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In compressed sensing the goal is to recover a signal from as few as possible noisy, linear
measurements with the general assumption that the signal has only a few non-zero entries.
The recovery can be performed by multiple different decoders, however most of them rely
on some tuning. Given an estimate for the noise level a common convex approach to
recover the signal is basis pursuit denoising. If the measurement matrix has the robust null
space property with respect to the ℓ2-norm, basis pursuit denoising obeys stable and
robust recovery guarantees. In the case of unknown noise levels, nonnegative least
squares recovers non-negative signals if the measurement matrix fulfills an additional
property (sometimes called the M+-criterion). However, if the measurement matrix is the
biadjacency matrix of a random left regular bipartite graph it obeys with a high probability
the null space property with respect to the ℓ1-normwith optimal parameters. Therefore, we
discuss non-negative least absolute deviation (NNLAD), which is free of tuning parameters.
For these measurement matrices, we prove a uniform, stable and robust recovery
guarantee. Such guarantees are important, since binary expander matrices are sparse
and thus allow for fast sketching and recovery. We will further present a method to solve
the NNLAD numerically and show that this is comparable to state of the art methods.
Lastly, we explain how the NNLAD can be used for viral detection in the recent COVID-19
crisis.
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1 INTRODUCTION

Since it has been realized that many signals admit a sparse representation in some frames, the
question arose whether or not such signals can be recovered from less samples than the dimension of
the domain by utilizing the low dimensional structure of the signal. The question was already
answered positively in the beginning of the millennium [1, 2]. By now there are multiple different
decoders to recover a sparse signal from noisy measurements with robust recovery guarantees. Most
of them however rely on some form of tuning, depending on either the signal or the noise.

The basis pursuit denoising requires an upper bound on the norm of the noise ([3], Theorem
4.22), the least shrinkage and selection operator an estimate on the ℓ1-norm of the signal ([4],
Theorem 11.1) and the Lagrangian version of least shrinkage and selection operator allegedly needs
to be tuned to the order of the the noise level ([4], Theorem 11.1). The expander iterative hard
thresholding needs the sparsity of the signal or an estimate of the order of the expansion property
([3], Theorem 13.15). The order of the expansion property can be calculated from the measurement
matrix, however there is no polynomial time method known to do this. Variants of these methods
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have similar drawbacks. The non-negative basis pursuit denoising
requires the same tuning parameter as the basis pursuit denoising
[5]. Other thresholding based decoders like sparse matching pursuit
and expander matching pursuit have the same limitations as the
expander iterative hard thresholding [6].

If these side information is not known a priori, many decoders
yield either no recovery guarantees or, in their imperfectly tuned
versions, yield sub-optimal estimation errors ([3], Theorem
11.12). Even though the problem of sparse recovery from
under-sampled measurements has been answered long ago,
finding tuning free decoders that achieve robust recovery
guarantees is still a topic of interest.

The most prominent achievement for that is the non-negative
least squares (NNLS) [7–11]. It is completely tuning free [12] and
in [13, 14] it was proven that it achieves robust recovery
guarantees if the measurement matrix consists of independent
biased sub-Gaussian random variables.

1.1 Our Contribution
We will replace the least squares in the NNLS with an arbitrary norm
and obtain the non-negative least residual (NNLR). We use the
methods of [13] to prove recovery guarantees under similar
conditions as the NNLS. In particular, we consider the case where
we minimize the ℓ1-norm of the residual (NNLAD) and give a
recovery guarantee if the measurement matrix is a random walk
matrix of a uniformly at random drawn D-left regular bipartite graph.

In general, our results state that if the M+ criterion is fulfilled,
the basis pursuit denoising can be replaced by the tuning-less
NNLR for non-negative signals. Note that theM+criterion can be
fulfilled by adding only one explicitly chosen measurement if that
is possible in the application. Thus, in practice the NNLR does not
require more measurements than the BPDN to recover sparse
signals. While biased sub-Gaussian measurement matrices rely
on a probabilistic argument to verify that such a measurement is
present, random walk matrices of left regular graphs naturally
have such ameasurement. The tuning-less nature gives the NNLR
an advantage over other decoders if the noise power can not be
estimated, which is for instance the case when we have
multiplicative noise or the measurements are Poisson
distributed. Note that Laplacian distributed noise or the
existence of outliers also favors an ℓ1 regression approach over
an ℓ2 regression approach and thus motivate to use the NNLAD
over the NNLS.

Further, the sparse structure of left regular graphs can reduce
the encoding and decoding time to a fraction. Using [15] we can
solve the NNLAD with a first order method of a single
optimization problem with a sparse measurement matrix.
Other state of the art decoders often use non-convex
optimization, computationally complex projections or need to
solve multiple different optimization problems. For instance, to
solve the basis pursuit denoising given a tuning parameter a
common approach is to solve a sequence of ℓ1-constrained least
residual1 problems to approximate where the Pareto curve attains

the value of the tuning parameter of basis pursuit denoising [16].
Cross-validation techniques suffer from similar issues [17].

1.2 Relations to Other Works
We build on the theory of [13] that uses the ℓ2 null space property
and the M+ criterion. These methods have also been used in [12,
14]. To the best of the authors knowledge theM+ criterion has not
been used with an ℓ1 null space property before. Other works have
used adjacency matrices of graphs as measurements matrices
including [6, 18–21]. The works [18, 19] did not consider noisy
observations. The decoder in [20] is the basis pursuit denoising
and thus requires tuning depending on the noise power. [21]
proposes two decoders for non-negative signals. The first is the
non-negative basis pursuit which could be extended to the non-
negative basis pursuit denoising. However, this again needs a
tuning parameter depending on the noise power. The second
decoder, the Reverse Expansion Recovery algorithm, requires the
order of the expansion property, which is not known to be
calculatable in a polynomial time. The survey [6] contains
multiple decoders including the basis pursuit, which again
needs tuning depending on the noise power for robustness,
the expander matching pursuit and the sparse matching
pursuit, which need the order of the expansion property.
Further, [5] considered sparse regression of non-negative
signals and also used the non-negative basis pursuit denoising
as decoder, which again needs tuning dependent on the noise
power. To the best of the authors knowledge, this is the first work
that considers tuning-less sparse recovery for random walk
matrices of left regular bipartite graphs. The NNLAD has been
considered in [22] with a structured sparsity model without the
use of the M+ criterion.

2 PRELIMINARIES

For K ∈ N we denote the set of integers from 1 to K by [K]. For a
set T ⊂ [N] we denote the number of elements in T by #(T).
Vectors are denoted by lower case bold face symbols, while its
corresponding components are denoted by lower case italic
letters. Matrices are denoted by upper case bold face symbols,
while its corresponding components are denoted by upper case
italic letters. For x ∈ RN we denote its ℓp-norms by ||x||p. Given
A ∈ RM×N we denote its operator norm as operator from ℓq to ℓp
by ||A||q→ p :� supv ∈ RN ,||v||q ≤ 1||Av||p. By RN

+ we denote the non-
negative orthant. Given a closed convex set C ⊂ RN , we denote
the projection onto C, i.e., the unique minimizer of
argminz ∈ C1/2||z − v||22, by PC(v). For a vector x ∈ RN and a
set T ⊂ [N], x|T denotes the vector in RN , whose nth component
is xn if n ∈ T and 0 else. Given N , S ∈ N we will often need sets
T ⊂ [N] with #(T)≤ S and we abbreviate this by #(T)≤ S if no
confusion is possible.

Given a measurement matrix A ∈ RM×N a decoder is any map
QA : RM →RN . We refer to x ∈ RN as signal. If
x ∈ RN

+ � {z ∈ RN : zn ≥ 0 for all n ∈ [N]}, we say the signal is
non-negative and write shortly x ≥ 0. If additionally xn > 0 for
all n ∈ [N], we write x > 0. An input of a decoder, i.e., any y ∈ RM ,
is refered to as observation. We allow all possible inputs of the1The ℓ1-constrained least residual is given by argmin

‖z‖1 ≤ τ

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣ for some norm ‖ · ‖.
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decoder as observation, since in general the transmitted codeword
Ax is disturbed by some noise. Thus, given a signal x and an
observation y we call e :� y − Ax the noise. A signal x is called
S-sparse if ||x||p :� #({n ∈ [N] : xn ≠ 0})≤ S. We denote the set of
S-sparse vectors by

ΣS :� {z ∈ RN : ‖z‖0 ≤ S}.
Given some S ∈ [N] the compressibility of a signal x can be

measured by d1(x,ΣS) :� inf z ∈ ΣS||x − z||1.Given N and S, the
general non-negative compressed sensing task is to find a
measurement matrix A ∈ RM×N and a decoder QA : RM →RN

with M as small as possible such that the following holds true:
There exists a q ∈ [1,∞] and a continuous function C : R ×
RM →R+ with C(0, 0) � 0 such that∣∣∣∣∣∣∣∣QA(y) − x

∣∣∣∣∣∣∣∣q≤C(d1(x,ΣS), y − Ax) for all x ∈ RN
+ and y ∈ RM

holds true. This will ensure that if we can control the
compressibility and the noise, we can also control the
estimation error and in particular decode every noiseless
observation of S-sparse signals exactly.

3 MAIN RESULTS

Given a measurement matrix A ∈ RM×N and a norm ‖ · ‖ on RM

we define the decoder as follows: Given y ∈ RM set QA(y) as any
minimizer of

argmin
z≥0

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣.

We call this problem non-negative least residual (NNLR). In
particular, for ‖ · ‖ � ‖ · ‖1 this problem is called non-negative
least absolute deviation (NNLAD) and for ‖ · ‖� ‖ · ‖2 this
problem is known as the non-negative least squares (NNLS)
studied in [13]. In fact, we can translate the proof techniques
fairly simple. We just need to introduce the dual norm.

Definition 3.1. Let ‖ · ‖ be a norm on RM . The norm ‖ · ‖* on
RM defined by

‖v‖* :� supu≤1〈v, u〉,

is called dual norm to ‖ · ‖.
Note that the dual norm is actually a norm. To obtain a

recovery guarantee for NNLR we have certain requirements on
the measurement matrix A. We use a null space property.

Definition 3.2. Let S ∈ [N], q ∈ [1,∞) and ‖ · ‖ be any norm
on RM . Further let A ∈ RM×N . Suppose there exists constants
ρ ∈ [0, 1) and τ ∈ [0,∞) such that

‖v∣∣∣∣T‖q≤ ρS1/q−1‖v Tc‖1+τ||Av|| for all v ∈ RN and #(T)≤ S.∣∣∣∣
Then, we sayA has the ℓq-robust null space property of order S

with respect to ‖ · ‖ or in short A has the ℓq-RNSP of order S with
respect to ‖ · ‖ with constants ρ and τ. ρ is called stableness
constant and τ is called robustness constant.

Note that smaller stableness constants increase the reliability
of recovery if many, small, non-zero components are present,

while smaller robustness constants increase the reliability if the
measurements are noisy. In order to make use of the non-
negativity of the signal, we need A to be biased in a certain
way. In [13] this bias was guaranteed with the M+ criterion.

Definition 3.3. Let A ∈ RM×N . Suppose there exists t ∈ RM

such that AT t> 0. Then we say A obeys the theM+ criterion with
vector t and constant κ :� maxn ∈ [N]

∣∣∣∣(AT t)n
∣∣∣∣maxn ∈ [N]

∣∣∣∣∣(AT t)−1n
∣∣∣∣∣.

Note that κ is actually a condition number of the matrix with
diagonal AT t and 0 else. Condition number numbers are
frequently used in error bounds of numerical linear algebra.
The general recovery guarantee is the following and similar
results have been obtained in the matrix case in [23].

Theorem 3.4 (NNLR Recovery Guarantee). Let S ∈ [N],
q ∈ [1,∞) and ‖ · ‖ be any norm on RM with dual norm ‖ · ‖*.
Further, suppose that A ∈ RM×N obeys

a) the ℓq-RNSP of order S with respect to ‖ · ‖ with constants
ρ and τ and

b) the M+ criterion with vector t and constant κ.

If κρ< 1, the following recovery guarantee holds true: For all
x ∈ RN

+ and y ∈ RM any minimizer x# of

argmin
z≥0

����Az − y
����,

obeys the bound

�����x − x#
�����q ≤ 2 (1 + κρ)2

1 − κρ
κS1/q−1d1(x,ΣS)

+ 2((1 + κρ)2
1 − κρ

S1/q− 1max
n∈[N]

∣∣∣∣∣(ATt)−1n ∣∣∣∣∣‖t‖* + 3 + κρ

1 − κρ
κτ)����Ax − y

����.
If q � 1, this bound can be improved to

∣∣∣∣∣∣∣∣∣∣x − x#
∣∣∣∣∣∣∣∣∣∣1 ≤ 2

1 + κρ

1 − κρ
κd1(x,ΣS)

+2(1 + κρ

1 − κρ
max
n∈[N]

∣∣∣∣∣(ATt)−1n ∣∣∣∣∣‖t‖* + 2
1 − κρ

κτ)����Ax − y
����.

Proof The proof can be found in Subsection 6.1.
Given a matrix with ℓq-RNSP we can add a row of ones (or a

row consisting of one minus the column sums of the matrix) to
fulfill the M+ criterion with the optimal κ � 1. Certain random
measurement matrices guarantee uniform bounds on κ for fixed
vectors t. In ([13], Theorem 12) it was proven that if Am,n are all
i.i.d. 0/1 Bernoulli random variables, A has M+ criterion with
t � (1, . . . , 1)T ∈ RM and κ≤ 3 with high probability. This is
problematic, since if κ> 1, it might happen that κρ< 1 is not
fulfilled anymore. Since the stableness constant ρ(S′) as a
function of S′ is monotonically increasing, the condition
κρ(S′)< 1 might only hold if S′ < S. If that is the case, there
are vectors x ∈ ΣS that are being recovered by basis pursuit
denoising but not by NNLS! This is for instance the case for

the matrix A � ( 1 0 1
0 1 1

), which has ℓ1-robust null space

property of order 1 with stableness constant ρ :� 1/2 and M+
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criterion with κ≥ 2 for any possible choice of t. In particular, the
vector x � (0, 0, 1)T is not necessarily being recovered by the
NNLAD and the NNLS.

Hence, it is crucial that the vector t is chosen to minimize κ and
ideally obeys the optimal κ � 1. This motivates us to use random
walk matrices of regular graphs since they obey exactly this.

Definition 3.5. LetA ∈ {0, 1}M×N andD ∈ [M]. ForT ⊂ N the set

Row(T) :� ∪n∈T{m ∈ [M]such thatAm,n � 1}
is called the set of right vertices connected to the set of left vertices
T. If

#(Row({n})) � D for all n ∈ [N],
then D−1A ∈ {0,D−1}M×N is called a random walk matrix of a
D-left regular bipartite graph. We also say short that D−1A is a
D-LRBG. If additionally there exists a θ ∈ [0, 1) such that

#(Row(T))≥ (1 − θ)D#(T) for all #(T)≤ S,
holds true, then D−1A is called a random walk matrix of a
(S,D, θ)-lossless expander.

Note that we have made a slight abuse of notation. The term
D-LRBG as a short form for D-left regular bipartite graph refers in
our case to the random walk matrix A but not the graph itself. We
omit this minor technical differentiation, for the sake of shortening
the frequently used term random walk matrix of a D-left regular
bipartite graph. Lossless expanders are bipartite graphs that have a
low number of edges but are still highly connected, see for instance
([24], Chapter 4). As a consequence their random walk matrices
have good properties for compressed sensing. It is well known that
random walk matrices of a (2S,D, θ)-lossless expanders obey the
ℓ1-RNSP of order S with respect to ‖ · ‖, see ([3], Theorem 13.11).
The dual norm of ‖ · ‖1 is the norm ‖ · ‖∞ and the M+ criterion is
easily fulfilled, since the columns sum up to one. From Theorem 3.4
we can thus draw the following corollary.

Corollary 3.6 (Lossless Expander Recovery Guarantee). Let
S ∈ [N], θ ∈ [0, 1/6). If A ∈ {0,D−1}M×N is a random walk matrix
of a (2S,D, θ)-lossless expander, then the following recovery guarantee
holds true: For all x ∈ RN

+ and y ∈ RM any minimizer x# of

argmin
z≥0

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣1

obeys the bound�����x − x#
�����1 ≤ 2 1 − 2θ

1 − 6θ
d1(x,ΣS) + 2

3 − 2θ
1 − 6θ

∣∣∣∣∣∣∣∣Ax − y
∣∣∣∣∣∣∣∣1 (1)

Proof By ([3], Theorem 13.11) A has ℓ1-RNSP with respect to
‖ · ‖1 with constants ρ � 2θ/(1 − 4θ) and τ � 1/(1 − 4θ). The dual
norm of the norm ‖ · ‖1 is ‖ · ‖∞. If we set t :� (1, . . . , 1)T ∈ RM ,
we get

(ATt)n � ∑
m∈[M]

Am,n � DD−1 � 1 for all n ∈ [N].

Hence, A has theM+ criterion with vector t and constant κ � 1
and the condition κρ< 1 is immediately fulfilled. We obtain ||t||* �
||t||∞ � 1 and maxn ∈ [N]

∣∣∣∣∣(AT t)−1n
∣∣∣∣∣ � 1. Applying Theorem 3.4

with improved bound for q � 1 and these values yields

�����x − x#
�����1 ≤ 2 1 + ρ

1 − ρ
d1(x,ΣS) + 2(1 + ρ

1 − ρ
+ 2
1 − ρ

τ)∣∣∣∣∣∣∣∣Ax − y
∣∣∣∣∣∣∣∣1.

If we additionally substitute the values for ρ and τ we get

∣∣∣∣∣∣∣∣∣∣x − x#
∣∣∣∣∣∣∣∣∣∣1 ≤ 2 1 − 2θ

1 − 6θ
d1(x,ΣS) + 2(1 − 2θ

1 − 6θ
+ 2

1
1 − 6θ

)∣∣∣∣∣∣∣∣Ax − y
∣∣∣∣∣∣∣∣1

≤ 2
1 − 2θ
1 − 6θ

d1(x,ΣS) + 2
3 − 2θ
1 − 6θ

∣∣∣∣∣∣∣∣Ax − y
∣∣∣∣∣∣∣∣1.

This finishes the proof.
Note that ([3], Theorem 13.11) is an adaption of ([20], Lemma

11) to account for robustness and skips proving the ℓ1 restricted
isometry property. If M ≥ 2/θexp(2/θ)SLn(eN/S) and
D � ⌈2/θLn(eN/S)⌉, a uniformly at random drawn D-LRBG is
a random walk matrix of a (2S,D, θ)-lossless expander with a
high probability[ [3], Theorem 13.7]. Thus, recovery with the
NNLAD is possible in the optimal regime M ∈ O(SlogN/S).

3.2 On the Robustness Bound for Lossless
Expanders
IfA is a randomwalkmatrix of a (2S,D, θ)-lossless expander with
θ ∈ [0, 1/6), then we can also draw a recovery guarantee for the
NNLS. By ([3], Theorem 13.11) A has ℓ1-RNSP with respect to
‖ · ‖1 with constants ρ � 2θ/(1 − 4θ) and τ � 1/(1 − 4θ) and
hence also ℓ1-RNSP with respect to ‖ · ‖2 with constants ρ′ � ρ
and τ′ � τM1/2. Similar to the proof of Corollary 3.6 we can use
Theorem 3.4 to deduce that any minimizer x# of

argmin
z≥0

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣2,

obeys the bound∣∣∣∣∣∣∣∣∣∣x − x#
∣∣∣∣∣∣∣∣∣∣1 ≤ 2

1 − 2θ
1 − 6θ

d1(x,ΣS) + 2
3 − 2θ
1 − 6θ

M1/2
∣∣∣∣∣∣∣∣Ax − y

∣∣∣∣∣∣∣∣2 (2)

If the measurement error e � y − Ax is a constant vector,
i.e., e � α1, then ‖e‖1 � M1/2‖e‖2. In this case the error bound of
the NNLS is just as good as the error bound of the NNLAD.
However, if e is a standard unit vector, then ‖e‖1 � ‖e‖2. In this case
the error bound of the NNLS is significantly worse than the error
bound of the NNLAD. Thus, the NNLAD performs better under
peaky noise, while the NNLS and NNLAD are tied under noise with
evenly distributed mass. We will verify this numerically in
Subsection 5.1. One can draw a complementary result for
matrices with biased sub-Gaussian entries, which obey the
ℓ2-RNSP with respect to ‖ · ‖2 and the M+ criterion in the
optimal regime [13]. Table 1 states the methods, which have an
advantage over the other in each scenario.

4 NON-NEGATIVE LEAST ABSOLUTE
DEVIATION USING A PROXIMAL POINT
METHOD
In this section we assume that ‖ · ‖ � ‖ · ‖p with some p ∈ [1,∞].
If p ∈ {1,∞}, the NNLR can be recast as a linear program by
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introducing some slack variables. For an arbitrary p the NNLR is
a convex optimization problem and the objective function has a
simple and globally bounded subdifferential. Thus, the NNLR can
directly be solved with a projective subgradient method using a
problem independent step size. Such subgradient methods
achieve only a convergence rate of O(log(k)k−1/2) toward the
optimal objective value ([25], Section 3.2.3), where k is the
number of iterations performed. In the case that the norm is
the ℓ2-norm, we can transfer the problem into a differentiable
version, i.e. the NNLS

argmin
z≥0

1
2

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣22.

Since the gradient of such an objective is Lipschitz, this
problem can be solved by a projected gradient method with
constant step size, which achieves a convergence rate of O(k−2)
toward the optimal objective value [26, 27]. However this does
not generalize to the ℓ1-norm. The proximal point method
proposed in [15] can solve the case of the ℓ1-norm with a
convergence rate O(k−1) toward the optimal objective value.
Please refer to Algorithm 1.

Algorithm 1 is a primal-dual algorithm. Within the loop, lines
7, 8, 1 and 2 calculate the proximal point operator of the Fenchel
conjugate of

����A · −y����1 to update the dual problem, lines 3 and 5
update the primal problem, and lines 4 and 6 perform a

momentum step to accelerate convergence. Further, line 8 sets ~x
to Ax and avoids a third matrix vector multiplication. Note that σ1
and σ2 can be replaced by any values that satisfy σ1σ2 < ||A||−22→ 2.
The calculation of σ1 and σ2 might be a bottle neck for the
computational complexity of the algorithm. If one wants to
solve multiple problems with the same matrix, σ1 and σ2 should
only be calculated once and not in each run of the algorithm. For
any σ1σ2 < ‖A‖−22→ 2 the following convergence guarantee can be
deduced from ([15], Theorem 1). Let xk and wk be the values of x
andw at the end of the kth iteration of the while loop ofAlgorithm
1. Then, the following statements hold true:

(1) The iterates converge: The sequence (xk)k∈N converges to
a minimizer of argminz≥0

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣1.

(2) The iterates are feasible: We have xk ≥ 0 and
∣∣∣∣∣∣∣∣wk

∣∣∣∣∣∣∣∣∞ ≤ 1
for all k≥ 1.

(3) There is a stopping criteria for the iterates:
limk→∞

∣∣∣∣∣∣∣∣Axk − y
∣∣∣∣∣∣∣∣1 + 〈y,wk〉 � 0 and limk→∞ATwk ≥ 0.

In particular, if
∣∣∣∣∣∣∣∣Axk − y

∣∣∣∣∣∣∣∣1 + 〈y,wk〉≤ 0 and ATwk ≥ 0,
then xk is a minimizer of argminz≥ 0

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣1.

(5) The averages obey the convergence rate toward the optimal
objective value:

�����A1/k∑k
k’�1 xk′ − y

�����1−�����Ax# − y
�����1 ≤ 1/k

(1/(2σ2)
∣∣∣∣∣∣∣∣∣∣x# − x0

∣∣∣∣∣∣∣∣∣∣22 + 1/(2σ1)(
����w0

����22 + 2
����w0

����1 +M)),
where x# is a minimizer of argminz ≥ 0

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣1.

ALGORITHM 1 | NNLAD as First Order Method
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The formal version and proof can be found in [28]. Note
that this yields a convergence guarantee for both the iterates
and averages, but the convergence rate is only guaranteed for
the averages. Algorithm 1 is optimized in the sense that it
uses the least possible number of matrix vector
multiplications per iteration, since these govern the
computational complexity.

Remark 4.1. Let A be D-LRBG. Each iteration of Algorithm 1
requires at most 4DN + 8N + 16M floating point operations and
5N + 4M assignments.

4.1 Iterates or Averages
The question arises whether or not it is better to estimate with
averages or iterates. Numerical testing suggest that the
iterates reach tolerance thresholds significantly faster than
the averages. We can only give a heuristically explanation for
this phenomenon. The stopping criteria of the iterates yields
limk→∞ATwk ≥ 0. In practice we observe that ATwk ≥ 0 for all
sufficiently large k. However, ATwk+1 ≥ 0 yields xk+1 ≤ xk. This
monotonicity promotes the converges of the iterates and
gives a clue why the iterates seem to converge better in
practice. See Figures 5, 6.

4.2 On the Convergence Rate
As stated the NNLS achieves the convergence rateO(k−2) [27]
while the NNLAD only achieves the convergence rate of
O(k−1) toward to optimal objective value. However, this
should not be considered as weaker, since the objective
function of the NNLS is the square of a norm. If xk are the

iterates of the NNLS implementation of [27], algebraic
manipulation yields

����Axk − y
����2 − �����Ax# − y

�����2 ≤ 21/2(12∣∣∣∣∣∣∣∣Axk − y
∣∣∣∣∣∣∣∣22 − 1

2

∣∣∣∣∣∣∣∣∣∣Ax# − y
∣∣∣∣∣∣∣∣∣∣22)

1/2

≤ 21/2(Ck−2)1/2 ≤ (2C)1/2k−1.
Thus, the ℓ2-norm of the residual of the NNLS iterates only

decays in the same order as the ℓ1-norm of the residual of the
NNLAD averages.

5 NUMERICAL EXPERIMENTS AND
APPLICATIONS

In the first part of this section we will compare NNLAD with
several state of the art recovery methods in terms of achieved
sparsity levels and decoding time. For p ∈ [1,∞], we denote
SN−1

p :� {z ∈ RN : ‖z‖p � 1}, and SN−1
0 :� {z ∈ RN : ‖z‖0 � 1 �

||z||2} � Σ1∩ SN−1
2 .

5.1 Properties of the Non-Negative Least
Absolute Deviation Optimizer
We recall that the goal is to recover x from the noisy
linear measurements y � Ax + e. To investigate properties of the
minimizers of NNLAD we compare it to the minimizers of the well
studied problems basis pursuit (BP), optimally tuned basis pursuit
denoising (BPDN), optimally tuned ℓ1-constrained least residual
(CLR) and the NNLS, which are given by

FIGURE 1 | Performance of NNLAD for noise with evenmass noise and varying sparsity of the signal. (A)NNLAD has almost the same performance as CLR/BPDN.
EIHT fails for moderate S. (B) NNLAD and NNLS perform roughly the same.

TABLE 1 | Table of advantages of NNLAD and NNLS over each other.

Measurement Matrix

D-LRBG (ℓ1) Biased sub-Gaussian (ℓ2)

Noise peaky ‖e‖1 ≈ ‖e‖2 NNLAD –

even mass ||e||1 ≈ M1/2‖e‖2 – NNLS
unknown noise NNLAD NNLS
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argmin
z:‖Az−y‖1 ≤ ϵ

‖z‖1 with ε � ‖e‖1 (BPDN),

argmin
z:‖z‖1 ≤ τ

����Az − y
����1 with τ � ‖x‖1(CLR),

argmin
z:Az�y

‖z‖1 (BP),
argmin

z≥ 0

∣∣∣∣∣∣∣∣Az − y
∣∣∣∣∣∣∣∣2 (NNLS).

The NNLAD is designed to recover non-negative signals in
general and, as we will see, it is able to recover sparse non-
negative signals comparable well to the CLR and BPDN with
optimal tuning which are particularly designed for this task.
Further, we compare the NNLAD to the expander iterative
hard thresholding (EIHT). The EIHT is calculated by
stopping the following sequence after a suitable stopping
criteria is met:

x0 :� 0 and xk+1 :� PΣ
S′
(xk +median(y − Axk))

for all k ∈ N0 andwith S′ � ‖x‖0 (EIHT),

where median(z)n is the median of (zm)m ∈ Row({n}) and PΣS(v)
is a hard thresholding operator, i.e., some minimizer of
argminz ∈ ΣS1/2‖z − v‖22. There is a whole class of thresholding
based decoders for lossless expanders, which all need either the
sparsity of the signal or the order of the expansion property as
tuning parameter.We choose the EIHT as a represent of this class,
since the cluster points of its sequence have robust recovery
guarantees ([3], Theorem 13.5). By convex decoders we refer to
BPDN, BP, CLR, NNLAD, and NNLS. We choose the optimal
tuning ε � ‖e‖1 for the BPDN and τ � ||x||1 for the CLR. The
optimally tuned BPDN and CLR are representing a best case
benchmark. In ([29], Figure 1.1) it was noticed that tuning the
BPDN with ε> ||e||p often leads to worse estimation errors than
tuning with ε< ||e||p for p � 2. Thus, BP is a version of BPDNwith
no prior knowledge about the noise and represents a worst case
benchmark. At fist we investigate the properties of the estimators.
In order to mitigate effects from different implementations we
solve all optimization problems with the CVX package of Matlab

[30, 31]. For a given ℓ1SNR, r,N ,M,D, S we will do the following
experiment multiple times:

Experiment 1

1. Generate a measurement matrix A ∈ {0,D−1}M×N

uniformly at random among all D-LRBG.
2. Generate a signal x uniformly at random from

ΣS∩RN
+ ∩S

N−1
1 .

3. Generate a noise e uniformly at random from
‖Ax‖1/ℓ1SNRSM−1

r .
4. Define the observation y :� Ax + e.
5. For each decoder QA calculate an estimator x# :� QA(y)

and collect the relative estimation error
∣∣∣∣∣∣∣∣∣∣x − x#

∣∣∣∣∣∣∣∣∣∣1 ������x − x#
�����1/‖x‖1.

In this experiment we have ℓ1SNR � ‖Ax‖1/‖e‖1 and sinceA is
a D-LRBG and x ≥ 0, we further have ‖Ax‖1 � ||x||1 � 1. Note
that for r � 0 and r � 1 we obtain two different noise
distributions. If e is uniformly distributed on SM−1

1 , then the
absolute value of each component |em| is a random variable with
density h1(M − 1)(1 − h)M− 2 for h ∈ [0, 1]. Thus, E[||e||22] �
M2/M(M + 1) � 2/(M + 1). By testing one can observe a
concentration around this expected value, in particular that
M1/2‖e‖2 ≈

�
2

√ ||e||1 with a high probability. If e is uniformly
distributed on SM−1

0 , then ‖e‖2 � ‖e‖1. Thus, these two noise
distributions each represent randomly drawn noise vectors
obeying one norm equivalence asymptotically tightly up to a
constant. From Eqs 1, 2 we expect that the NNLS has roughly
the same estimation errors as the NNLAD for r � 1, i.e. the evenly
distributed noise, and significantly worse estimation errors for r � 0,
i.e., the peaky noise.

5.1.1 Quality of the Estimation Error for Varying
Sparsity
We fix the constants r � 1, N � 1024,M � 256, D � 10, ℓ1SNR �
1000 and vary the sparsity level S ∈ [128]. For each S we repeat
Experiment 1 100 times. We plot the mean of the relative

FIGURE 2 | Performance of NNLAD for noise with peaky mass and varying sparsity of the signal. (A) The NNLS does not fail, but performs bad. (B) The NNLS and
NNLAD differ strongly.
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ℓ1-estimation error and the mean of the logarithmic relative
ℓ1-estimation error, i.e.,

Mean(Nℓ1E) � Mean(
�����x − x#

�����1
‖x‖1 ),

Mean(LNℓ1E) � Mean(10 log10(
�����x − x#

�����1
‖x‖1 )),

over the sparsity. The result can be found in Figures 1A,B.

For S≥ 30 the estimation error of the EIHT randomly peaks
high. We deduce that the EIHT fails to recover the signal reliably
for S≥ 30, while the NNLAD and other convex decoders succeed.
This is not surprising, since by ([3], Theorem 13.15) the EIHT
obeys a robust recovery guartanee for S-sparse signals, whenever
A is the randomwakmatrix of a (3S,D, θ′)-lossless expander with
θ′ < 1/12. This is significantly stronger than the (2S,D, θ)-lossless
expander property with θ < 1/6 required for a null space property.
It might also be that the null space property is more likely than the
lossless expansion property similar to the gap between

ℓ2-restricted isometry property and null space property [32].
However, if the EIHT recovers a signal, it recovers it
significantly better than any convex method. This might be
the case, since the originally generated signal is indeed from
ΣS, which is being enforced by the hard thresholding of the EIHT,
but not by the convex decoders. This suggests that it might be
useful to consider using thresholding on the output of any convex
decoder to increase the accuracy if the orignal signal is indeed
sparse and not only compressible. For the remainder of this
subsection we focus on convex decoders.

Contrary to our expectation the BPDN achieves worse
estimation errors than all other convex decoders for S≥ 60,
even worse than the BP. The authors have no explanation for
this phenomenon. Apart from that we observe that the CLR and
BP indeed perform as respectively best and worst
case benchmark. However, the difference between BP and CLR
becomes rather small for high S. We deduce that tuning becomes
less important near the optimal sampling rate.

The NNLAD, NNLS and CLR achieve roughly the same
estimation errors. However, note that the BPDN and CLR are

FIGURE 3 | Performance of NNLAD for noise with even mass and varying noise power. (A) The NNLAD and NNLS recover reliably for all signal to noise ratios.
(B) The estimation error scales linearly with the noise power.

FIGURE 4 | Performance of NNLAD for noise with peaky mass and varying noise power. (A) The NNLAD outperforms the NNLS. (B) The estimation error does not
scale linearly with the noise power.
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optimally tuned using unknown prior information unlike the
NNLAD and NNLS. As expected the NNLS performs roughly the
same as the NNLAD, seeTable 1. However, this is the result of the
noise distribution for r � 1. We repeat Experiment 1 with the
same constants, but r � 0, i.e., e is a unit vector scaled by
± ||Ax||1/ℓ1SNR. We plot the mean of the relative
ℓ1-estimation error and the mean of the logarithmic relative
ℓ1-estimation error over the sparsity. The result can be found
in Figures 2A,B.

We want to note that similarly to Figure 1A the EIHT works
only unreliably for S≥ 30. Even though the mean of the
logarithmic relative ℓ1-estimation error of NNLS is worse
than the one of EIHT for 30≤ S≤ 60, the NNLS does not
fail but only approximates with a weak error bound. As the
theory suggests, the NNLS performs significantly worse than
the NNLAD, see Table 1. It is worth to mention, that the
estimaton errors of NNLS seem to be bounded by the
estimation errors of BP. This suggests that A obeys a ℓ1

quotient property, that bounds the estimation error of any
instance optimal decoder, see ([3], Lemma 11.15).

5.1.2 Noise-Blindness
Theorem 3.4 states that the NNLAD has an error bound similarly
to the optimally tuned CLR and BPDN. Further, by Eq. 1 the ratio

∣∣∣∣∣∣∣∣∣∣x − x#
∣∣∣∣∣∣∣∣∣∣1

||e||1||x||1 �
∣∣∣∣∣∣∣∣∣∣x − x#

∣∣∣∣∣∣∣∣∣∣1
||e||1

should be bounded by some constant. To verify this, we fix
the constants r � 1, N � 1024, M � 256, D � 10, S � 32
and vary the signal to noise ratio ℓ1SNR ∈ 10[100]. For each
ℓ1SNR we repeat Experiment 1 100 times. We plot the mean
of the logarithmic relative ℓ1-estimation error and the mean
of the ratio of relative ℓ1-estimation error and ℓ1-noise
power, i.e.

Mean(LNℓ1E) � Mean(10 log10(
�����x − x#

�����1
||x||1 )),

Mean(Nℓ1E
ℓ1NP

) � Mean(
�����x − x#

�����1
||e||1||x||1),

over the sparsity. The result can be found in Figures 3A,B .
The logarithmic relative ℓ1-estimation errors of the

different decoders stay in a constant relation to each
other over the whole range of ℓ1SNR. This relation
is roughly the relation we can find in Figure 1B for
S � 32. As expected the the ratio of relative ℓ1-estimation
error and ℓ1-noise power stays constant independent on the

FIGURE 5 | Convergence rates of certain iterated methods with respect to the number of iterations.

FIGURE 6 | Convergence rates of certain iterated methods with respect to the time.
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ℓ1SNR for all decoders. We deduce that the NNLAD is noise-
blind. We repeat the experiment with r � 0 and obtain
Figures 4A,B.

Note that
�����x − x#

�����1/‖x‖1 and not
�����x − x#

�����1/(‖x‖1‖e‖1) seems

to be constant. Since
�����x − x#

�����1/‖x‖1 ≈ 1.0 · 10− 7 is fairly small,

we suspect that this is the result of CVX reaching a tolerance
parameter2

���
eps

√ ≈ 1.5 · 10− 8 and terminating, while the actual
optimizer might in fact be the original signal. It is remarkable that
even with the incredibly small signal to noise ratio of 10 the
signal can be recovered by the NNLAD with an estimation error
of 1.0 · 10− 7 for this noise distribution.

5.2 Decoding Complexity
5.2.1 Non-Negative Least Absolute Deviation Vs
Iterative Methods
To investigate the convergence rates of theNNLADas proposed in 4,
we compare it to different types of decoders when e � 0. There are
some sublinear time recoverymethods for lossless expandermatrices
including ([3 Section 13.4, 5]). These are, as the name suggests,
significantly faster than the NNLAD. These, as several other greedy
methods ([3 Section 13.3, 5, 18, 19, 21]), rely on a strong lossless
expansion property. As a representative of all greedy and sublinear
time methods we will consider the EIHT, which has a linear
convergence rate O(c−k) toward the signal and robust recovery
guarantees ([3], Theorem 13.15). The EIHT also represents a best
case benchmark. As a direct competitor we consider the NNLS
implemented by the methods of [27] 3, which has a convergence rate
ofO(k−2) toward the optimal objective value. [27] can also be used
to calculate the CLR if the residual norm is the ℓ2-norm. However,
calculating the projection onto the ℓ1-ball inRN , is computationally
slightly more complex than the projection onto RN

+ . Thus, the CLR
will be solved slightly slower than the NNLS with [27]. Note that
cross-validation techniques would need to solve multiple
optimization problems of a similar complexity as the NNLS to
estimate a signal. As a consequence such methods have a multiple
times higher complexity than theNNLS and are not considered here.
As a worst case benchmark we consider a simple projected
subgradient implementation of NNLAD using the Polyak step
size, i.e.

xk+1 :� PRN+
⎛⎝xk −

∣∣∣∣∣∣∣∣Axk − y
∣∣∣∣∣∣∣∣1∣∣∣∣∣∣∣∣ATsgn(Axk − y)∣∣∣∣∣∣∣∣22A

Tsgn(Axk − y)⎞⎠,

(NNLADSubgrad)
which has a convergence rate of O(k−1/2) toward the optimal

objective value ([33], Section 7.2.2 & Section 5.3.2).
We initialized all iterated methods by 0. The
EIHT will always use the parameter S′ � ||x||0, the NNLAD
σ1 � σ2 � 0.99‖A‖−12→ 2 and the NNLS the parameters s �
0.99‖A‖−22→ 2 and α � 3.01, see [27]. Just like the BPDN and

CLR, the EIHT needs an oracle to get some unknown prior
information, in this case ‖x‖0. Parameters that can be
computed from A, will be calculated before the timers start.
This includes the adjacency structure of A for the EIHT, σ1, σ2
for NNLAD, s, α for NNLS, since these are considered to be a
part of the decoder. We will do the following experiment
multiple times:

Experiment 2

1. If r � 1, generate a measurement matrix A ∈ {0,D−1}M×N

uniformly at random among all D-LRBG. If r � 2, draw
each component Am,n of the measurement matrix
independent and uniformly at random from {0, 1},
i.e., as 0/1 Bernoulli random variables.

2. Generate a signal x uniformly at random from
ΣS∩RN

+ ∩S
N−1
r .

3. Define the observation y :� Ax.
4. For each iterative method calculate the sequence of estimators

xk for all k≤ 20000 and collect the relative estimation errors∣∣∣∣∣∣∣∣xk − x
∣∣∣∣∣∣∣∣1/‖x‖1, the relative norms of the residuals����Axk − y
����1/∣∣∣∣∣∣∣∣y∣∣∣∣∣∣∣∣1 and the time to calculate thefirst k iterations.

For r � 2 this represents a biased sub-Gaussian random ensemble
[13] with optimal recovery guarantees for the NNLS.For r � 1 this
represents a D-LRBG random ensemble with optimal recovery
guarantees for the NNLAD. We fix the constants r � 1, N � 1024,
M � 256, S � 16,D � 10 and repeat 2 100 times.We plot themean of
the logarithmic relative ℓ1-estimation error and the mean of the
relative ℓ1-norm of the residual, i.e.

Mean(LNℓ1E) � Mean(10 log10(
∣∣∣∣∣∣∣∣xk − x

∣∣∣∣∣∣∣∣1
||x||1 )),

Mean(LNℓ1R) � Mean(10 log10(
����Axk − y

����1∣∣∣∣∣∣∣∣y∣∣∣∣∣∣∣∣1 )),
(7)

FIGURE 7 | Time required to perform iterations of certain iterated
methods.

2The tolerance parameters of CVX are the second and fourth root of the machine
precision by default [30, 31].
3This was the fastest method found by the authors. Other possibilities would be [15,
Algorithm 2], [26].
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over the sparsity and the time. The result can be found in
Figures 5, 6.

The averages of NNLAD converge significantly slower than
the iterates, even though we lack a convergence rate for the
iterates. We deduce that one should always use the iterates of
NNLAD to recover a signal. Surprisingly, the averages converge
even slower than the subgradient method. However, this is not
because the averages converge slow, but rather because the
subgradient method and all others converges faster than
expected. In particular, the NNLAD iterates, EIHT and the
NNLS all converge linearly toward the signal. Further, their
correspoding objective values also converge linearly toward the
optimal objective value. Even the subgradient method converges
almost linearly. We deduce that the NNLS is the fastest of these
methods if A is a D-LRBG.

Apart from a constant the NNLAD iterates, EIHT and NNLS
converge in the same order. However, this behavior does not hold
if we consider a different distribution for A as one can verify by
setting each component Am,n as independent 0/1 Bernoulli
random variables. While EIHT has better iterations compared
to the NNLS, it still takes more time to achieve the same
estimation errors and residuals. We plot the mean of the time
required to calculate the first k iterations in Figure 7.

The EIHT requires roughly 6 times as long as any other
method to calculate each iteration. All methods but the EIHT
can be implemented with only two matrix vector multiplications,
namely once by A and once by AT . Both of these requires roughly
2DN floating point operations. Hence, each iteration requires
O(4DN) floating point operations. The EIHT only calculates one
matrix vector multiplication, but also the median. This
calculation is significantly slower than a matrix vector
multiplication. For every n ∈ [N] we need to order a vector
with D elements, which can be performed in O(DlogD).
Hence, each iteration of EIHT requires O(DNlogD) floating
point operations, which explains why the EIHT requires
significantly more time for each iteration.

As we have seen the NNLS is able to recover signals faster than
any other method, however it also only obeys sub-optimal
robustness guarantees for uniformly at random chosen
D-LRBG as we have seen in Figure 4A. We ask ourself
whether or not the NNLS is also faster with a more natural
measurement scheme, i.e., if Am,n are independent 0/1 Bernoulli
random variables. We repeat 2 100 times with r � 2 for the NNLS
and r � 1 for the other methods. We again plot the mean of the
logarithmic relative ℓ1-estimation error and the mean of the
relative ℓ1-norm of the residual in Figures 8, 9.

FIGURE 9 | Convergence rates of certain iterated methods with respect to the time. A is Bernoulli for NNLS and D-LRBG for the others.

FIGURE 8 | Convergence rates of certain iterated methods with respect to the number of iterations. A is Bernoulli for NNLS and D-LRBG for the others.
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The NNLAD and the EIHT converge to the solution with
roughly the same time. Even the subgradient implementation of
the NNLAD recovers a signal in less time than the NNLS. Further
the convergence of NNLS does not seem to be linear anymore.We
deduce that sparse structure of A has a more significant influence
on the decoding time than the smoothness of the data fidelity
term. Also we deduce that even the subgradient method is a viable
choice to recover a signal.

5.2.2 Non-Negative Least Absolute Deviation Vs
SPGL1
As a last test we compare the NNLAD to the SPGL1 [16, 34]
toolbox for matlab.

Experiment 3

1. Draw the measurement matrix A ∈ {0,D−1}M×N uniformly
at random among all D-LRBG.

2. Generate the signal x uniformly at random fromΣS∩RN
+ ∩S

N−1
r .

3. Define the observation y :� Ax.
4. Use a benchmark decoder to calculate an estimator x#

and collect the relative estimation errors∣∣∣∣∣∣∣∣∣∣x# − x
∣∣∣∣∣∣∣∣∣∣1/‖x‖1, ∣∣∣∣∣∣∣∣∣∣x# − x

∣∣∣∣∣∣∣∣∣∣2/‖x‖2 and the time to
calculate x#.

5. For each iterative method calculate iterations until����xk − x
����1/‖x‖1 ≤ �����x# − x

�����1/||x||1 and����xk − x
����2/‖x‖2 ≤ �����x# − x

�����2/||x||2. Collect the time to
perform these iterations. If this threshold can not be
reached after 105 iterations, the recovery failed and the
time is set to ∞.

We again fix the dimension N � 1024, M � 256, D � 10 and
vary S ∈ [128]. For both the BP implementation of SPGL1 and
the CLR implementation of SPGL1 we repeat Experiment
3 100 times for each S. We plot the mean of the time to
calculate the estimators and plot these over the sparsity in
Figures 10A,B.

The NNLAD implementation is slower than both SPGL1
methods for small S. However, if we have the optimal number

of measurements M ∈ O(SlogN/S), the NNLAD is faster than
both SPGL1 methods.

5.2.3 Summary
The implementation of NNLAD as presented in Algorithm 1 is a
reliable recovery method for sparse non-negative signals. There
are methods that might be faster, but these either recover a
smaller number of coefficients (EIHT, greedy methods) or they
obey sub-optimal recovery guarantees (NNLS). The
implementation is as fast as the commonly uses SPGL1
toolbox, but has the advantage that it requires no tuning
depending on the unknown x or e. Lastly, the NNLAD can
handle peaky noise overwhelmingly good.

5.3 Application for Viral Detection
With the outbreak and rapid spread of the COVID-19 virus we
need to test a large amount of people for an infection. Since we can
only test a fixed number of persons in a given time, the number of
persons tested for the virus grows at most linearly. On the other
hand, models suggest that the number of possibly infected persons
grows exponentially. At some point, if that is not already the case,
we will have a shortage of test kits and we will not be able to test
every person. It is thus desirable to test as much persons with as few
as possible test kits.

The field group testing develops strategies to test
groups of individuals instead of individuals in order to
reduce the amount of tests required to identify infected
individuals. The first advances in group testing were
made in [35]. For a general overview about group testing
we refer to [36].

The problem of testing a large group for a virus can be
modeled as a compressed sensing problem in the following
way: Suppose we want to test N persons, labeled by
[N] � {1, . . . ,N}, to check whether or not they are affected
by a virus. We denote by xn the quantity of viruses in the
specimen of the nth person. Suppose we have M test kits,
labeled by [M] � {1, . . . ,M}. By ym we denote the amount of
viruses in the sample of the mth test kit. Let A ∈ [0, 1]M×N . For

FIGURE 10 | Time of the NNLAD and NNLS to approximate better than SPGLmethods. (A) The NNLAD is faster than the BP of SPGL1 for high S. (B). The NNLAD
is faster than the CLR of SPGL1 for moderate S.
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every n we put a fraction of size Am,n of the specimen of the nth
person into the sample for the mth test kit. The sample of the
mth test kit will then have the quantity of viruses

∑
n∈[N]

Am,nxn + econm ,

where econm is the amount of viruses in the sample originating from
a possible contamination of the sample. A quantitative reverse
transcription polymerase chain reaction estimates the quantity of
viruses by ym with a small error epcrm � ym −∑n∈[N]Am,nxn − econm .
After all M tests we detect the quantity

y � Ax + e, (8)

where e � econ + epcr . Since contamination of samples happens
rarely, econ is assumed to be peaky in terms of Table 1, while epcr is
assumed to have even mass but a small norm. In total e is peaky.

Often each specimen is tested separately, meaning thatA is the
identity. In particular, we need at least as much test kits as
specimens. Further, we estimate the true quantity of viruses xn
by x#n :� yn, which results in the estimation error
x#n − xn � en � econn + epcrn . Since the noise vector e is peaky,
some but few tests will be inaccurate and might result in false
positives or false negatives.

In general, only a fraction of persons is indeed affected by
the virus. Thus, we assume that ‖x‖0 ≤ S for some small S.
Since the amount of viruses is a non-negative value, we also
have x ≥ 0. Hence, we can use the NNLR to estimate x and in
particular we should use the NNLAD due to the noise being
peaky. Corollary 3.6 suggests to choose A as the random walk
matrix of a lossless expander or by ([3], Theorem 13.7) to
choose A as a uniformly at random chosen D-LRBG. Such a
matrix A has non-negative entries and the column sums of A
are not greater than one. This is a necessary requirement since
each column sum is the total amount of specimen used in the
test procedure. Especially, a fraction of D−1 of each specimen
is used in exactly D test kits.

By Corollary 3.6 and [ [3], Theorem 13.7] this allows us to
reduce the number of test kits required toM ≈ CS logeN/S. As we
have seen in Figures 4A,B we expect the NNLAD estimator to
correct the errors from econ and the estimation error to be in the
order of ||epcr||1 which is assumed to be small. Hence, the NNLAD
estimator with a randomwalk matrix of a lossless expander might
even result in less false positives and false negatives than
individual testing.

Note that the lack of knowledge about the noise e favors the
NNLAD recovery method over a (BPDN) approach. Further,
since the total sum of viruses in all patients given by ∑n∈[N]xn �
‖x‖1 is unknown, it is undesirable to use (CLR).
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6 APPENDIX

6.1 Proof of Non-Negative Least Residual
Recovery Guarantee
By 1 we denote the all ones vector inRN orRM respectively. The proof
is an adaption of the steps used in [13]. As formost convex optimization
problems in compressed sensing we use ([3], Theorem 4.25) and [ [3],
Theorem 4.20] respectively, which require A to have the RNSP.

Theorem 6.1 ([3], Theorem 4.25) and ([3], Theorem 4.20)).
Let q ∈ [1,∞) and suppose A has the ℓq-RNSP of order S with
respect to ‖ · ‖ with constants ρ and τ. Then, it holds that

‖x − z‖q ≤ (1 + ρ)2
1 − ρ

S1/q−1(‖z‖1 − ‖x‖1 + 2d1(x,ΣS))

+ 3 + ρ

1 − ρ
τ‖A(x − z)‖ for all x, z ∈ Rn.

If q � 1, this bound can be improved to

‖x − z‖1 ≤ 1 + ρ

1 − ρ
(‖z‖1 − ||x||1 + 2d1(x,ΣS))

+ 2
1 − ρ

τ‖A(x − z)‖ for all x, z ∈ Rn.

Note that by a modification of the proof this result also holds
for q � ∞. The modifications on the proofs of ([3], Theorem
4.25) and ([3], Theorem 4.20) are straight forward, only the
modification of ([3], Theorem 2.5) might not be obvious. See also
[37]. As a consequence, all our statements also hold for q � ∞
with 1/q :� 0. IfW ∈ RN×N is a diagonal matrix, we can calculate
some operator norms fairly easy:

‖W‖q→ q :� sup
||w||q≤1

||Ww||q � max
n∈[N]

∣∣∣∣Wn,n

∣∣∣∣ for all q ∈ [1,∞].

We use this relation at several places throughout this section.
Furthermore, we use ([13], Lemma 5) without adaption. For the sake
of completeness we add a short proof.

Lemma 6.2 ([13], Lemma 5). Let q ∈ [1,∞) and suppose that
A ∈ RM×N has ℓq-RNSP of order S with respect to ‖ · ‖
with constants ρ and τ. Let W ∈ RN×N be a diagonal
matrix with Wn,n > 0. If ρ′ � ‖W‖q→ q

����W−1����1→ 1
ρ< 1, then

AW−1 has ℓq-RNSP of order S with respect to ‖ · ‖ with
constants ρ′ � ||W||q→ q

����W−1����p→ p
ρ and τ′ � ||W||q→ qτ.

Proof Let v ∈ RN and #(T)≤ S. If we apply the RNSP of A for
the vector (W−1v)|T , we get

||v|T ||q �
����WW−1(v|T )

����q ≤ ‖W‖q→ q

����W−1(v|T )
����q � ||W||q→ q

����(W−1v) T

����q∣∣∣∣∣∣
≤ ‖W‖q→ q(ρS1

q−1
∣∣∣∣∣∣∣∣W−1(v|Tc )∣∣∣∣∣∣∣∣1+τ����AW−1v

����)
� ||W||q→ qρS

1
q−1
∣∣∣∣∣∣∣∣W−1(v|Tc )∣∣∣∣∣∣∣∣1+||W||q→ qτ

∣∣∣∣∣∣∣∣AW−1v
∣∣∣∣∣∣∣∣

≤ ‖W‖q→ q

����W−1����1→ 1
ρS

1
q−1‖v Tc‖1+‖W‖q→ qτ

∣∣∣∣∣∣∣∣AW−1v
∣∣∣∣∣∣∣∣.∣∣∣∣

This finishes the proof.
Next we adapt ([13], Theorem 4) to account for

arbitrary norms. Further, we obtain a slight improvement in
form of the dimensional scaling constant S1/q−1. With this,

our error bound becomes for S→∞ asymptotically the error
bound of the basis pursuit denoising, whenever κ � 1
and q> 1 [3].

Proposition 6.3 (Similar to ([13], Theorem 4)). Let
q ∈ [1,∞) and ‖ · ‖ be a norm on RM with dual norm ‖·‖*.
Suppose A has ℓq-RNSP of order S with respect to ‖ · ‖ with
constants ρ and τ. Suppose A has theM+ criterion with vector
t and constant κ and that κρ< 1. Then, we have

‖x − z‖q ≤ 2 (1 + κρ)2
1 − κρ

κS1/q−1d1(x,ΣS)

+ ((1 + κρ)2
1 − κρ

S1/q− 1max
n∈[N]

∣∣∣∣∣∣∣∣∣(ATt)−1n
∣∣∣∣∣∣∣∣∣‖t‖* + 3 + κρ

1 − κρ
κτ)

× ||Az − Ax|| for all x, z ∈ RN
+ .

If q � 1, this bound can be improved to

||x − z||q ≤ 2 1 + κρ

1 − κρ
κd1(x,ΣS)

+(1 + κρ

1 − κρ
max
n∈[N]

∣∣∣∣∣∣∣∣(ATt)−1n
∣∣∣∣∣∣∣∣||t||* + 2

1 − κρ
κτ)

× ||Az − Ax|| for all x, z ∈ RN
+ .

Proof Let x, z≥ 0. In order to apply Lemma 6.2 we set W
as the matrix with diagonal AT t and zero else. It follows
that Wn,n > 0 and ‖W‖q→ q

����W−1����1→ 1
ρ � κρ< 1. We can

apply Lemma 6.2, which yields that AW−1 has ℓq-RNSP
with constants ρ′ � ‖W‖q→ q

∣∣∣∣∣∣∣∣W−1∣∣∣∣∣∣∣∣1→ 1ρ � κρ and

τ′ � ‖W‖q→ qτ � maxn∈[N]
∣∣∣∣(AT t)n

∣∣∣∣τ. We apply Theorem 6.1 with

the matrix AW−1, the vectors Wx, Wz and the constants ρ′ and τ′

and get

||Wx −Wz||q ≤ (1 + ρ′)2
1 − ρ′

S1/q−1(||Wz||1 − ‖Wx‖1
+ 2d1(Wx,ΣS)) + 3 + ρ′

1 − ρ′
τ′
∣∣∣∣∣∣∣∣AW− 1(Wx −Wz)∣∣∣∣∣∣∣∣

≤
(1 + ρ′)2
1 − ρ′

S1/q−1(||Wz||1 − ||Wx||1 + 2‖W‖1→ 1d1(x,ΣS))

+3 + ρ′

1 − ρ′
τ′||Ax − Az||

� 2
(1 + κρ)2
1 − κρ

max
n∈[N]

∣∣∣∣(ATt)n∣∣∣∣S1/q−1d1(x,ΣS)

+ (1 + κρ)2
1 − κρ

S1/q−1(‖Wz‖1 − ||Wx||1)

+ 3 + κρ

1 − κρ
max
n∈[N]

∣∣∣∣(ATt)n∣∣∣∣τ‖Ax − Az‖.

We lower bound the left hand side further to get

‖x − z‖q ≤
∣∣∣∣∣∣∣∣W−1∣∣∣∣∣∣∣∣q→ q‖Wx −Wz‖q � max

n∈[N]

∣∣∣∣∣(ATt)−1n ∣∣∣∣∣||Wx −Wz||q

≤ 2
(1 + κρ)2
1 − κρ

κS1/q−1d1(x,ΣS) + (1 + κρ)2
1 − κρ

S1/q−1max
n∈[N]

∣∣∣∣∣(ATt)−1n ∣∣∣∣∣
(||Wx||1 − ‖Wz‖1) + 3 + κρ

1 − κρ
κτ‖Ax − Az‖. (5)
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We want to estimate the term ‖Wx‖1 − ‖Wz‖1 using the M+
criterion. Since z, x ≥ 0, Wn,n � (AT t)n > 0 and W is a diagonal
matrix, we have

||Wz||1 − ||Wx||1 � 〈1,Wz〉 − 〈1,Wx〉 � 〈WT1, z − x〉
� 〈W1, z − x〉� 〈t,A(z − x)〉≤ ‖t‖p‖Az − Ax‖.

Applying this to Eq. 5 we get

||x − z||q ≤ 2 (1 + κρ)2
1 − κρ

κS1/q−1d1(x,ΣS)

+ ((1 + κρ)2
1 − κρ

S1/q− 1max
n∈[N]

∣∣∣∣∣∣∣∣∣(ATt)−1n
∣∣∣∣∣∣∣∣∣‖t‖* + 3 + κρ

1 − κρ
κτ)||Az − Ax||.

If q � 1 we can repeat the proof with the improved bound of
Theorem 6.1.

After these auxiliary statements it remains to prove the main
result of Section 3 about the properties of the NNLR minimizer.

Proof of Theorem 3.4. By applying Proposition 6.3 with x and
z :� x# ≥ 0 we get

�����x − x#
�����q ≤ 2

(1 + κρ)2
1 − κρ

κS1/q−1d1(x,ΣS) + ((1 + κρ)2
1 − κρ

S1/q− 1

× max
n∈[N]

∣∣∣∣∣(ATt)−1n ∣∣∣∣∣||t||* + 3 + κρ

1 − κρ
κτ)∣∣∣∣∣∣∣∣∣∣Ax# − Ax

∣∣∣∣∣∣∣∣∣∣
≤ 2

(1 + κρ)2
1 − κρ

κS1/q−1d1(x,ΣS) + ((1 + κρ)2
1 − κρ

S1/q−1

× max
n∈[N]

∣∣∣∣∣(ATt)−1n ∣∣∣∣∣‖t‖* + 3 + κρ

1 − κρ
κτ)(�����Ax# − y

����� + ∣∣∣∣∣∣∣∣Ax − y
∣∣∣∣∣∣∣∣)

≤ 2
(1 + κρ)2
1 − κρ

κS1/q−1d1(x,ΣS)

+ 2((1 + κρ)2
1 − κρ

S1/q−1max
n∈[N]

∣∣∣∣∣(ATt)−1n ∣∣∣∣∣‖t‖* + 3 + κρ

1 − κρ
κτ)∣∣∣∣∣∣∣∣Ax − y

∣∣∣∣∣∣∣∣,
where in the last step we used that x# is a minimizer and x is
feasible. If q � 1, we can repeat the proof with the improved
bound of Proposition 6.3.
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