)dt.

(14)

with the aid of Eq. 6, solutions of Eqs 13, 14 are the solitary wave
solutions as trigonometric, rational and hyperbolic functions.

Solution of first kind (1): when
������
c2 − 4ρ

√
greater than 0
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u1(ξ) � (
������
c2 − 4ρ

√
)[

A1 sinh
1
2

������
c2 − 4ρ

√( )ξ + A2 cosh
1
2

������
c2 − 4ρ

√( )ξ
2A1 cosh

1
2

������
c2 − 4ρ

√( )ξ + 2A2 sinh
1
2

������
c2 − 4ρ

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−ρ (

������
c2 − 4ρ

√
)[

A1 sinh
1
2

������
c2 − 4ρ

√( )ξ + A2 cosh
1
2

������
c2 − 4ρ

√( )ξ
2A1 cosh

1
2

������
c2 − 4ρ

√( )ξ + 2A2 sinh
1
2

������
c2 − 4ρ

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1

.

(15)

u2(ξ) � c

2
+ (

������
c2 − 4ρ

√
)[

A1 sinh
1
2

������
c2 − 4ρ

√( )ξ + A2 cosh
1
2

������
c2 − 4ρ

√( )ξ
2A1 cosh

1
2

������
c2 − 4ρ

√( )ξ + 2A2 sinh
1
2

������
c2 − 4ρ

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(16)

Solution of second kind (2): when
������
c2 − 4ρ

√
less than 0

u1(ξ) � ( ������
4ρ − c2

√ )[
−

A1 sinh
1
2

������
4ρ − c2

√( )ξ + A2 cosh
1
2

������
4ρ − c2

√( )ξ
2A1 cosh

1
2

������
4ρ − c2

√( )ξ + 2A2 sinh
1
2

������
4ρ − c2

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−ρ (

������
4ρ − c2

√
)[

−
A1 sinh

1
2

������
4ρ − c2

√( )ξ + A2 cosh
1
2

������
4ρ − c2

√( )ξ
2A1 cosh

1
2

������
4ρ − c2

√( )ξ + 2A2 sinh
1
2

������
4ρ − c2

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1

(17)

u2(ξ) � c

2
+ (

������
4ρ − c2

√
)[

A1 sinh
1
2

������
4ρ − c2

√( )ξ + A2 cosh
1
2

������
4ρ − c2

√( )ξ
2A1 cosh

1
2

������
4ρ − c2

√( )ξ + 2A2 sinh
1
2

������
4ρ − c2

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

Solution of third kind (3): when
������
c2 − 4ρ

√
equal to 0

u1(ξ) � A1

A1 + A2ξ
− c

2
[ ] − ρ

A1

A1 + A2ξ
− c

2
[ ]−1

,

u2(ξ) � c

2
+ A1

A1 + A2ξ
− c

2
[ ]−1

.

(19)

where A1 and A2 are integration constants. All different possible
traveling wave solutions are presented by their 3D plots and
their corresponding contour plots (right side figures) (Figure 1).
For simplicity of the plot, we have taken all required vales of δ0,
δ1, δ−1, ζ(t), A1, and A2 and plotted for only the first solution

u1(χ) only. Important results are discussed in concluding
remarks.

4 GENERALIZED ZAKHAROV KUZNETSOV
EQUATION

Generalized Zakharov Kuznetsov (ZK) equation with mutable
coefficients describes wave features in plasma physics [23].
Particularly the ZK equation was a handful in for describing
weakly nonlinear ion-acoustic waves in strongly magnetized
lossless plasma in two dimensions. The ZK equation with dual
power law nonlinearity is the main motivation of this work. The
ZK equation reads as

utδ(t)uux + ζ2(t)u2ux + uxxx + θ(t)uxyy � 0. (20)

where δ(t), ζ(t) and θ(t) are arbitrary function of t. For wave
solutions for Eq. 20, use transformation

u(x, t) � u(ξ), ξ � kx + ly + ∫t

0
τ(t)dt. (21)

where k, l are constants, τ(t) is an integrable function of t to be
determined later. Substituting Eq. 21 into Eq. 20, we have

τ(t)u′(ξ) + δ(t)ku′(ξ)u(ξ) + ζ(t)ku2(ξ)u′(ξ) + [k3 + θ(t)kl2]u′′′(ξ) � 0.

(22)

where the prime denotes the differential with respect to x.
Formalism suggests to introduce the anstaz

u(ξ) � δm(G′

G
)m

+ δm−1(G′

G
)m−1

+ . . . ‥ � ∑i�m
i�−m

δi(G′

G
)i

, (23)

where δi are constants. Making the homogeneous balance
between u′′′(ξ) and u2(ξ), u′(ξ) in Eq. 22, yields n � 1, so
solution of Eq. 20 be as suggested by formalism

u(ξ) � δ0(G′

G
)m

+ δ1(G′

G
)1

+ δ−1(G′

G
)−1

. (24)

Replacing Eq. 24 with Eq. 6 into Eq. 22, accumulating the
coefficients of (G′

G) for δ0, δ1, δ−1 and τ(t) and solving this
system one can get.

Case (1)

δ0 � δ1(ζ(t)δ1 + 6θ(t)t2c + 6k2c)
12(k2 + θ(t)t2) , δ−1 � δ0, δ1 � δ1,

η � η, k � k, η(t) � −6(k
2 + θ(t)t2)
δ21

,

τ(t) � k[12θ(t)t4k2 + 96θ(t)t4ρ − ζ(t)2δ21]
24(k2 + θ(t)t2)

12θ(t)t4k2 + 96θ(t)t4ρ − ζ(t)2δ21
24(k2 + θ(t)t2) .

(25)
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FIGURE 1 | Travelingwave solutioncorresponding to theSharma-Tasso-Olver (STO) equation. (A)Plot ofu1(χ), when
�������
τ2 − 4c

√
>0, c � 0.1, ρ � 0.02, A1 � 0.02, A2 � 0.03.

(B) Plot of u1(χ), when
�������
τ2 − 4c

√
<0, c � 0.1, ρ � 0.2, A1 � 0.02, A2 � 0.03. (C) Plot of u1(χ), when

�������
τ2 − 4c

√
� 0, c � 0.2, ρ � 0.01,A1 � 0.02,A2 � 0.03.
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FIGURE 2 | Traveling wave solution corresponding to the Zakharov Kuznetsov equation (ZK) equation. (A) Plot of u1(χ), when
�������
τ2 − 4c

√
>0, c � 0.1, ρ � 0.02,

A1 � 0.02,A2 � 0.03. (B)Plot of u1(χ), when
�������
τ2 − 4c

√
< 0, c � 0.1, ρ � 0.2,A1 � 0.02,A2 � 0.03. (C)Plot of u1(χ), when

�������
τ2 − 4c

√
� 0, c � 0.2, ρ � 0.01,A1 � 0.02,A2 � 0.03.
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Case (2)

δ0 � δ1(ζ(t)δ1 + 6θ(t)l2c + 6k2c)
12(k2 + θ(t)l2) , δ−1 � 0, δ1 � δ1,

η(t) � −6(k
2 + θ(t)l2)
δ21

,

τ(t) � k 24θ(t)k2c2l2 + 12k4c2 + 12θ(t)2l4c2 − 96θ(t)l2ρk2{
24(k2 + θ(t)l2)

−48θ(t)2ρl4 − ζ2(t)δ21 − 48k4ρ

24(k2 + θ(t)l2) .

(26)

by using above two conditions solutions can be written as

u1(ξ) � δ1(ζ(t)δ1 + 6θ(t)t2c + 6k2c)
12(k2 + θ(t)t2) + δ1(G′

G
)1

+ δ−1(G′

G
)−1

ξ � kx + ly

+∫t

0

k(12θt4k2 + 96θt4ρ − ζ2δ21)
24(k2 + θ(t)t2)[ ]dt

+∫t

0

k(12k4c2 + 96k4ρ + 24θt2c2k2 + 192θt2ρk2)
24(k2 + θ(t)t2)[ ]dt

similarly we have

u1(ξ) � δ1(ζ(t)δ1 + 6θ(t)t2c + 6k2c)
12(k2 + θ(t)l2) + δ1(G′

G
)1

+ δ−1(G′

G
)−1

ξ � kx + ly

+∫t

0

k{24θk2c2l2 + 12k4c2 + 12θ2l4c2}
24(k2 + θ(t)l2)[ ]dt

+∫t

0

k{96θl2ρk2 − 48θ2ρl4 − ζ2δ21 − 48k4ρ}
24(k2 + θ(t)l2)[ ]dt

with Eq. 26 and Eq. 6, we have exponential and hyperbolic and
rational functions types of solitary wave solutions for ZK
equation with mutable coefficients Eq. 20 as:

Solution of first kind (1): when
������
c2 − 4ρ

√
> 0

u1(ξ) � (
������
c2 − 4ρ

√
)[

A1 sinh
1
2

������
c2 − 4ρ

√( )ξ + A2 cosh
1
2

������
c2 − 4ρ

√( )ξ
2A1 cosh

1
2

������
c2 − 4ρ

√( )ξ + 2A2 sinh
1
2

������
c2 − 4ρ

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ δ1(ζ(t)δ1 + 6θ(t)t2c + 6k2c)

12(k2 + θ(t)l2) + δ1 (
������
c2 − 4ρ

√
)[

A1 sinh
1
2

������
c2 − 4ρ

√( )ξ + A2 cosh
1
2

������
c2 − 4ρ

√( )ξ
2A1 cosh

1
2

������
c2 − 4ρ

√( )ξ + 2A2 sinh
1
2

������
c2 − 4ρ

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1

.

(27)

u2(ξ) � δ1 (
������
c2 − 4ρ

√
)[

A1 sinh
1
2

������
c2 − 4ρ

√( )ξ + A2 cosh
1
2

������
c2 − 4ρ

√( )ξ
2A1 cosh

1
2

������
c2 − 4ρ

√( )ξ + 2A2 sinh
1
2

������
c2 − 4ρ

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ δ1(ζ(t)δ1 + 6θ(t)t2c + 6k2c)

12(k2 + θ(t)l2) .

(28)

Second kind (2): when
������
c2 − 4ρ

√
< 0

u1(ξ) � δ1 (
������
4ρ − c2

√
)[

−
A1 sinh

1
2

������
4ρ − c2

√( )ξ + A2 cosh
1
2

������
4ρ − c2

√( )ξ
2A1 cosh

1
2

������
4ρ − c2

√( )ξ + 2A2 sinh
1
2

������
4ρ − c2

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ δ1(ζ(t)δ1 + 6θ(t)t2c + 6k2c)

12(k2 + θ(t)l2) + δ1 ( ������
4ρ − c2

√ )[

−
A1 sinh

1
2

������
4ρ − c2

√( )ξ + A2 cosh
1
2

������
4ρ − c2

√( )ξ
2A1 cosh

1
2

������
4ρ − c2

√( )ξ + 2A2 sinh
1
2

������
4ρ − c2

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1

.

(29)

u2(ξ) � δ1 (
������
4ρ − c2

√
)[

A1 sinh
1
2

������
4ρ − c2

√( )ξ + A2 cosh
1
2

������
4ρ − c2

√( )ξ
2A1 cosh

1
2

������
4ρ − c2

√( )ξ + 2A2 sinh
1
2

������
4ρ − c2

√( )ξ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − c

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ δ1(ζ(t)δ1 + 6θ(t)t2c + 6k2c)

12(k2 + θ(t)l2) .

(30)

Third kind (3): when
������
c2 − 4ρ

√ � 0

u1(ξ) � δ1
A1

A1 + A2ξ
− c

2
[ ] + δ1{ζ(t)δ1 + 6θ(t)t2c + 6k2c}

12(k2 + θ(t)l2)

+ δ1 A1

A1 + A2ξ
− c

2
[ ]−1

,

(31)

u2(ξ) � δ1 + A1

A1 + A2ξ
− c

2
[ ]−1

+ δ1{ζ(t)δ1 + 6θ(t)t2c + 6k2c}
12(k2 + θ(t)l2) .

(32)

where A1 and A2 are integration constants. As results, many exact
solitary wave solutions of the form hyperbolic, trigonometric and
rational functions are obtained (Figure 2). We have taken all
required vales of δ0, δ1, δ−1, ρ, ζ(t), θ(t) k, l, A1, A2 and τ(t) and
plotted for only the first solution u1(χ) only.
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5 CONCLUSION

Finally, it is worthwhile to mention these hyperbolic,
trigonometric and rational function solutions are difficult to
obtain by the methods mentioned in the introduction. The
general solitary wave solutions can give soliton or periodic
solutions under different parametric restrictions. These results
mean that there are rich solitary wave patterns for the STO and
ZK equation. To the best of our knowledge concern, this paper
reports the aforementioned new solutions by this novel
method. To our knowledge our solutions Eq. 15 and Eq. 17
of Eqs 19, 27, 29 of Eq. 32 are all new and not reported in
literature. It is interesting to note that from the general results,
one can easily recover solutions that are obtained from other
methods. If we take the concrete parameters in a real model, we
can give the corresponding representation of the solution.
Comparing this work with the work in [6] where the tanh
method were used, we find that the proposed method in this

work presents more kink and solitons solutions compared to
the work in [6]. Therefore, it is rather convenient for practice.
We also presented three-dimensional plots and their
corresponding contour plots of some of the solutions. This
is direct and the concise method can further be used to explore
more applications.
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