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Prediction of stock prices or trends have attracted financial researchers’ attention for many
years. Recently, machine learning models such as neural networks have significantly
contributed to this research problem. These methods often enable researchers to take
stock-related factors such as sentiment information into consideration, improving
prediction accuracies. At present, Long Short-Term Memory (LSTM) networks is one
of the best techniques known to learn knowledge from time-series data and to predict
future tendencies. The inception of generative adversarial networks (GANs) also provides
researchers with diversified and powerful methods to explore the stock prediction
problem. A GAN network consists of two sub-networks known as generator and
discriminator, which work together to minimize maximum loss on both actual and
simulated data. In this paper, we developed a sentiment-guided adversarial learning
and predictive models of stock prices, adopting a popular variation of GAN called
conditional GAN (CGAN). We adopted an LSTM network in the generator and a
multilayer perceptron (MLP) network in the discriminator. After extensively pre-
processing historical stock price datasets, we analyzed the sentiment information from
daily tweets and computed sentiment scores as an additional model feature. Our
experiments demonstrated that the average forecast accuracies of the CGAN models
were improved with sentiment data. Moreover, our GAN and CGANmodels outperformed
LSTM and other traditional methods on 11 out of 36 processed stock price datasets,
potentially playing a part in ensemble methods.

Keywords: stock prediction, data processing, labels, regression, long short-term memory, sentiment variable,
conditional generative adversarial net, adversarial learning

1 INTRODUCTION

Stock prediction has been attached with great importance in the financial world. While stock
fluctuation is very unpredictable, researchers have made every effort to simulate the stock
variation because a relatively reasonable prediction can create massive profits and help reduce
risks. Stock prediction researchers often consider two kinds of solution methods: classification
and regression. Classification methods predict stock movement, while regression methods
predict stock prices. Stock movement prediction can be seen as a simple classification task
since it only predicts whether the stock will be up or down by a certain amount, or remain almost
unchanged. However, many researchers focus their efforts on stock price prediction–a regression
task that forecasts future prices with past values – since it could yield more profits than simple
movement prediction. In a regression task, researchers have to tackle very complex situations to
forecast the future price accurately. Like other time-series prediction problems, many factors
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should also be taken into consideration besides historical
prices. Investors’ sentiments, economic conditions, and
public opinions are all critical variables that should be
added into a stock prediction system. Particularly, sentiment
analysis has been identified as a useful tool in recent years. Not
just price and price-related values, researchers have paid more
attention to the extraction of sentiment information from
newspapers, magazines, and even social media. For example,
Ref. [1] examined the relation between social media sentiment
and stock prices, in addition to economic indicators in their
research on stock market. Ref. [2] Focused on combining
stock-related events with the sentiment information from
reviews of financial critics. They analyzed sentiments and
predicted the fluctuation of the stock market with a matrix
and tensor factorization framework. Besides mathematical
methods, the development of natural language processing
also provides additional techniques for analyzing text and
sentiment information. Machine learning, data mining, and
semantic comprehension have made extracting large amounts
of stock sentiments possible. With the development of social
media, people are increasingly inclined to exchange
information through the Internet platform. Real-time stock
reviews contain a wealth of financial information that reflects
the emotional changes of investors. Works such as [3, 4]; and
[5] analyzed sentiment information from large numbers of
real-time tweets, which were related to stocks and
corresponding companies, then investigated the correlation
between stock movements and public emotions with
supervised machine learning principles. In particular, Ref.
[3] utilized two mood tracking tools, OpinionFinder and
Google-Profile of Mood States (GPOMS), to analyze the text
content of daily tweets, which succeeded in measuring varying
degrees of mood. These research results proved that modern
techniques are mature enough to handle mountains of
sentiment data and that Twitter is a valuable text resource
for sentiment analysis.

In our work, we used VADER (Valence Aware Dictionary and
sEntiment Reasoner) [6] as a mood tracking tool to help us
analyze the sentiment information from tweets. We extracted
sentiment features from the past several days of tweets and input
them into stock prediction models to predict future stock prices.
Applying sentiment analysis to nine stocks, we trained the models
with two-month-long training sets with tweets and tested the
model performance with the final five days’ data. We applied
several linear and nonlinear models such as LSTM to this
regression task. Moreover, referring to the theories of
recurrent neural networks and generative adversarial networks,
we designed a sentiment-guided model to improve the accuracy
of stock prediction further.

In the remainder of this article, the organization is set in the
following order: First, in Section 2 we review existing stock
prediction methods and the development of GANs. Then, in
Section 3, we introduce our methods in data collection and
processing. In Sections 4 and 5, we propose our sentiment-
guided adversarial learning model as well as comparisons
between our models and baselines. Finally, conclusions and
future work are discussed at the end of this paper in Section 6.

2 RELATED WORKS

In this section, we first present an overview of the relatively recent
generative adversarial networks, followed by a brief review of
some traditional methods for stock price prediction.

2.1 Adversarial Learning of Neural Networks
Generative adversarial networks (GANs) [7], which try to fool a
classification model in an adversarial minimax game, have shown
high potential in obtaining more robust results compared to
traditional neural networks [8]. In a GAN framework, a generator
produces fake data based on noisy samples and attempts to
minimize the difference between real and fake distribution,
which is maximized by a discriminator oppositely. The GAN
framework and GAN-based research have attracted huge
attention in various fields recently. Existing GAN works
mainly focus on computer vision tasks like image classification
[9] and natural language processing like text analysis [10]. With
the inception and extensive applications of knowledge
representation of natural or complex data such as languages
and multi-media, the GAN framework is also widely applied
to classification missions for data in representation spaces (e.g.,
vector spaces of matrices) rather than just for the original data in
feature spaces. Some researchers also extended applications of
GAN to more challenging problems such as recommendation
systems [11] or social network alignment problems [12].

Conditional GANs (CGANs) [13] add auxiliary information
to input data, guiding the training process to acquire expected
results. Additional information (like class labels or extra data) is
fed into both generator and discriminator to perform the
conditioning. This architecture is mostly used in image
generation [14] and translation [15]. However, we noticed that
the CGAN framework has rarely been applied to time-series
prediction, specifically, stock prediction problem. In our work, we
added sentiment labels to guide the training process of our model
and achieved a stronger performance.

Previous work [16] has shown the capacity of GANs for
generating sequential data and to fulfill the adversarial training
with discrete tokens (e.g., words). Recurrent neural networks
(RNNs) have also been widely used to solve problems based on
sequential data, such as speech recognition and image
generation. Ref. [17] first combined RNNs with a GAN
framework and successfully produced many kinds of
continuous sequential data, including polyphonic music.
Inspired by this work, researchers paid more attention to the
potential of RNNs in adversarial training. Refs. [18, 19]
succeeded in producing realistic real-valued multi-
dimensional time-series data and concentrated their work on
medical applications. They built models capable of synthesizing
realistic medical data and developed new approaches to create
predictive systems in the medical domain. Ref. [20] utilized
prerecorded human motion data to train their models and
applied their neural network in random motion synthesis,
online or offline motion control, and motion filtering. Our
work drew on the idea of the RNN-GAN framework and
applied time-series analysis to the financial problem of stock
prediction. Although similar application in stock prediction has
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been raised recently [21], the main difference was that our work
also utilized text data from Twitter to create sentiment scores,
which could gauge the market mood and guide our models to
achieve more accurate prediction.

2.2 Stock Prediction Methods
The stock market prediction problem has a long history and is
regarded as an essential issue in the field of financial
mathematics. According to the development of research
over the years, we can divide the prediction techniques into
two categories: statistical and machine learning methods.
Frequently used statistical techniques include the
autoregressive method (AR), the moving average model
(MA), the autoregressive moving average model (ARMA),
and the autoregressive integrated moving average (ARIMA)
[22]. These methods adopt the principles of random processes
and essentially rely on past values of the sequences to analyze
and predict the future data. Another technique is generalized
autoregressive conditional heteroskedasticity (GARCH) [22],
which takes the fluctuation of variance into account and nicely
simulates the variation of financial variables. However, both
kinds of techniques depend on strong prerequisites such as
stationarity and independent and identically distributed (iid)
random variables, which may not be satisfied by data in the
real-world financial markets.

Recently, machine learning methods (including linear
regression, random forest, and support vector machine)
stimulate the interest of financial researchers and are
applied to forecasting problems. Among them, support
vector machine (SVM) and its application in the financial
market revealed superior properties compared to other
individual classification methods [23]. Since the emergence
of deep learning networks, researchers have proved that neural
networks can obtain better performance than linear models.
Their capacity to extract features from enormous amount of
raw data from diverse sources without prior knowledge of
predictors makes deep learning a preferred technique for stock
market prediction. Artificial neural networks and other
advanced neural models like convolution neural networks
(CNNs) are evidenced to be good at capturing the non-
linear hidden relationships of stock prices without any
statistical or econometric assumption [24]. Furthermore,
neural networks have also been found to be more efficient
in solving non-linear financial problems compared to
traditional statistical methods like ARIMA [25]. Nowadays,
RNNs are one of the most popular tools in time-series
prediction problems. Notably, the LSTM network has been
a great success due to its ability to retain recent samples and
forget earlier ones [26]. Each LSTM unit has three different
gates: forget gate, update gate, and output gate. LSTM units can
change their states by controlling their inner operant, namely,
their three gates. In our model, we utilized the LSTM network
to extract features according to the timeline and to generate
fake stock prices from real past price values. We also used
sentiment measures to enhance the robustness of our
prediction models and make the generative results approach
the real distribution.

3 DATA AND METHODS

In this section, we document our data sources and preprocessing
techniques. The latter part includes feature engineering,
imputation of missing data, fast Fourier transform for
denoising data, and last but not least, Isolation Forest for
anomaly or outlier detection.

3.1 Data Collection and Sentiment Analysis
Before we started our work, we had the conviction that a
collection of tweets related to the stocks could make
comparatively accurate models of the investors’ mood and
thus reach better predictions of the stock market prices.
Generally speaking, tweets have neutral, positive, or negative
emotions; and we focused on those that contains one or
several cashtags (unique identifiers for businesses), which
could influence the stock’s trend in the following day. If
negative sentiment dominated a day, then the next day’s stock
prices would be expected to fall. The number of followers on one’s
Twitter account would also be a significant factor. The more
followers of an account, the higher the influence of tweets from
the account, and the more significant their impact would likely
have on stock prices. Cashtags system is a particularly convenient
feature of Twitter, allowing users to see what everyone is saying
about public companies. The way this system works is similar to
the well-known #hashtags of Twitter, except that a cashtag
requires “$” followed by a stock symbol (e.g., $GOOG for
Google, LLC; $FB for Facebook, Inc.; and $AAPL for Apple Inc.).

For our work, financial tweets and their retweets were
downloaded from the website, https://data.world/kike/nasdaq-
100-tweets. The time span of these tweets is 71 days from Apr
1–June 10, 2016. We could get all tweets mentioning any
NASDAQ 100 companies from this source. The key daily
stock price data includes Open prices (O), High prices (H),
Low prices (L), and Close prices (C); they were subsequently
crawled from Yahoo Finance with the Python package, pandas_
datareader. We produced nine datasets, each one including tweets
and price values for the nine companies as listed inTable 1. These
companies are from different sectors/industry groups by the
Global Industry Classification Standard (GICS). They could be
classified into three price-trend categories: descending prices,
mildly fluctuating prices, and ascending prices. Figure 1 shows
the Open price curves of nine stocks with the three distinct trends.

To analyze the sentiment of each tweet, we used VADER [6],
which is available from vader-sentiment, a ready-made Python
machine learning package for natural language processing.
VADER is able to assign sentiment scores to various words
and symbols (punctuations), ranging from extremely negative
(−1) to extremely positive (+1), with neutral as 0. In this way,
VADER could get an overall sentiment score for a whole sentence
by combining different tokens’ scores and analyzing the grammar
frames. We assumed that the neutral emotion plays a much
weaker role in the overall market’s mood since neural sentiment
tends to regard the stock market as unchanged in a specific
period. Thus, we excluded the neutral sentiment scores in our
analysis and only took the negative and positive moods into
consideration. VADER places emphasis on the recognition of
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uppercase letters, slang, exclamation marks, and the most common
emojis. Tweet contents are not written academically or formally, so
VADER is suitable for social media analysis. However, we needed to
add some new words to the original dictionary of VADER, because
VADER missed or misestimated some important words in financial
world and therefore caused inaccuracy. For example, “bully” and
“bullish” are negative words in the VADER lexicon, but they are
positive words in the financial market. We updated the VADER
lexicon with the financial dictionary Loughran-McDonald Financial
Sentiment Word Lists [27], which include many words used in the
stock market. This dictionary has seven categories, and we adopted
the “negative” and “positive” lists. We further deleted about 400
existing words in VADER that overlap the Loughran-McDonald
Financial SentimentWord Lists. Finally, we added new negative and
positive words to the VADER dictionary and attached sentiment
scores to them, with +1.5 to each positive word and −1.5 to each
negative word from the Loughran-McDonald lists.

To get one day’s overall sentiment score for one stock, we first
analyzed all related tweets with VADER and gained the scores of
each tweet. Considering that the more followers the bigger
influence, we further regarded the number of followers as
weights and calculated the weighted average of sentiment
scores. The daily percentage change of this average was taken
as a comprehensive factor, called compound_multiplied, for
1 day. One problem of our data was that we have only tweets’
data but no price data on the non-trading days. To make full use
of the tweets’ data, we filled the gaps up with the price values from
past trading days. We utilized moving averages to fill in the
missing values.

We also normalized the compound_multiplied variable as
neural networks generally perform better and more efficiently
on scaled data. Figure 2 shows the box plots of
compound_multiplied and per_change (see Section 5.1.2
for details) for the nine stocks before the data was scaled.

TABLE 1 | Stock prices of nine companies selected for experiments in this study.

Company Symbol Sector Industry group

Apple Inc AAPL Information Technology Technology Hardware & Equipment
Cisco Systems Inc CSCO Information Technology Communications Equipment
Electronic Arts Inc EA Communication Service Media & Entertainment
Eastbay Inc EBAY Consumer Discretionary Internet & Direct Marketing Retail
Endo International PLC ENDP Health Care Pharmaceuticals
Kandy Hotels Co KHC Consumer Discretionary Hotels Resorts & Cruise Lines
NVIDIA Corporation NVDA Information Technology Semiconductors
Starbucks SBUX Consumer Discretionary Consumer Services
Skyworks Solutions Inc. SWKS Information Technology Semiconductors

FIGURE 1 | The nine stocks classified into three classes with distinct price trends. The variations of Open price from April 1 to June 10, 2016 are displayed. The first
column presents the stocks with descending prices; the second represents the stocks with mildly fluctuating prices; and the third represents the stocks with ascending
prices.
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3.2 Data Processing for Stock Prices
As discussed before, we collected stock prices from nine stock
symbols, each of which contains four columns of time-series price
data for each trading day: Open, High, Low, and Close. To change
the sequential data into suitable input for our models, we did data
cleaning and transformation for the training datasets, and
approximate normalization for our both training and testing
data. We present further details of these transformations below.

3.2.1 Data Cleaning
In consideration of the volatility of the stock market, we had to
tackle the price data on days that showed abnormal trends or
fluctuation. To accomplish the anomaly detection, we utilized the
Isolation Forest (iForest) algorithm [28] to find such data points
before treating them. Isolation Forest can directly describe the
degree of isolation of data points based on binary trees without

using other quantitative indicators. The main steps of
distinguishing outliers were as follows: For a group of data
with multiple dimensions, we attempted to build a binary
search tree (BST). We first picked several dimensions, and
then randomly selected one dimension and a value between
the maximum and the minimum in that dimension as the
root of the BST. Next, we divided the data into two groups
(i.e., subtrees of the BST) according to the selected value.
Likewise, we continued to subdivide the data according to
another randomly selected value in another feature
dimension—this step was repeated until the BST could not be
further subdivided. Finally, we detected the anomaly data
according to the path lengths of the nodes in the BST.

More specifically, in our work, we adopted only two dimensions
in the iForest algorithm and detected the outliers within two steps.
(I) We selected High price and Low price as the two dimensions to
detect anomaly situations that stock prices fluctuated intensely in
one day. Figure 3 shows the anomaly detection results when we
applied the iForest to the AAPL dataset. (II) For each one of the four
price series (O, H, L, C), we respectively selected the differences yt −
yt−1 and yt+1 − yt , in which yt was the price data on a particular date
t, as the two input dimensions to iForest. In this way, we were able to
detect anomaly local trends on the timeline. Figure 4A shows the
detection result of ‘Open Price’ from the AAPL dataset, and
Figure 4B displays the anomaly in the form of time series. After
we identified each outlier yt by considering its distances from yt ± 1

using iForest, we replaced yt with the rolling average
1
3 (yt−2 + yt−1 + yt). As a result, we prevented our model from
being excessively influenced by outliers during the training process.

3.2.2 Data Transformation
We noticed the successful applications of RNNs in wave forms like
sinusoids, so we further transformed our time-series datasets into a
wave-like form in order to improve the training effect. In our
prediction problem, we assumed that the changes in stock data
were periodic, which gave us the opportunity to introduce Fourier
Transform into our data processing work. Fourier transform can
decompose a periodic function into a linear combination of

FIGURE 2 | Left: Box plots of changes in daily sentiment scores aggregated from tweets that contained cashtags of selected stocks over the time period Apr
2–Jun 10, 2016. Outliers are omitted to declutter the graph. The triangles mark the mean values. Right: Box plots of per_change with outliers shown as circles.

FIGURE 3 | Detecting outliers in the dimensions of High price and Low
price with Isolation Forest on AAPL-Open in the training dataset. Only four
points of outliers were flagged out by the algorithm.
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orthogonal functions (such as sinusoidal and cosine functions) [29].
With Fast Fourier Transform (FFT), we could extract both global and
local trends of our stock datasets and thus reduce their noise. For each
of the four prices (O, H, L, C of a stock dataset), we respectively used
FFT to create a series of sinusoidal waves (with different amplitudes
and frames) and then combined these sinusoidal waves to
approximate the original curve. In Figure 5, we can see that the
pink curve, which was made by a combination of 32 components,
closely approximates the original price graph of AAPL-Open training
set. By using the derived curve, namely, the denoised sequential data,
we could enhance the smoothness of our training set, and reduce
noisiness in our data. Consequently, we smoothened the time-series
data to make our training data more predictable.

3.2.3 Approximate Normalization
To make sure that our models could learn the features of time-series
variables, we alsomodified the sequential price data tomake it satisfy
(roughly) normal distribution. In financial research, there is a
traditional assumption that the simple daily returns of time-series

data are iid normal samples, as long as the sequential data has
constant mean and same variance over time; see [30]; for example.
We calculated Rt , defined as one-period simple returns of the price
values before inputting them into our supervised learning models as
targets, where yt represents one of the four prices for a given stock on
day t that we are interested to predict:

Rt � yt − yt−1
yt−1

. (1)

Let R̂t be an estimate of Rt returned by a machine learning model
trained with predictors including historical returns,
Rt−1,Rt−2,/,Rs for some s< t. Subsequently, we can obtain an
estimate of the stock price, ŷt � yt−1(1 + R̂t).

4 MODEL THEORY

In this section, we present the architecture of our CGAN
framework in relation to the sub-networks of our choice.

FIGURE 4 | (A) Detecting outliers according to (yt − yt−1) and (yt+1 − yt) with Isolation Forest using the AAPL-Open training set as an illustration. (B) Anomaly
detection results in the form of time series on the same price values in (A).

FIGURE 5 | Fourier transform curves with 5, 15, 25, 30, and 32 components on AAPL-Open training set.
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4.1 Long Short-Term Memory Networks
Introduced by [31], LSTM is a special kind of RNN, which can learn
both short-term and long-term correlations effectively from
sequential data. An LSTM network usually consists of many
repeating modules, the LSTM units, and we can tune the number
of the units to improve the performance of the network. These
LSTMunits concatenate with each other in line with the information
transmitting from one to another. Each unit contains three kinds of
gates: Forget gate (decides what kind of old information to be
discarded), Update gate (decides what kind of new information
to be added), and Output gate (decides what to be output). Figure 6
shows how the past information flows through an LSTM unit
between two time steps, and how the LSTM unit transforms the
data in both its long-term and short-termmemory. The information
transmission process is from Ct−1 to Ct , which will be changed by
inner operants. Ct is a latent variable; χt is the input; and yt is the
output. Themathematical operations in the three gates are defined as
follows, where W. and b. are parameters to be estimated for
minimizing some loss functions:

I. Forget gate:

Ft � sigmoid(Wf [yt−1, χt] + bf ). (2)

II. Update gate:

Ut � sigmoid(Wu[yt−1, χt] + bu),
~Ct � tanh(WC[yt−1, χt] + bC),
Ct � Ft*Ct−1 + Ut*Ct

˜ .

(3)

III. Output gate:

Ot � sigmoid(Wo[yt−1, χt] + bo),
yt � Ot*tanh(Ct). (4)

Note that sigmoid and tanh are activation functions applied to an
input vector elemenwise, whereas * represents elementwise
multiplication of vectors. These three gates cooperate with each
other and together determine the final information that is output
from an individual unit. In this work, we took advantage of the
memory property of LSTM and improved its accuracy with
adversarial learning framework.

Nowadays, LSTM has been widely applied in many research
fields such as machine translation, language modeling, and image
generation.

4.2 Adversarial Learning Model
As the conditional GAN framework [13] has proved to be a great
success, we adopted this idea in our GAN-based model to
improve the training effect. Figure 7 illustrates the
architecture of our GAN-based model. Let Xt �
{Xt−n+1, . . . ,Xt−1,Xt} represent the input data in the form of
time series, in which each term is the historical data from the
corresponding day from n − 1 days ago to end of current day t.
Note that Xt is a vector that includes all the daily factors on day t.
In addition, let Zt be the sentiment label on day t. Our generator is
a multiple-input single-output system, which inputs n historical
days’ data with m factors from the stock market each day (plus,

FIGURE 6 | Information flow through an LSTM unit.

FIGURE 7 | The architecture of our conditional adversarial
learning model.
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the label) and outputs a specific kind of future price data (Open,
High, Low, or Close) as the prediction. Since the stock data is
typical time-series data, we adopted an LSTM network in our
generative model denoted by G. LSTM was trained to extract the
features of price data from the past n days, and then used to
predict stock prices on day t + 1. The generator modelG generally
consists of three kinds of layers: embedding layer, LSTM layer,
and fully connected (FC) layer. An embedding layer first embeds
a label in the latent space and turns it into a dense vector, then
combines the latent vector with the input matrix, which is the
price data from the past in our application. Afterward, an LSTM
layer generates some prediction result. A dropout layer could be
added between two LSTM layers to make the network have a
better generalization and less likely to overfit. Lastly, an FC layer
with the Leaky Rectified Linear Unit (ReLU) activation function
outputs simulated or fake data ~Xt+1, which approximates the real
target data Xt+1. The output of our generator is defined as follows:

~Xt+1 � G(Xt |Zt). (5)

In our work, m � 4 and n � 5. The four factors were historical
Open price, High price, Low price and Close price, which could be
seen as four features of the stock data for the price prediction
problem. Specifically, we utilized all four kinds of stock prices in
the past five business days to forecast each kind of price (O, H, L,
or C) on the next day.

The purpose of our discriminator D is to classify input data as
real or fake. This classification model is expected to output 0
when it receives real input data or 1 when it receives fake input
data. For the input, we concatenated Xt with ~Xt+1 and Xt+1
respectively to get the fake data ~Xt+1 � {Xt−n+1, . . . ,Xt , ~Xt+1}
and the real data Xt+1 � {Xt−n+1, . . . ,Xt ,Xt+1}. In this way, we
could make the discriminator learn the features of sequential data
better. Our discriminator D consists of two parts: two embedding
layers and a multilayer perceptron (MLP) network. The

embedding layers worked in the way same as those in G,
i.e., the embedding layers transformed the data and labels into
suitable input for MLP. The MLP model then projected the data
into higher dimensional space and effectively accomplished the
classification task. The Leaky ReLU activation function was used
in the hidden layers of the MLP and the sigmoid function was
used in the output layer. Returning either 0 and class 1, the output
of a discriminator while making a correct decision is as follows:

0 � D(Xt+1|Zt), (6a)

1 � D(~Xt+1
∣∣∣∣Zt). (6b)

Specifically, if we select Open price to be predicted byG, we would
concatenate the prediction result to Open price values from the
past n days. Then, we distinguished this sequence from the
corresponding one sampled from real data with D.

We alternatively trained G and D with binary cross-entropy
loss (i.e., log loss), L(~y, y) � −y log(~y) − (1 − y)log(1 − ~y), where
y is the target value and ~y is a predicted value. On the one hand,
our generator G simulated the fluctuations of the stock market
and to minimize the difference between its prediction and the real
data. On the other hand, our discriminator D tried to distinguish
and maximize that difference. The training of G focused on
making the discriminator D confused; it attempted to
minimize the adversarial loss so that D could not discriminate
the prediction easily. The adversarial loss at each data point on
day t + 1 for the generator was

Gloss(~Xt+1) � L(D(~Xt+1
∣∣∣∣Zt), 0). (7)

The training of D focused on improving its ability to distinguish
the difference between Xt+1 and ~Xt+1 , so it attempted to
maximize the adversarial loss at each data point on day t + 1:

Dloss(Xt+1, ~Xt+1) � L(D(Xt+1|Zt), 0) + L(D(~Xt+1
∣∣∣∣Zt), 1). (8)

FIGURE 8 |Comparison of the prediction curves of different models on the AAPL-Open and KHC Low test sets. For AAPL Open, among all models, KNN achieved
the minimumMAPE over the five-day test period; see Table 3. However, on each of the last three days, CGAN actually performed better than KNN. For KHC Low, GAN
predictions were closest to the market values and CGAN came next.
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In general, the generator tried to make D(~Xt+1
∣∣∣∣Zt) � 0 while the

discriminator tried to achieve D(Xt+1|Zt) � 0 and D(~Xt+1
∣∣∣∣Zt) � 1.

[7] defined the loss function of this specific binary classification task
as cross-entropy loss. To achieve the training process described by
Eq. (7) and Eq. (8), we updated D by maximizing
Ex ∼ preal(x)[logD(x|z)] + E~x ∼ pfake(~x)[log(1 − D(G(~x|z)))], and then
updated G by minimizing E~x ∼ pfake(~x)[log(1 − D(G(~x|z)))]. In this
way, the total loss function of the minimax game over all training
samples was as follows:

min
G

max
D

LRMSprop (D,G) � Ex ∼ preal(x)[logD(x|z)]
+ E~x ∼ pfake(~x)[log(1 − D(G(~x|z)))],

(9)

where preal(x) was the distribution of real data, pfake(~x) was the
distribution of fake data, and lastly, z represented the label vector.

The two models G and D were trained iteratively with the
RMSprop optimizer, a stochastic gradient descent algorithm with
mini batches [32]. In each iteration, we first trained the
discriminator r times and then trained the generator one time,
in which r was seen as a hyper-parameter to be tuned in our
training process. The reason for training D first was that a trained
discriminator would help improve the training effect of the
generator. Besides, we also adopted gradient clipping (ensuring
the norm of a gradient not too large in magnitude) for bothG and
D at the end of each iteration to avoid the potential problem of
gradient explosion.

If Zt is omitted from the discussion in this subsection, then we
have simply a GAN model. In practice, we used Keras [33] with
TensorFlow [34] version 2 as the backend to implement our
LSTM, GAN, and CGAN models.

5 EXPERIMENT

In this section, we summarize the numerical results of our
learning and prediction models in multiple error measures in
response to hyperparameter search when applicable.

5.1 Experimental Settings
We collected price data and related tweets of nine companies
from April 1st to June 10th, 2016. The data before June 5th was
taken as the training set and the last five days’ data as the test
set. For each dataset, we respectively experimented on Open
price, High price, Low price, and Close price, so we totally built
and tested 9 × 4 � 36 models and datasets (36 groups of
experiments).

We have already illustrated the main data processing work in
Section 3. Here, we elaborate on specific configuration of our
models.

5.1.1 Baseline Models
Linear Multiple Regression (LMR) is a classical statistical
approach for analyzing the relationship between one
dependent variable and one or more independent variables. Its
simple formula in matrix notation is Y � Xβ + ε, where ε is iid
normal with mean 0 and variance matrix, σ2I, and I is the identity

matrix of order the same as number of independent
observations in Y.

K-Nearest Neighbors (KNN) [35] can be used in both
classification and regression problems. In our time-series
regression problem, the input is the k closest training
sequences from the feature space according to the timeline,
and the output is the average of the values of the k nearest
neighbors.

Autoregressive Integrated Moving Average (ARIMA) is
composed of autoregression (AR), an integrated (I) model that
calculates differences, and moving average (MA). Auto ARIMA
[36, 37] can automatically perform grid search with parallel
processing to find an optimal combination of p, q, and d,
which are the parameters associated with order of AR, degree
of differencing with I, and order of MA, respectively.

Long Short-TermMemory is a special kind of recurrent neural
network. We tuned three hyper-parameters to improve its
training effect: the number of LSTM units, step size, and
training epochs.

5.1.2 Data Pre-Processing Techniques
Besides Open price, High price, Low price, and Close price,
we also added two more engineered factors to the dataset
as input to predict the price on day t + 1. One was the
sentiment variable, compound_multiplied, which was obtained
with the method illustrated in Section 3.1. The other was
per_change, which was obtained by the equation:
per change :� 100% × [Close(t) −Open(t)]/Open(t). Table 2
shows the AAPL dataset sample with six columns, where the
compound_multiplied was the sentiment variable.

Transformations for baseline models (LMR, KNN, and auto
ARIMA) When predicting one type of stock price mentioned
above, we utilized the two derived factors, per_change and
compound_multiplied, as predictors.

Techniques for neural-network models (LSTM, GAN, and
CGAN) (I)As for LSTM, we chose only three factors as input. For
instance, we used ‘Open price’, per_change and
compound_multiplied from day t as input when we predicted
the Open price on day t + 1. However, for our adversarial learning
model, we chose four kinds of prices as input and utilized the
other two factors to create labels. The details about the labels were
discussed below. (II) We converted time-series data to data that
was fitting in supervised learning problems. Specifically, if we
predicted the price on day t + 1 with the prices from the past
5 days, we would create a six-term sequence
Xt+1 � {xt−4, xt−3, xt−2, xt−1, xt , xt+1}. In other words, we used
the first five time-lagged columns as input and the last column
as the real target price on day t + 1.

5.1.3 Settings for Adversarial Learning Models
Labels We utilized the two variables, compound_multiplied and
per_change, to create our final sentiment label in the CGAN
models. The reason for adding the per_change was that we would
like to take the local trend of past stock variation into account.
Finally, the label was set to three classes: 0, 1, and 2. The three
classes respectively represent three different tendencies of
forecasting prices: up, down, and almost unchanged. Our
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model was trained to learn the categories from labels with the
training set and enhance its prediction accuracy. Let Zt represent
the label on day t. The process of creating the labels could be
captured by the following min-max scaling of each vt ∈ [0, 3]
before mapping it to Zt ∈ {0, 1, 2}, meaning [0, 1)1 0, [1, 2)1
1, and [2, 3]12:

vt � λ1 × compound multiplied(t) + λ2 × per change(t), (10)

Zt � min(2,⌊3 vt −min(vt)
max(vt) −min(vt)⌋),

where λ1 + λ2 � 1 and 0≤ λ2, λ2 ≤ 1. Empirically, tuning λ1 and λ2
could change the training accuracies.

We also did experiments to evaluate the impact of the
sentiment analysis had made in our work. Specially, we
modified our CGAN models by taking out the embedding
layers and not inputting the sentiment labels Zt . Without the
labels Zt, we have GANmodels. In this way, we could compare the
training effect of our models with or without sentiment labels.

Hyper-parameters As discussed in Section 4, we alternately
trained theD and theG. The epoch ratio, r, defined as epochs ofD
to epochs of G, was in the range of [1, 4].

The learning rates for D and G, αD and αG, were searched in the
range, [5 × 10− 5, 8 × 10− 4], respectively, with the same decay, 10−8.
We also tuned αD and αG in our experiments to improve the training
process. Besides, the gradient clipping thresholds were set to be the
same at 0.8 for both the generator and the discriminator.

5.2 Results and Discussions
We used mean absolute percentage errors (MAPE) as the main
metric to evaluate the performance of our model. The metric
equation is

MAPE � 100%
N

∑N
t�1

∣∣∣∣∣∣∣∣∣yt − ~yt
yt

∣∣∣∣∣∣∣∣∣,
where yt is the real price on day t, ~yt is the prediction price by a
model, and N is number of data points. In our experiments, we first
trained theCGANmodel until the loss curves of both the generator and
the discriminator converged. The training process was described in
Section 4. After that, we tested the generator “LSTMmodel” to get the
prediction results of testing data. Figure 8 displays the comparison of
prediction curves on the AAPL-Open and KHC-Low test sets. As our
test sets contained five-day-long data, we calculated the averageMAPEs
for the five days’OHLC prices as the performance metric of the model.

Empirically, we tuned three kinds of hyper-parameters to
improve the performance of our adversarial learning model:

the learning rates of the sub-networks, αD and αG; the epoch
ratio r; weightage λ1 and λ2 in Eq. (10). Table 3 show the MAPE
results of the nine test sets. We did four groups of experiments,
respectively on O, H, L, C, for each test set and then calculated the
average MAPE to compare the performances of different models
effectively. KNN achieved minimum mean MAPE for AAPL,
SBUX, CSCO, SWKS, and KHC; linear models for EA and ENDP;
GAN and CGAN for NVDA and EBAY, respectively. While KNN
achieved minimum errors most of the time, GAN and CGAN
were the best for 11 of the 36 stock prices and the second best for
18. In terms of overall average of all nine MAPEs (last column of
Table 4), KNN was the best and CGAN came as a close second.
Without sentiment labels, GAN models on average had a higher
average of all MAPEs than CGAN, showing that our sentiment
labels help generally in improving price prediction accuracy.

Root mean square errors (RMSE), mean square errors (MSE),
mean absolute errors (MAE), and symmetric mean absolute
percentage errors (SMAPE) were also used to verify the
training results. Their defining equations are recapped here:

RMSE �

������������
1
N
∑
t�1

N (yt − ~yt)2
√√

, MSE � 1
N
∑
t�1

N (yt − ~yt)2,
MAE � 1

N
∑
t�1

N

|yt − ~yt |, SMAPE � 100%
N

∑
t�1

N
∣∣∣∣yt − ~yt

∣∣∣∣(∣∣∣∣yt ∣∣∣∣ + ∣∣∣∣~yt ∣∣∣∣)/2.
To evaluate our model in a more comprehensive view, we selected
AAPL and EBAY to illustrate these four metrics. We respectively
obtained the results of O, H, L, C from all models and then
calculate the average errors to compare the performance more
carefully. Table 5 for AAPL shows that KNN performed best on
average while CGAN came second. Table 5 for EBAY
demonstrates that the CGAN models outperformed all the
baselines not only in MAPE but also in RMSE, MSE, MAE,
and SMAPE.

As discussed above, we treated λ1 and λ2 as hyper-parameters.
Considering the importance of condition labels, adjusting the
proportion of sentiment information would be necessary every
time we trained the CGAN model. For short-term stock data,
we need to train the model only once, since people’s attitude
toward a stock often remains more or less the same in a short
period. However, readjusting λ1 and λ2 every month maybe
useful. We collected another tweet dataset about Apple Inc.
with a time span from Jan. 1, 2014 to Dec. 31, 2015 (available
from stocknet-dataset by [5]. We selected three periods in these
two-year-long datasets and calculated the MAPEs of prediction

TABLE 2 | Stock price data and two engineered features on the first five days of the AAPL dataset, where NaN represents Not a Number.

Date Open High Low Close per_change compound_multiplied

4/1/16 108.78 110.00 108.20 109.99 1.1123 NaN
4/2/16 109.33 110.73 108.89 110.37 0.9529 1.1750
4/3/16 109.87 111.46 109.58 110.74 0.7934 -0.1666
4/4/16 110.42 112.19 110.27 111.12 0.6339 -0.1836
4/5/16 109.51 110.73 109.42 109.81 0.2739 0.2064
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results for the Open price. In the three groups of experiments, we
chose three different (λ1, λ2) pairs in our CGAN model with
λ2 :� 1 − λ1. We also applied GAN as the baseline to highlight
the influence of condition labels. As shown inTable 6, for the first test
period, which follows immediately after the time span of the training
data, the MAPEs from CGAN and GAN were least (see the first row
of each group in Table 6). However, both models performed worse
with increasingly larger MAPEs during the subsequent test periods
except for GAN in the last training scenario. Thus, the learning
models should be trained periodically, or whenever the test errors are
larger than user-desired tolerances, especially when they are used in
real-time prediction tasks.

TABLE 3 | Tables 3a–i present theMAPEs of forecasted O, H, L, and C prices from
various models for nine stock symbols. The smallest MAPE is highlighted in
bold across the models in each column for every stock price; the second smallest
is underlined. The last column contains the average values of the MAPEs of the
four price targets.

Open High Low Close Mean/%

a). MAPEs of the AAPL test set.
LMR 1.1958 2.9199 1.4223 2.1880 1.9315
KNN 0.5546 0.8539 0.4884 0.4090 0.5765
ARIMA 2.6741 1.4260 3.2027 2.6597 2.4906
LSTM 1.4061 4.5924 5.7139 5.2507 4.2408
GAN 0.7929 1.5085 1.2227 1.2868 1.2027
CGAN 0.7067 1.4688 0.6841 1.3076 1.0418
b). MAPEs of the SBUX test set.
LMR 0.9019 1.1674 1.3397 1.2923 1.1753
KNN 0.5593 0.4919 0.6338 0.5265 0.5529
ARIMA 1.1861 1.0757 1.1539 1.0580 1.1184
LSTM 0.5040 3.8398 4.0186 3.7970 3.0399
GAN 0.6448 0.8664 0.8240 0.9556 0.8227
CGAN 0.6888 0.9053 0.6280 0.8969 0.7798
c). MAPEs of the EA test set.
LMR 0.5037 0.8308 0.9628 0.9709 0.8170
KNN 0.5964 0.8414 0.9878 1.0162 0.8604
ARIMA 3.1441 3.8026 1.4712 2.4455 2.7158
LSTM 0.8987 16.9632 17.0647 16.4948 12.8554
GAN 0.9095 0.8225 1.0935 0.7298 0.8888
CGAN 1.2390 1.0105 1.3181 0.7448 1.0781
d). MAPEs of the ENDP test set.
LMR 2.6631 2.892 3.2137 2.8585 2.9068
KNN 2.4014 2.4446 4.3038 3.4666 3.1541
ARIMA 7.5329 10.8514 7.8179 12.4049 9.6518
LSTM 1.9243 33.3106 27.6254 37.3947 25.0638
GAN 3.4240 53.2661 3.9620 4.8264 16.3696
CGAN 5.4597 3.6090 4.0107 3.1991 4.0696
e). MAPEs of the CSCO test set.
LMR 1.1367 0.6497 0.8273 0.4343 0.7620
KNN 0.3813 0.1555 0.7219 0.1840 0.3607
ARIMA 1.3303 1.7011 2.7049 1.1942 1.7326
LSTM 0.5645 7.2849 7.9551 8.0766 5.9703
GAN 0.4081 0.2811 0.6025 0.2095 0.3753
CGAN 0.6318 0.4245 0.6968 0.2559 0.5022
f). MAPEs of the NVDA test set.
LMR 2.4894 2.5058 2.0899 3.6247 2.6774
KNN 0.9341 1.0531 0.6399 1.5637 1.0477
ARIMA 2.1786 1.9938 1.5984 2.0929 1.9659
LSTM 0.8402 12.1243 10.8188 10.297 8.5201
GAN 1.0658 0.7822 0.4776 1.2834 0.9022
CGAN 1.1604 2.4538 0.4854 1.4711 1.3927
g). MAPEs of the SWKS test set.
LMR 1.3381 1.6378 1.2815 1.6442 1.4754
KNN 1.5065 1.1174 1.2586 1.6564 1.3847
ARIMA 2.5976 2.0430 2.5419 3.4855 2.6670
LSTM 1.9081 6.2990 6.3457 7.1987 5.4379
GAN 1.9350 1.7313 1.2501 2.0234 1.7350
CGAN 1.7149 1.8520 1.2180 2.1641 1.7372
h). MAPEs of the EBAY test set.
LMR 0.3222 1.0901 0.813 1.0681 0.8234
KNN 0.8402 0.5033 0.6336 0.7170 0.6735
ARIMA 1.1214 1.3163 1.5132 1.7715 1.4306
LSTM 0.2329 1.2547 0.5792 0.6469 0.6784
GAN 0.6034 0.5628 0.7878 0.5867 0.6352
CGAN 0.5781 0.4940 0.7231 0.6964 0.6229
i). MAPEs of the KHC test set.
LMR 0.7283 0.7682 0.8998 1.4204 0.9542
KNN 0.3715 0.1547 0.4089 0.4968 0.3580
ARIMA 1.0659 1.0437 1.9594 0.6984 1.1919

(Continued in next column)

TABLE 3 | (Continued) Tables 3a–i present the MAPEs of forecasted O, H, L, and C
prices from variousmodels for nine stock symbols. The smallest MAPE is highlighted
in bold across the models in each column for every stock price; the second smallest
is underlined. The last column contains the average values of the MAPEs of the four
price targets.

Open High Low Close Mean/%

LSTM 0.8691 5.9214 6.3042 5.9614 4.7640
GAN 0.5725 0.2316 0.3953 0.7931 0.4981
CGAN 0.5304 0.3763 0.4749 0.6463 0.5070

TABLE 4 | Counts number of times a model is the best and second best in
predicting the stock prices, and lists the mean of all mean values in the last
column of Tables 3a–i.

Overall performance of all models

Best Second Mean/%

LMR 6 4 1.5026
KNN 14 12 0.9965
ARIMA 0 1 2.7738
LSTM 5 1 7.8412
GAN 8 8 2.6033
CGAN 3 10 1.3035

TABLE 5 | Comparison of prediction results in different metrics on the AAPL and
EBAY test sets using the average values of model errors on O, H, L, C prices.
The smallest errors are displayed in bold font across the models we have built; the
second smallest errors are underlined.

Model RMSE MSE MAE MAPE/% SMAPE/%

a). Errors of the AAPL test set.
LMR 2.2721 5.8504 1.9176 1.9315 1.9231
KNN 0.7154 0.5680 0.5721 0.5764 0.5753
ARIMA 2.6184 7.1359 2.4613 2.4906 2.4546
LSTM 5.1174 30.7145 4.2006 4.2408 4.1406
GAN 1.5321 2.5507 1.1970 1.2028 1.2152
CGAN 1.3464 2.0495 1.0378 1.0418 1.0511
b). Errors of the EBAY test set.
LMR 0.2457 0.0689 0.1994 0.8234 0.8287
KNN 0.1970 0.0392 0.1628 0.6735 0.6765
ARIMA 0.4410 0.2071 0.3453 1.4306 1.4142
LSTM 0.2248 0.0617 0.1636 0.6784 0.6737
GAN 0.1903 0.0369 0.1534 0.6351 0.6368
CGAN 0.1867 0.0353 0.1503 0.6229 0.6230
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6 CONCLUSIONS AND FUTURE WORK

For individual investors and investment banks, rational prediction
through statistical modeling helps decide stock trading schemes
and increase their expected profits. However, it is well known that
human trading decisions are not purely rational and the irrational
drivers are often hard to observe. Introducing proxies of irrational
decision factors such as relevant online discussion from Twitter
followed by sentiment analysis has become an advanced approach
in financial price modeling.

In this work, we have successfully built a sentiment-
conditional GAN network in which LSTM served as the
generator. We encoded Twitter messages, extracted sentiment
information from the tweets, and utilized it to conduct our stock
prediction experiments. The experiments showed, for about a
third of our models, superior properties of our GAN and CGAN
models compared to LMR and ARIMA models, KNN method,
as well as LSTM networks. Our GAN and CGAN models could
better adapt to the variations in the stock market and fluctuation
trends of some real price data. Hence they could play a role in
ensemble methods that combine strong models with small
prediction errors to achieve better accuracies than any
individual model when no one model would always perform
best; see, for example, [38].

Even though our neural network models could outperform the
simpler baselinemodels at times, it could still be enhanced. Themain
obstacle in our work was that we failed to find tweets’ dataset that
was longer than 70 days, which might largely weaken the training
effect. For instance, we initially planned to add more labels to our
input data, since it would help represent varying degrees of
sentiment tendencies instead of only ‘up’, ‘down’, and ‘almost
unchanged’. Nevertheless, the GAN-based models could not learn
better with more labels in such a short time-series dataset. Therefore,
we finally chose only three classes to make sure that our model
would be fully trained. The same consideration went when we
created the sentiment variable, which was the reason why we
only selected ‘positive’ and ‘negative’ lists when adding new
words to the dictionary. If we could get a dataset with a longer
time coverage, we would be able to do experiments with sentiment
labels in more categories and potentially further improve our
models.

Another shortcoming in our current approach is that we only
took sentiment factors into account. The stock market is very

complicated and there are potentially a great many factors to be
considered. There are some other factors like economic growth,
interest rates, stability, investor confidence and expectations. We
also noticed that political events would have a huge impact on the
variation of the stock market. We can extract political
information from newspapers and news websites. If we added
these factors to the input, our model may better learn the features
of the stock market and make the prediction tendencies close to
that in the real world.

In this work, we have assumed that the tweets are more or
less truthful. However, social media sources could be
contaminated with fake news or groundless comments, that
are hard to be distinguished from the good ones with real
signals. A fruitful area of future research is to look into GAN
models for alleviating the problem.

It is also known that neural network models often need
much bigger datasets to beat simpler models. To this end, there
are multiple ways we could explore: consider more than nine
stocks; join all stock prices into one single dataset, i.e., to train
one model on panel data grouped by stocks and prices (O, H, L,
C) instead of a single time series; sample our datasets at hourly
frequency.

Lastly, many properties of neural networks are still active areas of
research. For example, in LSTM, GAN, and CGANmodels, the loss
function values and the solution quality often appear to be sensitive
to small changes in inputs, hyperparameters, or stopping conditions.
Creating stable yet efficient numerical algorithms are necessary for
reliable solutions. In addition, the success of neural networks are
often associated with computer vision problems. Adopting them in
finance may require different techniques or transformations.

In the future, we would like to explore the topic further in the
following directions:

1) Obtaining larger datasets and creating labels in more
classes to improve our model by examining hourly data,
for example.

2) Building GANmodels for detecting overhyped or deceitful
messages about a stock before incorporating them into our
models.

3) Attempting to extract more stock-related factors and
adding them as predictors in our models.

4) Experimenting with more stocks or other financial assets,
and considering having one model for all stock price data.

TABLE 6 |Comparison of the MAPEs for AAPL-Open dataset from CGAN and GAN over three different testing periods for each training time span. The smallest error in each
test group for each model is highlighted in bold.

Time span for training set Time span for testing set λ1 CGAN/% GAN/%

2014-01-01–2014-03-31 2014-04-01–2014-04-10 0.2 3.81 3.73
2014-04-11–2014-04-20 5.52 4.93
2014-05-01–2014-05-10 3.88 3.77

2014-07-01–2014-09-30 2014-10-01–2014-10-10 0.2 0.77 0.71
2014-10-11–2014-10-20 1.03 0.97
2014-11-01–2014-11-10 0.95 0.88

2015-01-01–2015-03-31 2015-04-01–2015-04-10 0.9 2.90 8.98
2015-04-11–2015-04-20 9.58 8.71
2015-05-01–2015-05-10 10.65 9.79

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 60110512

Zhang et al. Adversarial Learning for Stock Prediction

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


5) Utilizing more sophisticated natural-language processing
(NLP) methods to analyze the financial or political
information from news media and assessing the impact
and the role they play in the stock market.
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