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We consider cortex-like complex systems in the form of strongly connected, directed
networks-of-networks. In such a network, there are spiking dynamics at each of the nodes
(modelling neurones), together with non-trivial time-lags associated with each of the
directed edges (modelling synapses). The connections of the outer network are
sparse, while the many inner networks, called modules, are dense. These systems
may process various incoming stimulations by producing whole-system dynamical
responses. We specifically discuss a generic class of systems with up to 10 billion
nodes simulating the human cerebral cortex. It has recently been argued that such a
system’s responses to a wide range of stimulations may be classified into a number of
latent, internal dynamical modes. The modes might be interpreted as focussing and
biasing the system’s short-term dynamical system responses to any further stimuli. In this
work, we illustrate how latent modes may be shown to be both present and significant
within very large-scale simulations for a wide and appropriate class of complex systems.
We argue that they may explain the inner experience of the human brain.
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1 INTRODUCTION

In [1] it was argued that the human brain’s response to incoming stimuli can be thought of as
incorporating two distinct mechanisms: firstly, the brain must interpret what is going on (externally),
and recognize the various possible stimuli as representing external elements that are at play, by
utilizing a hierarchy of possible physical elements of increasing complexity and abstraction.
Secondly, the brain can recognize, and so we experience, “internal elements” that are internal to
itself, such as feelings, qualia, and sensations, that account for subjective, internal, and hierarchical
[2] experiences and emotions. In [1] it was posited that both mechanisms are both achieved with the
same apparatus: a special architecture of ten billion excitatory-inhibitory, delay connected, firing
(excitable and refractory) neurones.

That apparatus is understood in the form of a network-of-networks [1, 3, 4]. The former, outer
network is relatively sparse; the latter, localized networks are tightly (strongly) connected groups of
individual neurones. For the reasons we set out in Section 2, each such tight sub-network is treated as
being capable of localized multi-hypothesis decision making, acting to relay and amplify
information. In networks science terms the inner networks can be thought of as densely
connected modules within a highly modular global network [5].

It has recently been shown [7] that such a dynamical system’s responses to a wide range of distinct
stimulations may be classified into a number of latent, internal, dynamicalmodes, displaying similar
dynamical firing patterns—in time, and across the network. The modes are internal and are to be
interpreted as subjective to the system. We will discuss that work in detail in Section 3.
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The brain’s possession of many internal modes leads them to
take the role of latent variables. We will show that latent variables
provide long-range feedback and biases that constrain the
processes of recognizing real elements (in perceiving the
external world). This implies an important evolutionary role
for such internal modes, not least in developing rapid decision
making. Understanding such decision-making frameworks is
important, as researchers [8] have sought to understand how
rapid decision might result in systematic cognitive illusions and
subconscious biases, and thus consistent and predictable
irrational errors.

Furthermore, each of the internal modes can be naturally
paired with (and triggered by) a collage of the external elements
referred to by [1]. This can, for example, take on the form of
feeling grief, embarrassment, or fear. Mathematically, they do not
rely on random noise, stochastics, instabilities, or any other
dynamical pattern formation mechanisms [1].

In this work, each complex system will exhibit a set of internal
modes. Cross comparisons between two such sets might reveal
some relatively common modes (that could be in one to one
correspondence where the systems are subjected to identical or
similar stimuli), while other modes might be individual modes.

Moreover, it might be possible to understand the modes in a
hierarchical framework, with some modes emerging as the
simultaneous combination of more fundamental modes [1].
These higher level modes might be interpreted as
corresponding to global, abstract feelings: this idea is related to
the discussion in [2], where it is argued that there are five levels of
qualia. Specifically [2], argues that “the latter three levels constitute
explicit mental representations of experience. These five levels put
unconscious and conscious processes on a continuum
characterized by progressively increasing degrees of
differentiation and complexity of the schemata used to process
emotional information.” Whether or not a de-lineation into five
levels is correct, is no matter: a hierarchical framework concept
allows to move from local internal modes, dominated by just a
few local modules at the lowest level of the hierarchy, through to
more global modes. This idea was discussed independently as a
consequence of the “dual hierarchy model” proposed in [1],
where it was analogous to the hierarchy of external
perceptions (the recognition of objects, actions, narratives,
scenarios, . . .).

Philosophical zombies are conceived of as being functionally
and physically identical in all ways to a human, but without
having internal experiences and feelings [9]. We must deny that
such zombies are possible: if there is any brain that is physically
and functionally identical to ours, then that brain would have the
same internal modes and would thus have the same qualia: an
identical functional system with no qualia (that is, a zombie) is
not possible.

The oft mentioned hard problem of consciousness “is the
problem of experience. Humans beings have subjective experience:
there is something it is like to be them. We can say that a being is
conscious in this sense—or is phenomenally conscious, as it is
sometimes put—when there is something it is like to be that being.
Amental state is conscious when there is something it is like to be in
that state.” [10]. Here, we are stating unambiguously that the

experience of being within a certain internal mental state is
nothing more than the experience of these internal modes
being activated (that is, they are responses to the present
collage of external stimuli). The question about how and why
we should experience feelings and qualia, in isolation or
independently from the underlying architecture and
processing, is thus a red herring.1 We are enthusiastic
physicalists: internal sensations are merely interpreted as the
experience of these internal modes kicking in. These are
sensations that we label appropriately—and they are a natural
consequence of exploiting a multi-state interpreter. Some
philosophers might argue strongly against this, saying that
qualia are fundamental experiences. We must reject this, since
latent variables controlling the mode, that is, the state of mind,
would occur naturally as a consequence of the network-of-
networks processing architecture, the time-lagged connections
and the individual nodal dynamics. The internal states would gain
consistency with the frequency of occurrence, and they would
become associated (labelled) with some of the attributes of their
own collage of catalysing physical elements.

In this work, no emergent phenomena (whether weak or
strong [11]) are relied upon in supporting such hypotheses
and deductions. Instead, we continue to proceed directly from
a knowledge of the dynamical properties and delay-coupling over
networks-of-networks [1]. In our view, emergence is a second,
different, red herring.

The specific purpose of this paper is to further examine the
possible functionality and consequences of the cortex-like
network-of-networks model. We will interpret the class very
large system simulations and analyses that were set out
recently [7]. That work represents some of the largest
numbers of simulations using massive cortex-like complex
systems that have ever been made [12, 13]. This endeavour
requires significant resources. IBM has been particularly active
and has carried out TrueNorth simulations with 64 million
neurones in 2019 [14], realizing the vision of the 2008
DARPA Systems of Neuromorphic Adaptive Plastic Scalable
Electronics (SyNAPSE) program. The simulations and
analytics carried out in [7] can be carried out on the
SpiNNaker 1 million-core platform [15–17] which was
designed specifically for these types of experiments, supported
by the EU Human Brain Project [18].

While [7] gives a technical account of this type of
mathematical modelling, simulation, and post-processing
analytics, here we shall set out the implications of those results
for the most basic element of human consciousness: how and why
does the architecture and dynamics of the human cortex give rise
to internal feelings? We shall show that such systems, which are
simply large-scale models for a human brain, necessarily exhibit
internal (latent) modes in their dynamical response.

The cortex-like complex systems were stimulated in many
different ways in very large-scale computes, and thence the

1A red herring is something that distracts from the question at hand. The term was
employed byWilliam Cobbett in 1807, who claimed to have used a kipper (a smelly
smoked herring) to divert hounds from their pursuit of a hare.
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responses allowed the system to be reverse-engineered. The very
large-scale of the highly modular systems’ architecture and
dynamical specifications and the multiple simulation tasks
required the development of observational (watching) and
analytical (post-processing) methods. For those synthetic
simulations one can look inside at any and all scales, right
down to the individual nodes (neurones): which would be
impossible for any human brain. We will build upon the
technical results given in [7] to discuss what lies inside the
workings of all such systems and how they must consequently
possess latent dynamical modes. There need be nothing more.

2 THE PHYSICAL BRAIN: A
NETWORK-OF-NETWORKS

The cerebral cortex is the outer layer of neural tissue of the human
brain, that is wrapped over the limbic, reptilian, brain (which
itself controls more basic operational functions). It is usually
assumed to play a role in memory, perception, thought, language,
and consciousness. The cerebral cortex contains roughly
10 billion, i.e., 1010, neurones, that are networked together by
100 trillion, i.e., 1014, (directed) synaptic connections [19]. So,
considered globally, the network is sparse.

The human cerebral cortex is 2–3 mm thick, and is composed
of horizontal layers: in the neocortex about six layers can be
recognized although in some regions far fewer layers are present.

Neurones within the different layers connect vertically to
form-up relatively small, but tightly coupled subsets, called
cortical hyper-columns, or cortical modules. The neurone-to-
neurone connections, up and down through the layers, within
a single cortical module are much denser than the connections
that spread out laterally from module to neighbouring module
[20–23].

There are approximately 10,000 neurones within a single
cortical module. Assuming some duplication of neurone-to-
neurone synaptic connections, the edge density of a single
module may be approximately 70%. Considered locally, within
modules, the sub-network is dense. There are about 1 million
cortical modules in all, arranged in a two dimensional sheet, that
is corrugated up, and wrapped across the top of the brain. Hence,
the total of 10 billion cortical neurones [24].

As we have noted these 1 million cortical modules sitting
within the entire network are completely analogous to the
mathematical graph/network-theoretic concept of modules [5].
Mathematically, the modules can be viewed as densely connected
sub-networks (that are also sometimes referred to as “clusters,” or
“communities” within graphs) that are themselves loosely
connected up, with each acting as some type of multimodal
information processor [1].

Each neurone itself possesses an excitable and refractory
depolarizing “spiking” dynamic. When it is sufficiently
stimulated, by spiked waves of membrane (electrical)
depolarization, incoming from a synapse, along a dendrite,
into its soma, during a moment when it is ready to fire itself,
then the neurone will do so. Once it has fired a neurone must
undergo a refractory period, as the ions (for example, Na+ and

K+) re-equilibrate across it cellular membrane, during which time
it cannot be re-stimulated to fire. This is the so-called “refractory
period.”Once this period is complete then the neurone is ready to
fire again, when stimulated. The transmission of an excitatory
signal between one neurone and another takes some non-trivial
time, relative to the time of a single excitatory firing spike:
physically, a wave of membrane depolarization leaves one
soma, out along an axon, jumps a synapse, and then travels
up a dendrite and into the soma of the neighbour. We refer to this
feature as time-lagged excitatory coupling. We note that there are
a number of alternative models that could be adopted as the basis
for the nodal neurone firing dynamics: what is critical is that each
encodes a non-trivial refractory period.

In summary, a physical model of the human cortex should
comprise a directed graph with 1 million modules, with each
module containing approximately 10,000 neurones. Dense
directed connections within modules means that the average
number of up and downstream neurone adjacencies within a
module is approximately 75,000,000. Hence, models and
computer simulations require 10 billion nodes (neurones) with
75 trillion directed connections.

3 DESIGN OF LARGE-SCALE
SIMULATIONS, EXPERIMENTS, AND
OUTPUT ANALYSIS
Here we give a short description of the large-scale simulations
and analysis set out and performed in [7]. It is clear that such
simulations must exploit a massive processing platform, such as

FIGURE 1 | An M ×M grid of K-vertex modules (strongly connected
sub-networks inside each bubble) with (K,M) � (100, 3) and an average in
and out degree z � Q/K ≈ 3: the whole is strongly connected.
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that available in the 1 million-core platform [17], which was
designed for these types of experiments [15, 16].

3.1 Architecture
We introduce two-dimensional arrays of modules considered in
[7]. Consider an architecture with an M by M array of modules.
Each module will consist of K nodes (neurones) coupled together
as a dense strongly connected sub-network. Within each module
we will arrange to have approximately Q neurone-to-neurone
connections. Hence, the mean nodal in and out degree is z � Q/K.

The appendix of [6] sets out a method to randomly generate
such modules, for given values of K and z � Q/K , even when K is
very large (the requirement for strong connectivity being non-
trivial). Finally we add a few connections between randomly
selected neurones belonging to pairs of modules that are adjacent
within the M by M grid.

Figure 1 shows a small example of such a network on
N ≡ KM2 � 900 nodes where (K,M, z) � (100, 3, 3) and we
have added two connecting directed edges between
neighbouring modules (one each way).

In [7] a number J(≪K) of the nodes within each module were
selected at random to act as watch-nodes. The firing patterns over
time for the watch-nodes were all monitored within the various
simulations, taking their dynamics as representative of the forced
responsive behaviour of the whole module. Typically one might
take J � K/100 or K/1000.

The aim of [7] was to make simulations on these cortex-like
network architectures, increasing both K and M up towards
10,000 and 1,000, respectively (their natural values in vivo).
Then N � KM2 might reach 10B.

3.2 Dynamics and Time-Lagged Couplings
Next consider the active dynamics at each node and the node-to-
node transmissions that were deployed in [7]. Each directed
neurone-to-neurone connection, whether within a single
module or between neighbouring modules, had a time-lag
associated with it. The time-lag is drawn randomly from a
given distribution of real numbers. The average time lags
should be of the same order as the refractory period associated
with post-firing of the neurones. In that way, a round trip between
two nodes that are connected in both directions would be viable.
For simplicity we might use the nodal dynamical model
instantiated within platforms such as SpiNNaker [15, 16] with
an identical refractory period at each node. Alternative firing
models are common: typical examples include the discrete [6],
integrate and fire, FitzHugh-Nagumo, and Hodgkin-Huxley
models [25]. The aim is to avoid generating phenomena that
are reliant on the particular form of the chosen firing model: the
model simply needs to be both excitable (firing in response to
incoming signals, if ready to do so) and refractory (unable to re-
fire for a certain period post any firing). Our view is that our
model of neural information processing and conscious
phenomena should be robust: we specifically hypothesize that
these phenomena are predominantly a product of the
transmission delays and the neural architecture, rather than
the finer details of the firing dynamics.

As pointed out in [1], if transmission delays are restricted to
integer multiples of some basic time interval, or even that all
delays are set to a common constant (an assumption oft made
implicitly by allowing direct iterative updating) [26], then the
sophistication of each individual module’s possible dynamical
behaviour may collapse somewhat as all path-wize signals take
integer-equivalent times to arrive.

3.3 Simulations
Having established this class of complex system, in [7] the authors
performed a large number of separate experiments. In each
experiment exactly one of the JM2 watch-nodes was forced
with a p−periodic super-threshold stimulus. All watch-nodes
were monitored. Succinctly, a spike was offered periodically to
the selected watch-node and was accepted (producing a real
spike) provided the watch-node was not within its refractory
period (which would follow an immediately earlier spike). Thus,
given p, they obtained Nexp � JM2 independent simulations,
observed at the same JM2 watch-nodes.

3.4 Post-Processing and
Reverse-Engineering
Inmany ways running very large-scale simulations is only half the
battle. The results of carrying out many, many (information
processing) experiments with a very large-scale complex
system generates its own big data problem.

Fixing (M,K ,Q, J), the results of these experiments were
analysed as follows in [7]. Each of the Nexp � JM2 experiments
was represented by a real vector of length JM2 containing the
phases (mod p) of the firings of each watch-node (relative to their
average firing time, which was set to zero mod p in each case)
within that resulting global dynamical pattern. Whilst a range of
choices for (M,K ,Q, J) could be made, it is most important that
we capture the network-of-networks structure in our model. It is
thus, for example, important to be pragmatic about the value of J
we will use.

The phase vectors may be compared pairwise by finding the
sum (over all of the watch-nodes) of the minimum distances
(mod p) between the corresponding pair of nodal firing phases.
Next, employing the full pairwise experimental distances matrix,
the phase vectors were clustered, in order to become grouped-up
and summarized by a smaller number of modal responses, with
each cluster/mode representing an internal response class that is a
functional consequence of the various relevant dynamical forcing
experiments.

In [7] standard Ward clustering [27] was employed for this
task, where the objective function is the in-cluster sum of squared
errors. This method successively groups together smaller clusters,
starting off with all elements as singletons, within their own
clusters (no information), and ending with all elements within a
single common cluster (no information). There are many ways to
perform aggregative clustering and to decide a suitable point at
which to halt the clustering steps (see the illustrative results
below). This was not the moment to invent something new
and untried.
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In our application the clusters are the (hidden) latent internal
modes summarizing the system’s alternative information
processing behaviours.

Of course clustering always succeeds for any distance
(dissimilarity) matrix: so one must ask how significant are the
resultant latent modes (clusters)? This may be tested as follows.
We have a distance matrix that isNexp × Nexp. At any point within
the clustering process we can measure the SSE (sum of squared
errors/distances) metric for each cluster, Ci say, given by
SSE(Ci) � ∑

x,y∈Ci

d(x, y)2; and then sum this over the set of all
clusters.

As the number of clusters consolidates fromNexp down to one, one
obtains a convex curve running from 0 up to the total sum of all of the
squared distances (this last is shown in black in Figure 2 for example).
Next one can perturb the data by randomly and independently
redrawing a fraction of the inter-experiment distances from the
whole distribution of such distances. This maintains the overall
distribution but, for each bootstrapped case, it replaces part of the
actual structure with some randomly generated structure(s). For those
intermediate cluster steps where the actual curve lies significantly
below the envelope of curves achieved for the partially bootstrap-
resampled data sets (distance matrices) we can be assured of some
significance. A range of such tests were carried out in [7].

3.5 Example Output
We present an illustrative example by taking N � 1.05 106 and
(M,K , z, J) � (32, 1024, 750, 1). We show the same type of
simulation as those presented in [7]. Since there is one watch-
node within each module, M2 � 1.024 103 separate simulation
experiments were carried out for the same system. The results are
shown in Figures 3, 4.

As in the previous subsection we can measure the efficacy of a
clustered partition as the total sum of the in-cluster sums of
squared distances (pairwise experimental distances). As we
move from Nexp separate singleton clusters down to a single
global cluster, this measure increases from zero up to the total
sum of squares of all of the pairwise experimental distances. We
can perturb the actual data (and clustering performance) by
resampling a random fraction of the actual pairwise distances
by drawing replacement vales independently from the distribution
of all observed values. The result is shown in Figure 2.

Figure 2 can be interpreted as a hypothesis test. Reading off
the graph for this illustrative example, the partitions for the actual
data containing broadly more than 300 clusters (modes) are not
significant at all, whereas those with between 50 and 100 clusters
are the most significant when contrasted with the curves achieved
under the statistical null hypothesis that the performance is no

FIGURE 2 | The cluster total of the in-cluster sum of square distances versus the number of clusters (log scale): the black curve shows the calculation for Ward
clustering of the actual data; blue curves shows an envelope of the equivalent calculated curves where all of the pairwise experimental distances are randomly permuted;
the yellow, green, and red curves show envelopes based on 1,000 samples for each line where a random 10% 20 and 30% of the pairwise experimental distances are
redrawn from the distribution of all such values (with replacement): in each case a dark median is drawn together with the 1st to 99th percentiles.
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better than that achievable using exactly the same pairwise
experimental distances distribution, but having them randomly
permuted (which yields only random structures beyond the
pairwise distances). Similarly, those clusterings are significant
when compared against the cases where only 10–30% of the
pairwise distances are resampled (from the observed distribution
of such distances). Further discussion is given in [7].

For our purposes we note that the clusters obtained within the
wide range of actual experimental responses are significantly
stronger (with lower SSE totals, and hence accounting for
genuine differences between the modal responses) than those
achievable for similar distance matrices with random (though
realistic) elements. We may thus be assured that the discovered
clusters, representing internal (latent) modes, are a consequence of

genuine internal structure and not merely an artefact of a
remorseless clustering process.

3.6 Very Large-Scale System Output
In [7] the authors deployed SpiNNaker [17] during 2019/20. The
largest simulations made to date were parameterized by
N � 1.024 107, where (M,K , z, J) � (32, 10000, 7500, 2), solving
delay equations with a range of time-delays for all connections
(that is, roughly 75B synaptic directed connections). For SpiNNaker
“the range of delays allowed depends upon the time-step of the
simulation. The range is between 1 and 144 time-steps” [28, 29].

This should be contrasted with the desire for a full cortex
simulation, with N ≈ 10B, and the simulations in [14] during
2019, which reached N � 6.4107 deploying TrueNorth chips to
instantiate discrete iterative dynamics with all neurone-to-
neurone interactions having the same unitary delays, so the
whole can be updated in a each single iteration.

This research is continuing.

4 INTERPRETATION AND
CONSEQUENCES

The brain may sometimes be thought of as an information
processor, with stimulating inputs producing neural signals
which become passed along until they reach output nodes. In
this work, we have carefully set out a modelling framework that
studies a network-of-networks representing the neural signals
and dynamics. So where are the internal feelings and sensations?
Why must they be present? We argue that a network-of-networks
modelling narrative demonstrates the existence of a rather wide
set of latent, internal, common dynamical modes of operational
behaviour, that can naturally be associated with such feelings and
sensations.

Cortex-like complex systems, linking together excitable-
refractory neurones with transmission time-delays, have,
traditionally, been hard to analyse due to i) their sheer size and
ii) the dynamical aspects of time-delays. Even the simplest delay-
differential systems produce exotic stability (pattern forming)
behaviour (that these days are unlocked by the Lambert-W
function and other mathematical tools [30]). When such systems

FIGURE 3 | There are M2 � 1024 forcing experiments in total, carried
out on an N ≈ 106-node system, with (K,M) � (1024,32), and average in
and out degree z � Q/K ≈ 750, similar to the simulations discussed in [7]. This
depicts the M2 ×M2 pairwise dissimilarity matrix, with the experiments
ordered appropriately, as well the discovered hierarchical partition into 8 and
24 modes that are shown in Figure 4. (Note that the colours indicate the
dissimilarity score, but the colour-bar is truncated at the values for the 2.5 and
97.5% percentiles.)

FIGURE 4 | Hierarchical recognition of 8 large and 24 smaller modes discovered as subsets of relatively similar outputs from distinct dynamical experiments, using
the dissimilarity matrix from Figure 3. There were 1,024 forcing experiments in total, carried out on an N ≈ 106 node system, with (K,M) � (1024, 32), and average in
and out degree z � Q/K ≈ 7500.
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have a modular structure there has been no analytical work, other
than the type of direct simulations discussed in this work.

Perhaps the closest analogue, without whole brain-scale
simulations, was the development of Kuramoto models, with
massive arrays (or continua) of adjacency-coupled simple clocks
[32–33]. In fact, one may think of isolated modules (isolated
columns) as k≥ 1 dimensional clocks [6] (winding maps over
k-dimensional tori): so the whole complex system is analogous to
an array of high dimensional clocks, all coupled together; with each
clock having many (k, not uniform) resonant modes. Hence the
comparison with generalized Kuramoto systems: yet, here we need
both time-delays and higher dimensional clocks.

Even though all cortex-like systems have internal dynamical
modes, their detection essentially requires the observation of
firing patterns across the network and over an interval of time,
though. One cannot take a simple, single time snapshot of the firing
neurones. The modal responses are themselves dynamical objects
defined over the network architecture and over time.

In particular, we have shown how such internal modes can be
detected, being reverse-engineered out of performance
experiments on cortex-like networks. Of course, we rely on
mathematical and data scientific expertize, but the simulations
allow us to address simultaneously vast numbers of single
neurones within the whole for the first time. Hence, the new
insights gained are completely dependent upon the provision of
modern large-scale brain simulation programmes and platforms,
such as [14, 29]. This demonstration of the wide array of latent
modes should result in a step-change in our understanding of,
and the way we talk about, internal brain function. We can see
what lies within, that was previously hidden and inaccessible to
scientists and philosophers alike.

In this paper we have explained how large cortex-like
networks may be experimented upon by stimulating them
in vastly many distinct ways. The result of each experiment is
a very large amount of data (potentially the firing records
over time for every neurone), and we also have to consider
many such experiments. For that reason reverse-engineering,
though plainly possible, requires a data-scientific approach.
Here we have discussed the use of the simplest unsupervized
clustering to recognize the internal classes of common firing
patterns as internal dynamical modes. These are prime
candidates for qualia, sensations and feelings. They are a
direct consequence of the neuronal dynamics, the
transmission delays, and the highly modular cortex
architecture. We have shown how they can be reverse-
engineered from the myriad of experiments.

Future students of the brain should begin dealing with the
concept of internal dynamical modes of the systems’ response
behaviour. This idea and vocabulary is grounded here within
demonstrable network analysis and it offers a prism with which
to interpret both common attributes of brain performance and
anomalies. This approach would enable the recognition of the
behavioural response of the brain as opposed to any detailed
physiological response. We aver that the human brain cannot be
interpreted without embracing the existence of latentmodes that can
be separately conjured by suitable stimuli, and even self-generated
stimuli, which we call the generative collage.

Modes are necessarily present within a wide class of modular
complex systems, and systematic investigation can lead to their
discovery. The modes are a direct consequence of the architecture
and dynamics, that is, the physical dynamical complex system.
These are obvious candidates for the brain’s subjective internal
feelings, that must lie within. There.
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